首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cultures of the murine macrophage cell line RAW 264.7, effects of four 2'-hydroxychalcone derivatives, 2'-hydroxy-4'-methoxychalcone (compound 1), 2',4-dihydroxy-4'-methoxychalcone (compound 2), 2',4-dihydroxy-6'-methoxychalcone (compound 3) and 2'-hydroxy-4,4'-dimethoxychalcone (compound 4), on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and tumor necrosis factor (TNF)-alpha were examined. Compounds 1, 2 and 3 at 3-30microM inhibited the production with almost the same potency. Compound 4 showed no inhibitory activity. Compounds 1, 2 and 3 at 3-30microM inhibited the LPS-induced expression of inducible nitric oxide synthase (iNOS) and TNF-alpha mRNA. To clarify the mechanism involved, effects of compounds 1, 2 and 3 on the activation of nuclear factor (NF)-kappaB and activator protein-1 (AP-1) were examined. Both the LPS-induced activation of NF-kappaB and AP-1 were blocked by compounds 1, 2 and 3 at 3-30microM. Moreover, the three compounds at such concentrations inhibited the LPS-induced IkappaB degradation and the phosphorylation of c-jun N-terminal kinase (JNK) and c-jun. These findings suggest that the inhibition of the LPS-induced production of NO and TNF-alpha by the 2'-hydroxychalcone derivatives is due to the inhibition of NF-kappaB and AP-1 activations.  相似文献   

2.
3.
4.
5.
Nitric oxide (NO) plays a role in various physiological and pathophysiological conditions such as immunoregulatory and inflammatory processes. Hence, NO and its generating enzyme, inducible nitric oxide synthase (iNOS) may not only be of diagnostic and prognostic value, but may also serve as targets for novel therapeutic options. In the present investigation, we have screened a phytochemical library by correlating the IC50 values for 531 natural products of 60 cell lines with the microarray-based mRNA expression of 95 genes known to be involved in NO metabolism and signaling with the aim to identify candidate compounds as inhibitors for NO metabolism and signaling. We identified bis(helenalinyl)glutarate (BHG) as putative candidate compound. Indeed, BHG inhibited NO production (IC50 value: 0.90 ± 0.04 μM) and down-regulated iNOS protein expression (IC50 value: 1.12 ± 0.16 μM) of RAW264.7 mouse macrophages in the presence of lipopolysaccharide and interferon-γ. Performing XTT cytotoxicity assays, we found that BHG inhibited cell growth in a dose-dependent manner with an IC50 value of 5.6 μM. To gain insight into molecular pathways involved in NO inhibition and cytotoxicity, we performed microarray experiments which were exemplarily validated by real-time RT-PCR. A total of 227 genes (67 up- and 160 down-regulated) were obtained, which exhibited significant differences in mRNA regulation between BHG-treated and untreated RAW264.7 macrophages. Sixteen of 227 genes are known to be involved in NO-signaling. Pathway analyses revealed that further five and four down-regulated genes belong to the glucocorticoid receptor and interleukin-1 and interleukin-10 pathways, respectively. An interference of these two pathways and NO is known for inflammation and auto-immune diseases. The therapeutic potential of this compound has to be explored in the future.  相似文献   

6.
In the present study, a novel synthetic compound 4-(2-(cyclohex-2-enylidene)hydrazinyl)quinolin-2(1H)-one (CYL-4d) was found to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) production without affecting cell viability or enzyme activity of expressed inducible NO synthase (iNOS) in RAW 264.7 macrophages. CYL-4d exhibited parallel inhibition of LPS-induced expression of iNOS protein, iNOS mRNA and iNOS promoter activity in the same concentration range. LPS-induced activator protein-1 (AP-1) DNA binding, AP-1-dependent reporter gene activity and c-Jun nuclear translocation were all markedly inhibited by CYL-4d with similar efficacy, whereas CYL-4d produced a weak inhibition of nuclear factor-kappaB (NF-kappaB) DNA binding, NF-kappaB-dependent reporter gene activity and p65 nuclear translocation without affecting inhibitory factor-kappa B alpha (I kappa B alpha) degradation. CYL-4d had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK) and its upstream activator MAPK kinase (MEK) 3, whereas it significantly attenuated the phosphorylation of c-Jun, c-Jun NH(2)-terminal kinase (JNK) and its upstream activator MEK4 in a parallel concentration-dependent manner. Other Toll-like receptors (TLRs) ligands (peptidoglycans, double-stranded RNA, and oligonucleotide containing unmethylated CpG motifs)-induced iNOS protein expression were also inhibited by CYL-4d. Furthermore, the NO production from BV-2 microglial cells as well as rat alveolar macrophages in response to LPS was diminished by CYL-4d. These results indicate that the blockade of NO production by CYL-4d in LPS-stimulated RAW 264.7 cells is attributed mainly to interference in the MEK4-JNK-AP-1 signaling pathway. CYL-4d inhibition of NO production is not restricted to TLR4 activation and immortalized macrophage-like cells.  相似文献   

