首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adenomatous polyposis coli (APC) mutations are linked to human and mouse colorectal cancers. The Apc multiple intestinal neoplasia (Min) mouse mutation causes adenomas to develop throughout the small and large intestines. The BALB-Min (C.B6-Apc(Min/+)) congenic strain was generated by backcrossing into BALB/c the Apc(Min) allele from C57BL/6J-Apc(Min/+) mice. BALB-Min mice have a low tumor multiplicity (27.4 small intestine tumors/mouse) and a relatively long life span (>1 year) that makes them amenable to long-term studies. To investigate the interplay of the adaptive immune system and intestinal tumorigenesis, the immunodeficient compound mutant strain BALB-RagMin (C.Cg-Rag2(-/-) Apc(Min/+)) was generated. BALB-RagMin mice had a significant increase in tumors in the small, but not large, intestine relative to their BALB-Min counterparts (43.0 versus 24.0 tumors/mouse, respectively). The results suggest that the adaptive immune system plays a role in either the elimination or the equilibrium phase of cancer immunoediting in the small intestine in this model. We investigated the effect of the enterohepatic bacterial pathogen Helicobacter hepaticus on liver and intestine tumorigenesis in BALB-RagMin mice. H. hepaticus-infected BALB-RagMin mice developed moderate hepatitis, moderate typhlitis, and mild colitis. There were no differences in small intestine and cecal tumor multiplicity, regionality, or size relative to that in uninfected mice. However, H. hepaticus-infected BALB-RagMin mice had a significant increase in colon tumor incidence relative to uninfected BALB-RagMin mice (23.5% versus 1.7%, respectively). The data suggest that H. hepaticus, which is present in many research colonies, promotes colon tumorigenesis in the BALB-RagMin mouse and that it has the potential to confound colon tumorigenesis studies.  相似文献   

2.
The transmembrane glycoprotein CD98 regulates integrin signaling that in turn controls cell proliferation and survival. CD98 expression is upregulated in various carcinomas, including colorectal cancer. Recently, by generating gain- and loss-of-function mouse models featuring genetic manipulation of CD98 expression specifically in intestinal epithelial cells (IECs), we have explored the crucial role of CD98 in the regulation of intestinal homeostasis and inflammation-associated tumorigenesis. In the present study, we investigated the contribution of CD98 to intestinal tumorigenesis in Apc(Min/+) mice and the underlying mechanism of action. Mice featuring IEC-specific CD98 overexpression (Tg animals) were crossed with Apc(Min/+) mice, and the characteristics of intestinal adenoma formation were assessed. Compared with Apc(Min/+) mice, Tg/Apc(Min/+) animals exhibited increases in both intestinal tumor incidence and tumor size; these parameters correlated with enhanced proliferation and decreased apoptosis of IECs. IEC-specific CD98 overexpression resulted in increased synthesis of the oncogenic proteins c-myc and cyclin-D1 in Apc(Min/+) mice, independently of the Wnt-APC-β-catenin pathway, suggesting the implication of CD98 overexpression-mediated Erk activation. IEC-specific CD98 overexpression enhanced the production of proinflammatory cytokines and chemokines that are crucial for tumorigenesis. We validated our results in mice exhibiting IEC-specific CD98 downregulation (CD98(flox/+)VillinCre animals). IEC-specific CD98 downregulation efficiently attenuated tumor incidence and growth in Apc(Min/+) mice. The reduction of intestinal tumorigenesis upon IEC-specific CD98 downregulation was caused by the attenuation of IEC proliferation and cytokine/chemokine production. In conclusion, we show that CD98 exerts an oncogenic activity in terms of intestinal tumorigenesis, via an ability to regulate tumor growth and survival.  相似文献   

3.
Murine models of familial adenomatous polyposis harbor a germinal heterozygous mutation on Apc tumor suppressor gene. They are valuable tools for studying intestinal carcinogenesis, as most human sporadic cancers contain inactivating mutations of APC. However, Apc(+/-) mice, such as the well-characterized Apc(Min/+) model, develop cancers principally in the small intestine, while humans develop mainly colorectal cancers. We used a Cre-loxP strategy to achieve a new model of germline Apc invalidation in which exon 14 is deleted. We compared the phenotype of these Apc(Delta14/+) mice to that of the classical Apc(Min/+). The main phenotypic difference is the shift of the tumors in the distal colon and rectum, often associated with a rectal prolapse. Thus, the severity of the colorectal phenotype is partly due to the particular mutation Delta14, but also to environmental parameters, as mice raised in conventional conditions developed more colon cancers than those raised in pathogen-free conditions. All lesions, including early lesions, revealed Apc LOH and loss of Apc gene expression. They accumulated beta-catenin, overexpressed the beta-catenin target genes cyclin D1 and c-Myc, and the distribution pattern of glutamine synthetase, a beta-catenin target gene recently identified in the liver, was mosaic in intestinal adenomas. The Apc(Delta14/+) model is thus a useful new tool for studies on the molecular mechanisms of colorectal tumorigenesis.  相似文献   

4.
Germ-line mutation of the Apc gene has been linked to familial adenomatous polyposis (FAP) that predisposes to colon cancer. Apc(Min/+) mice, heterozygous for the Apc gene mutation, progressively develop small intestinal tumours in a manner that is analogous to that observed in the colon of patients with FAP (Su et al. 1992; Fodde et al. 1994; Moser et al. 1995). We have studied the effects of Apc gene mutation on murine intestinal and extra-intestinal, proliferatively active tissues. We have contrasted the histology to that of the age- and sex-matched wild-type C57BL/6 mice. Histological assessment of the normal appearing intestinal mucosa demonstrates minimal change in size of crypts. In contrast, villi are longer in the ileum of Apc(Min/+) mice relative to C57BL/6 mice at 12 and 15 weeks of age. Vigorous splenic haematopoiesis in Apc(Min/+) mice was seen at 12 and 15 weeks of age, as reflected by marked splenomegaly, increased splenic haematopoietic cells and megakaryocytes. Peripheral blood counts, however, did not differ between C57BL/6 and Apc(Min/+) mice at 15 weeks of age. Lymphoid depletion in Apc(Min/+) mice was characterized by diminished numbers of splenic lymphoid follicles and small intestinal Peyer's patches. The ovaries of 12- and 15-week-old Apc(Min/+) mice exhibited increased numbers of atretic follicles, and estrous cycling by serial vaginal smears showed tendency of elongation in the mutant mice during these age ranges. The testicles of 10-week-old Apc(Min/+) mice showed increased numbers of underdeveloped seminiferous tubules. Collectively, these data suggest that, in addition to its obvious effects upon intestinal adenoma formation, Apc gene mutation causes impairment of developmental and apparent differentiation blockade in proliferative tissues, including those of the haematopoietic system, lymphoid and reproductive tract.  相似文献   

5.
Min (Multiple intestinal neoplasia) mice carry a dominant mutation in the adenomatous polyposis coli (Apc) gene and develop multiple adenomas throughout their intestinal tract (Moser et al. 1990; Su et al 1992). Polyp multiplicity in Min mice is greatly influenced by genetic background. A modifier locus, Mom1 (Modifier of Min 1), was identified and localized to distal mouse chromosome 4 (Moser et al. 1992; Dietrich et al. 1993), and accounts for some of the genetic variance in polyp multiplicity. Mom1 is a semidominant modifier of polyp size and multiplicity in Min mice (Gould and Dove 1997), and encodes the secretory type II nonpancreatic phospholipase A2 (Pla2g2a) gene (MacPhee et al. 1995; Cornier et al. 1997, 2000). We now report the identification of a second Modifier of Min 2 (Mom2) locus that is the result of a spontaneous mutation. One resistant Mom2 allele can suppress 88%-95% of polyps detected in Apc(Min)/+ mice, indicating that Mom2 acts in a dominant fashion. Linkage analysis has localized Mom2 to distal mouse chromosome 18. The effects of the Mom2 locus on reducing polyp multiplicity are stronger than the effects of the Mom1 locus, in both the small and large intestines. Some Apc(Min)/+ mice that carried one resistant Mom2 allele were tumor-free at 21 weeks of age, even in the absence of a resistant Mom1 allele. Thus, the resistant Mom2 allele can, in some cases, completely suppress the penetrance of the Apc(Min) mutation.  相似文献   