7.
Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. Rengyolone, a cyclohexylethanoid isolated from the fruits of Forsythia koreana, exhibits anti-inflammatory activity with unknown mechanism. In this study, we found that rengyolone has a strong inhibitory effect on the production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha). Rengyolone also inhibited inducible nitric oxide synthase (iNOS) gene expression and cyclooxygenase 2 (COX-2) by lipopolysaccharide (LPS). In order to explore the mechanism responsible for the inhibition of iNOS gene expression by rengyolone, we investigated its effect on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. The LPS-induced DNA binding activity of NF-kappaB was significantly inhibited by rengyolone, and this effect was mediated through inhibition of the degradation of inhibitory factor-kappaBalpha and phosphorylation of p38 MAP kinase. Furthermore, rengyolone suppressed the expression of ICE protein in IL-1beta-treated D10S cells. Taken together, these results suggest that rengyolone attenuates the inflammation through inhibition of NO production and iNOS expression by blockade of NF-kappaB and p38 MAPK activation in LPS-stimulated RAW 264.7 cells.  相似文献   

8.
The role of heme oxygenase-1 (HO-1) played in the inhibitory mechanism of flavonoids in lipopolysaccharide (LPS)-induced responses remained unresolved. In the present study, flavonoids, including 3-OH flavone, baicalein, kaempferol, and quercetin, induced HO-1 gene expression at the protein and mRNA levels in the presence or absence of LPS in RAW264.7 macrophages. This effect was associated with suppression of LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) protein expression. Hemin induced HO-1 protein expression and this was associated with the suppression of LPS-induced NO production and iNOS protein expression in a dose-dependent manner. In addition, an increase in bilirubin production was found in flavonoid- and hemin-treated cells. Hemin, at the doses of 10, 20, and 50 microM, dose-dependently stimulated the flavonoid (50 microM)-induced HO-1 protein expression, and enhanced their inhibitory effects on LPS-induced NO production and iNOS protein expression. Pretreatment of the HO-1 inhibitor, tin protoporphyrin (10 microM), attenuated the inhibitory activities of the indicated flavonoids on LPS-induced NO production. Morphologic analysis showed that 3-OH flavone, baicalein, kaempferol, quercetin, hemin, and tin protoporphyrin did not cause any change in cell viability in the presence or absence of LPS. In contrast, only 3-OH flavone showed a significant inhibition of cell growth using the MTT assay. Transfection of an HO-1 vector in macrophages (HO-1/RAW264.7) resulted in a 3-fold increase in HO-1 protein compared with that the parental RAW264.7 cells. NO production mediated by LPS in HO-1 over-expressed RAW264.7 cells (HO-1/RAW264.7) was significant less than that in parental RAW264.7 cells. 3-OH Flavone, baicalein, kaempferol, and quercetin showed a more significant inhibition on LPS-induced NO production in HO-1/RAW264.7 cells than in parental RAW264.7 cells. These results provide evidence on the role of HO-1 in the inhibition of LPS-induced NO production by flavonoids. A combination of HO-1 inducers (i.e. hemin) and flavonoids might be an effective strategy for the suppression of LPS-induced NO production.  相似文献   

9.
10.
6-(Methylsulfinyl)hexyl isothiocyanate (6-MITC) is an active ingredient of Wasabi (Wasabia japonica (Miq.) Matsumura), which is a very popular pungent spice in Japan. To clarify the cellular signaling mechanism underlying the anti-inflammatory action of 6-MITC, we investigated the effects of 6-MITC on the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. 6-MITC showed a dose-dependent inhibition of LPS-induced nitric oxide (NO), iNOS mRNA and protein. LPS caused the c-Jun phosphorylation (a major component of AP-1) and IkappaB-alpha degradation. 6-MITC suppressed LPS-induced c-Jun phosphorylation, but did not inhibit IkappaB-alpha degradation. Cellular signaling analysis using MAPK-(U0126 for MEK1/2, SB203580 for p38 kinase and SP600125 for JNK) and Jak2-specific (AG490) inhibitors demonstrated that LPS stimulated iNOS expression via activating Jak2-mediated JNK, but not ERK and p38, pathway. 6-MITC suppressed iNOS expression through the inhibition of Jak2-mediated JNK signaling cascade with the attendant to AP-1 activation. In addition, the structure-activity study revealed that the inhibitory potency of methylsulfinyl isothiocyanates (MITCs) depended on the methyl chain length. These findings provide the molecular basis for the first time that 6-MITC is an effective agent to attenuate iNOS production.  相似文献   