6.
Min (multiple intestinal neoplasia) mice carry a mutant allele of the murine Apc (adenomatous polyposis coli) locus and are predisposed to intestinal adenoma formation in the intestinal tract. Early studies have shown complete loss of function of Apc by whole chromosome loss on the tumor-sensitive C57BL/6J genetic background and in AKR x B6 F1 hybrids. Gamma-radiation-induced chromosomal losses focus the critical region on wt Apc, but because of the limited number of polymorphic markers used, no other critical regions of loss on chromosome 18 were identified. Using intestinal tumors arising spontaneously and induced by X-rays in CBA/H x C57BL/6J F1 hybrid mice and high-resolution microsatellite loss of heterozygosity (LOH) techniques, we provide mapping data for wt Apc loss, which confirms and extends earlier observations. In addition, high-frequency loss events at the Dpc4 locus were found in both spontaneous and radiation-induced tumors. These data identified LOH of Dpc4 as a critical secondary event following complete functional loss of Apc. LOH across the Trp53 genomic region of chromosome 11 was not observed. No LOH was recorded for the Mom1 candidate gene Pla2g2a or for 9 out of 10 polymorphic markers from the Mom1 genomic region on murine chromosome 4. One marker mapping distal to Pla2g2a showed LOH in a small minority of spontaneous tumors. These data support the contention that Mom1 does not act as a classical tumor suppressor. Overall, our data indicates a significant role for Dpc4 mutation in intestinal tumor progression in the mouse and provides further evidence for the importance of interstitial chromosome losses in radiation tumorigenesis.  相似文献   

7.
Although chromosomal instability characterizes the majority of human colorectal cancers, the contribution of genes such as adenomatous polyposis coli (APC), KRAS, and p53 to this form of genetic instability is still under debate. Here, we have assessed chromosomal imbalances in tumors from mouse models of intestinal cancer, namely Apc(+/1638N), Apc(+/1638N)/KRAS(V12G), and Apc(+/1638N)/Tp53-/-, by array comparative genomic hybridization. All intestinal adenomas from Apc(+/1638N) mice displayed chromosomal alterations, thus confirming the presence of a chromosomal instability defect at early stages of the adenoma-carcinoma sequence. Moreover, loss of the Tp53 tumor suppressor gene, but not KRAS oncogenic activation, results in an increase of gains and losses of whole chromosomes in the Apc-mutant genetic background. Comparative analysis of the overall genomic alterations found in mouse intestinal tumors allowed us to identify a subset of loci syntenic with human chromosomal regions (eg, 1p34-p36, 12q24, 9q34, and 22q) frequently gained or lost in familial adenomas and sporadic colorectal cancers. The latter indicate that, during intestinal tumor development, the genetic mechanisms and the underlying functional defects are conserved across species. Hence, our array comparative genomic hybridization analysis of Apc-mutant intestinal tumors allows the definition of minimal aneuploidy regions conserved between mouse and human and likely to encompass rate-limiting genes for intestinal tumor initiation and progression.  相似文献   

8.
C57BL/6J-Min/+ (multiple intestinal neoplasia) is a murine model for familial adenomatous polyposis (FAP), where the mice are heterozygous for a nonsense Apc(Min) (adenomatous polyposis coli) mutation, and therefore develop numerous spontaneous adenomas in the small intestine and colon. Neonatal exposure of Min/+ mice to the food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (eight subcutaneous injections of 25 or 50 mg/kg PhIP to pups or 50 mg/kg PhIP to lactating dams) markedly increased (2--9-fold) the number of intestinal tumours, especially in the small intestine. We examined whether the Apc gene was affected in small intestinal and colonic tumours induced by PhIP. In spontaneous tumours formed in these mice, the main mechanism for tumour induction is loss of the wild-type Apc(+) allele, i.e. loss of heterozygosity (LOH). Also in the PhIP-induced tumours, this is a major mechanism, since large fractions of PhIP-induced tumours had LOH in APC: However, mechanisms other than LOH must also prevail, since a lower frequency of LOH was found in the small intestinal tumours from male mice exposed to PhIP either via breast milk (65%) or by direct injection (68%), compared with the untreated controls (92%). Tumours that had retained the wild-type Apc(+) allele were further analysed for presence of truncated Apc proteins with in vitro synthesized protein (IVSP) assay. Truncated Apc proteins, indicating truncation mutations in exon 15 of the Apc gene, were detected in 20% (8 of 40) of the tumours not showing LOH from the small intestine after PhIP exposure, all in segment 2 (codons 686--1217). Seventeen percent (2 of 12) of the colonic tumours had a truncated Apc protein in segment 3 (codons 1099--1693). Importantly, no truncated proteins were detected in tumours from unexposed mice with apparently retained wild-type Apc(+) allele. These results show that PhIP induces intestinal tumours in the Min/+ mice both by causing LOH and truncation mutations in the wild-type Apc(+) allele.  相似文献   

9.
The APC gene, originally identified as the gene for familial adenomatous polyposis (FAP), is now considered as the true "gatekeeper" of colonic epithelial proliferation. Its main tumor suppressing activity seems to reside in the capacity to properly regulate intracellular beta-catenin signaling. Most somatic APC mutations are detected between codons 1286 and 1513, the mutation cluster region (MCR). This clustering can be explained either by the presence of mutation-prone sequences within the MCR, or by the selective advantage provided by the resulting truncated polypeptides. Here, a Msh2-deficient mouse model (Msh2(delta 7N) ) was generated and bred with Apc(1638N) and Apc(Min) that allowed the comparison of the somatic mutation spectra along the Apc gene in the different allelic combinations. Mutations identified in Msh2(delta 7N/delta 7N) tumors are predominantly dinucleotide deletions at simple sequence repeats leading to truncated Apc polypeptides that partially retain the 20 a.a. beta-catenin downregulating motifs. In contrast, the somatic mutations identified in the wild type Apc allele of Msh2(delta 7N/delta 7N) /Apc(+/1638N) and Msh2(delta 7N/delta 7N) /Apc(+/Min) tumors are clustered more to the 5' end, thereby completely inactivating the beta-catenin downregulating activity of APC. These results indicate that somatic Apc mutations are selected during intestinal tumorigenesis and that inactivation of the beta-catenin downregulating function of APC is likely to represent the main selective factor.  相似文献   

10.
11.
We have found previously that all spontaneous intestinal adenomas from Apc+/Apr mice lose the wild type Apc marker on two genetic backgrounds. On the (AKR X B6)F, background, this event involves loss of the entire homolog of mouse chromosome 18 carrying Apt+. This chromosome carries both the Mcc and Dcc genes, which are homologs of genh that have been implicated in human colorectal cancer. To determine whether the loss of alleles of Mcc and/or DCC is necessary for the formation of intestinal adenomas, subchromosomal somatic events were induced by γ-irradiation. The observed spectrum of intrachromosomal somatic genetic losses rules out a requirement for loss of heterozygosity at either locus during adenoma formation. Subchromosomal allelic losses linked t o Apc+ occur spontaneously on other genetic backgrounds. In the majority of these events, the Apt+ allele itself was somatically lost, as judged by the wild type marker at the Min site. However, on the [M. musculus costoneus (CAST) X B6-Min]F, and (I 29/Sv X B6-Min)F, backgrounds, spontaneous adenomas were observed in which the wild type marker at the Min site was retained. Further analysis will be required t o determine whether these exceptions involve intra-Apc mutations. If not, then these events would illustrate routes to intestinal neoplasia that do not require complete inactivation of wild type Apc function. Genes Chromosom Cancer 17:194–198 (1996).  相似文献   