11.
Macrophage cells in response to cytokines and endotoxins produced a large amount of nitric oxide (NO) by expression of inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders including septic hypotension and atherosclerosis. In the present study, we investigated the effect and the mechanism of mercaptopyrazine (MP) in the induction of iNOS and NO production as a culminating factor for several inflammatory disorders. Pretreatment of MP alleviated the mortality of endotoxemic mice receiving a lethal bolus of lipopolysaccharide (LPS), which was associated with the reduced levels of serum nitrite/nitrate and IL-1beta. In RAW264.7 mouse macrophage cells, MP (300microM) inhibited both protein and mRNA levels of iNOS stimulated by LPS/interferon-gamma (IFNgamma) up to 50%. The nuclear factor-kappa B (NF-kappaB)-driven transactivation was also suppressed by MP to the same degree. Treatment of MP reduced the binding of NF-kappaB to the oligonucleotides containing NF-kappaB consensus sequence, while it did not affect the translocation of NF-kappaB to nuclear. Suppression of NF-kappaB activity by MP was completely reversed by a reducing agent, dithiothreitol, implying that MP might oxidize the sulfhydryl group(s) of DNA binding domain of NF-kappaB. In conclusion, MP would be one of interesting candidates or chemical moieties of iNOS expression inhibitor via specific suppression of NF-kappaB binding to DNA, and be useful as a chemopreventive agent or a therapeutic against iNOS-associated inflammatory diseases.  相似文献   

12.
13.
This study investigated the effects of alpha-lactalbumin (α-LA) on cellular signaling molecules associated with inflammatory responses in RAW 264.7 macrophages. The results indicated that commercial α-LA could increase prostaglandin E2 (PGE2) and the expression of COX-2 via increased phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK) and jun N-terminal kinase (JNK), and increase nitric oxide (NO) and the expression of iNOS via the activation of ERK1/2 and JNK. Furthermore, commercial α-LA could increase nuclear translocation of p65 nuclear factor-kappa B (p65 NF-κB) through stimulation on inhibitor kappa B-alpha (IκB-α) degradation. Since endotoxin also has these effects, we assayed the content of endotoxin in the commercial α-LA. We found to our surprise that endotoxin was there and that α-LA-induced NO and PGE2 production could be suppressed by polymyxin B, a specific inhibitor of endotoxin. Thus, the pro-inflammatory effects of commercial α-LA might be caused by endotoxin contamination through activation and expression of iNOS and COX-2 which were upregulated by MAPKs or nuclear translocation of p65 NF-κB in RAW 264.7 cells. It is therefore crucial to assess the possibility of endotoxin contamination within any biological product being studied for immune augmenting activities before a meaning result can be obtained.  相似文献   

14.
Prostaglandin E(2) synthase (PGE synthase) is one of the membrane-associated proteins in the eicosanoid and glutathione metabolism (MAPEG) family of microsomal enzymes and constitutes a novel inducible enzyme involved in inflammation and pyretic responses. We report, using a reversed-phase HPLC assay for the production of tritiated prostaglandin E(2) (PGE(2)) by membranes from cells overexpressing human microsomal PGE synthase, that PGE synthase activity is inhibited effectively by 15-deoxy-Delta(12,14)-prostaglandin J(2) and arachidonic acid. The anti-inflammatory compound 15-deoxy-PGJ(2) was considerably more potent at inhibiting PGE synthase (IC(50)=0.3 microM) than the closely related PGJ(2) or Delta(12)-PGJ(2), or the reaction product PGE(2). Arachidonic acid, docosahexaenoic acid, and eicosapentaenoic acid inhibited PGE synthase with a similar potency (IC(50)=0.3 microM) and were more potent inhibitors than various fatty acid analogues. The present results on the inducible PGE synthase extend observations on the ability to bind arachidonic acid to another member of the MAPEG family, and also suggest a novel mechanism of action for the anti-inflammatory effects of DHA, EPA, and 15-deoxy-PGJ(2).  相似文献   

15.
A low-molecular weight chitosan (LMWC) with a molecular mass of 20 kDa and a chitooligosaccharide mixture (oligomixture) which is composed of sugars with a degree of polymerization (DP) of 1-6 were isolated from the chitosan hydrolysate. The effects of the chitosan hydrolysate, LMWC and oligomixture on the production of nitric oxide (NO) in RAW 264.7 macrophages were evaluated, and their effects on NF-kappaB activation and the gene expression of inducible NO synthase (iNOS) were further investigated. None of the tested 3 samples of hydrolysate, LMWC and oligomixture alone affected the NO production in RAW 264.7 macrophages. However, treatment of macrophages with a combination of hydrolysate/oligomixture and interferon-gamma (IFN-gamma) significantly induced NO production in a dose-dependent manner, whereas a combination of LMWC and IFN-gamma inhibited NO production. These effects on NO synthesis were evidenced via regulating the iNOS gene expression. Both hydrolysate and oligomixture promoted the migration of NF-kappaB into the nucleus and enhanced its DNA binding activity. MG132, a specific inhibitor of NF-kappaB, eliminated the NO synthesis in IFN-gamma plus hydrolysate/oligomixture-induced RAW264.7 macrophages. The treatment of RAW264.7 macrophages with anti-CD14, anti-TLR4, and anti-CR3 antibodies significantly blocked NO production induced by IFN-gamma plus hydrolysate/oligomixture. These results demonstrated that the oligomixture, which is the main functional component in the chitosan hydrolysate, in combination with IFN-gamma, synergistically induced NF-kappaB activation and NO production through binding with the receptors of CD14, TLR4 and CR3 in RAW264.7 macrophages.  相似文献   