12.
Inactivation of the APC gene is considered the initiating event in human colorectal cancer. Modifier genes that influence the penetrance of mutations in tumor-suppressor genes hold great potential for preventing the development of cancer. The mechanism by which modifier genes alter adenoma incidence can be readily studied in mice that inherit mutations in the Apc gene. We identified a new modifier locus of ApcMin-induced intestinal tumorigenesis called Modifier of Min 2 (Mom2). The polyp-resistant Mom2R phenotype resulted from a spontaneous mutation and linkage analysis localized Mom2 to distal chromosome 18. To obtain recombinant chromosomes for use in refining the Mom2 interval, we generated congenic DBA.B6 ApcMin/+, Mom2R/+ mice. An intercross revealed that Mom2R encodes a recessive embryonic lethal mutation. We devised an exclusion strategy for mapping the Mom2 locus using embryonic lethality as a method of selection. Expression and sequence analyses of candidate genes identified a duplication of four nucleotides within exon 3 of the alpha subunit of the ATP synthase (Atp5a1) gene. Tumor analyses revealed a novel mechanism of polyp suppression by Mom2R in Min mice. Furthermore, we show that more adenomas progress to carcinomas in Min mice that carry the Mom2R mutation. The absence of loss of heterozygosity (LOH) at the Apc locus, combined with the tendency of adenomas to progress to carcinomas, indicates that the sequence of events leading to tumors in ApcMin/+ Mom2R/+ mice is consistent with the features of human tumor initiation and progression.  相似文献   

13.
The Apc1638N/+ mouse has a chain-terminating mutation in one allele of the adenomatous polyposis coli (Apc) gene that is similar to most mutations observed in the human familial adenomatous polyposis syndrome. Aberrant crypt foci (ACF), the earliest identified neoplastic lesions in the colon, are morphologically abnormal structures that are identifiedmicroscopically in the grossly normal colonic mucosas of rodents treated with colon carcinogens and of human patients. The colons and cecums of 62 Apc1638N/+ mice were evaluated for the spontaneous occurrence of ACF and tumors. Both male and female mice were killed at different times between 5 and 28 weeks of age. Wild-type littermates, ie, Apc(+/+) mice, at 22 to 26 weeks of age served as controls. ACF were identified in 97% of the Apc1638N/+ mice starting at 5 weeks of age and not in any wild-type littermates. Although the number of ACF increased with age (P < 0.0001), the average number of crypts per focus of the ACF did not increase significantly. In addition, wild-type Apc protein was detected by immunohistochemistry in all 22 ACF evaluated. Together these data suggest that heterozygous loss of Apc may be sufficient to initiate ACF in these mice and that these mice may be suitable models to study the interaction of environmental factors with an inherited mutation of the Apc gene that is associated with colon cancer.  相似文献   

14.
Min mice provide a good model of human familial adenomatous polyposis. Recently, we have reported on two recombinant inbred lines (I and V) and the location of a modifier (Mom3) close to Apc, which altered polyp numbers in our mice possibly by modifying the frequency of wild-type (WT) allele loss at Apc; mice with severe disease (line V) showed elevated rates of loss. We now show that in line I only, a single pregnancy caused a significant increase in adenoma multiplicity compared with virgin controls (P<0.001) and that an additional pregnancy conferred a similar risk. Pregnancy was linked to both adenoma initiation and enhanced tumour growth in line I mice, and interline crosses indicated that susceptibility to pregnancy-associated adenomas was under genetic control. We found no evidence for the involvement of oestrodial metabolizing genes or the oestrogen receptors (Esr1 and 2) in tumour multiplicity. Importantly, a significantly elevated frequency of WT allele loss at Apc was observed in adenomas from parous mice (line and backcrossed) carrying the line I Min allele relative to equivalent virgin controls (P=0.015). Our results provide the first experimental evidence for genetic determinants controlling pregnancy-associated tumourigenesis; analogous genetic factors may exist in humans.  相似文献   

15.
The interaction of urokinase-type plasminogen activator (uPA) and its receptor, uPAR, on cell surfaces facilitates the generation of cell-bound plasmin, thus allowing cells to establish a proteolytic front that enables their migration through protein barriers. This complex also activates cell signalling pathways that influence cell functions. Clinical studies have identified uPA as an indicator of poor overall survival in patients with colorectal cancer. In the current study, a mouse model of colon cancer, Apc(Min/+), with an additional deficiency of uPA (Apc(Min/+)/Plau-/-) was used to determine the effects of uPA on tumour initiation and growth. Utilizing this model, it was found that the number of tumours was diminished in these mice relative to Apc(Min/+) mice, which correlated with the decreased leukocyte infiltration in the tumours. However, tumour growth was not impeded in Apc(Min/+)/Plau-/- mice, and proliferation and tumour vascularization were, in fact, enhanced in Apc(Min/+)/Plau-/- mice. These latter effects are consistent with a mechanism involving up-regulation of COX-2 expression and Akt pathway activation in Apc(Min/+)/Plau-/- mice. The results from this study suggest that uPA plays dual and opposing roles in regulating lesion development: one early, during the transition from normal epithelia to dysplastic lesions, and another later during tumour growth.  相似文献   

16.
17.
In the Apc1638(+/-) mouse model of intestinal tumorigenesis, targeted inactivation of the cyclin-dependent kinase inhibitor p21(WAF1/cip1) is highly effective in enhancing Apc-initiated tumor formation in the intestine. Because p21(WAF1/cip1) plays a critical role in regulating intestinal cell proliferation, maturation, and tumorigenesis, we examined whether its inactivation would enhance tumor formation in a different mouse model of colon cancer. Therefore, we mated p21(-/-) mice with mice carrying a genetic deficiency of the Muc2 gene, which encodes the major gastrointestinal mucin. Muc2(-/-) mice develop tumors in the small and large intestine and the rectum, but in contrast to tumors in Apc1638(+/-) mice, this does not involve increased expression or nuclear localization of beta-catenin. We found that inactivation of p21(WAF1/cip1) significantly increased the frequency and size of intestinal tumors in Muc2 knockout mice and also led to development of more invasive adenocarcinomas. This enhanced tumorigenesis significantly decreased mouse life span. Further, inactivation of p21(WAF1/cip1) increased cell proliferation, decreased apoptosis, and decreased intestinal trefoil factor expression in the mucosa of both the small and large intestine. Surprisingly, reduced expression of p27(kip1) was also observed in the Muc2(-/-), p21(+/-), and p21(-/-) mice. In contrast, the expression of c-myc was significantly elevated. Thus, p21 modulates the formation of tumors whose initiation does (Apc) or does not (Muc2) involve altered beta-catenin-Tcf4 signaling, but which may converge on common elements downstream of this signaling pathway.  相似文献   

18.
Expression profiling is a well established tool for the genome-wide analysis of human cancers. However, the high sensitivity of this approach combined with the well known cellular and molecular heterogeneity of cancer often result in extremely complex expression signatures that are difficult to interpret functionally. The majority of sporadic colorectal cancers are triggered by mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, leading to the constitutive activation of the Wnt/beta-catenin signaling pathway and formation of adenomas. Despite this common genetic basis, colorectal cancers are very heterogeneous in their degree of differentiation, growth rate, and malignancy potential. Here, we applied a cross-species comparison of expression profiles of intestinal polyps derived from hereditary colorectal cancer patients carrying APC germline mutations and from mice carrying a targeted inactivating mutation in the mouse homologue Apc. This comparative approach resulted in the establishment of a conserved signature of 166 genes that were differentially expressed between adenomas and normal intestinal mucosa in both species. Functional analyses of the conserved genes revealed a general increase in cell proliferation and the activation of the Wnt/beta-catenin signaling pathway. Moreover, the conserved signature was able to resolve expression profiles from hereditary polyposis patients carrying APC germline mutations from those with bi-allelic inactivation of the MYH gene, supporting the usefulness of such comparisons to discriminate among patients with distinct genetic defects.  相似文献   

19.
Adenomatous polyposis coli (APC ) mutations are found in most colorectal tumours. These mutations are almost always protein-truncating, deleting both central domains that regulate Wnt signalling and C-terminal domains that interact with the cytoskeleton. The importance of Wnt dysregulation for colorectal tumourigenesis is well characterized. It is, however, unclear whether loss of C-terminal functions contributes to tumourigenesis, although this protein region has been implicated in cellular processes--including polarity, migration, mitosis, and chromosomal instability (CIN)—that have been postulated as critical for the development and progression of intestinal tumours. Since almost all APC mutations in human patients disrupt both central and C-terminal regions, we created a mouse model to test the role of the C-terminus of APC in intestinal tumourigenesis. This mouse (Apc(ΔSAMP)) carries an internal deletion within Apc that dysregulates Wnt by removing the beta-catenin-binding and SAMP repeats, but leaves the C-terminus intact. We compared Apc(ΔSAMP) mice with Apc(1322T) animals. The latter allele represented the most commonly found human APC mutation and was identical to Apc(ΔSAMP) except for absence of the entire C-terminus. Apc(ΔSAMP) mice developed numerous intestinal adenomas indistinguishable in number, location, and dysplasia from those seen in Apc(1322T) mice. No carcinomas were found in Apc(ΔSAMP) or Apc(1322T) animals. While similar disruption of the Wnt signalling pathway was observed in tumours from both mice, no evidence of differential C-terminus functions (such as cell migration, CIN, or localization of APC and EB1) was seen. We conclude that the C-terminus of APC does not influence intestinal adenoma development or progression.  相似文献   

20.
The adenomatous polyposis coli (APC) gene is considered as the true gatekeeper of colonic epithelial proliferation: It is mutated in the majority of colorectal tumors, and mutations occur at early stages of tumor development in mouse and man. These mutant proteins lack most of the seven 20-amino-acid repeats and all SAMP motifs that have been associated with down-regulation of intracellular beta-catenin levels. In addition, they lack the carboxy-terminal domains that bind to DLG, EB1, and microtubulin. APC also appears to be essential in development because homozygosity for mouse Apc mutations invariably results in early embryonic lethality. Here, we describe the generation of a mouse model carrying a targeted mutation at codon 1638 of the mouse Apc gene, Apc1638T, resulting in a truncated Apc protein encompassing three of the seven 20 amino acid repeats and one SAMP motif, but missing all of the carboxy-terminal domains thought to be associated with tumorigenesis. Surprisingly, homozygosity for the Apc1638T mutation is compatible with postnatal life. However, homozygous mutant animals are characterized by growth retardation, a reduced postnatal viability on the B6 genetic background, the absence of preputial glands, and the formation of nipple-associated cysts. Most importantly, Apc1638T/1638T animals that survive to adulthood are tumor free. Although the full complement of Apc1638T is sufficient for proper beta-catenin signaling, dosage reductions of the truncated protein result in increasingly severe defects in beta-catenin regulation. The SAMP motif retained in Apc1638T also appears to be important for this function as shown by analysis of the Apc1572T protein in which its targeted deletion results in a further reduction in the ability of properly controlling beta-catenin/Tcf signaling. These results indicate that the association with DLG, EB1, and microtubulin is less critical for the maintenance of homeostasis by APC than has been suggested previously, and that proper beta-catenin regulation by APC appears to be required for normal embryonic development and tumor suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号