16.
Excess nitric oxide (NO) in the brain released by microglial cells contributes to neuronal damage in various pathologies of the central nervous system (CNS) including neurodegenerative diseases and multiple sclerosis. N-[3,4-Dimethoxycinnamoyl]-anthranilic acid (tranilast, TNL) is an anti-allergic compound which suppresses the activation of monocytes. We show that inducible nitric oxide synthase (iNOS) mRNA and protein expression and the release of NO from N9 microglial cells stimulated with the bacterial endotoxin lipopolysaccharide (LPS) are inhibited when the cells are exposed to TNL. TNL fails to modulate LPS-stimulated nuclear factor-kappaB (NF-kappaB) reporter gene activity and phosphorylation of inhibitory kappaB (IkappaB), indicating that NF-kappaB is not involved in the TNL-mediated suppression of LPS-induced iNOS expression. Moreover, TNL inhibits LPS-induced phosphorylation of extracellular signal-regulated kinase 2 (ERK-2). Finally, TNL abolishes translocation of protein kinase Cdelta (PKCdelta) to the nucleus and suppresses the phosphorylation of the PKCdelta substrate, myristoylated alanin-rich C kinase substrate (MARCKS). We conclude that the anti-allergic compound TNL suppresses microglial iNOS induction by LPS via inhibition of a signalling pathway involving PKCdelta and ERK-2.  相似文献   

17.

Background and Purpose

Products of Maillard reactions between aminoacids and reducing sugars are known to have anti-inflammatory properties. Here we have assessed the anti-arthritis effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal and its possible mechanisms of action.

Experimental Approach

We used cultures of LPS-activated macrophages (RAW264.7 cells) and human synoviocytes from patients with rheumatoid arthritis for in vitro assays and the collagen-induced arthritis model in mice. NO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities were measured in vitro and in joint tissues of arthritic mice, along with clinical scores and histopathological assessments. Binding of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal to STAT3 was evaluated by a pull-down assay and its binding site was predicted using molecular docking studies with Autodock VINA.

Key Results

(E)-2,4-bis(p-hydroxyphenyl)-2-butenal (2.5–10 μg·mL−1) inhibited LPS-inducedNO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities in macrophage and human synoviocytes. This compound also suppressedcollagen-induced arthritic responses in mice by inhibiting expression of iNOS and COX2, and NF-κB/IKK and STAT3 activities; it also reduced bone destruction and fibrosis in joint tissues. A pull-down assay showed that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal interfered with binding of ATP to STAT3. Docking studies suggested that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal bound to the DNA-binding interface of STAT3 possibly inhibiting ATP binding to STAT3 in an allosteric manner.

Conclusions and Implications

(E)-2,4-bis(p-hydroxyphenyl)-2-butenal exerted anti-inflammatory and anti-arthritic effects through inhibition of the NF-κB/STAT3 pathway by direct binding to STAT3. This compound could be a useful agent for the treatment of arthritic disease.  相似文献   

18.
19.
In the present study, the signal pathways involved in NO formation and iNOS expression in RAW 264.7 macrophages stimulated by LTA were investigated. We also compared the relative inhibitory activities and mechanisms of PMC, a novel potent antioxidant of alpha-tocopherol derivatives, with those of YC-1, an sGC activator, on the induction of iNOS expression by LTA in cultured macrophages in vitro and LTA-induced hypotension in vivo. LTA induced concentration (0.1-50 microg/mL)- and time (4-24 hr)-dependent increases in nitrite (an indicator of NO biosynthesis) in macrophages. Both PMC (50 microM) and YC-1 (10 microM) inhibited NO production, iNOS protein, mRNA expression, and IkappaBalpha degradation upon stimulation by LTA (20 microg/mL) in macrophages. On the other hand, PMC (50 microM) almost completely suppressed JNK/SAPK activation, whereas YC-1 (10 microM) only partially inhibited its activation in LTA-stimulated macrophages. Moreover, PMC (10 mg/kg, i.v.) and YC-1 (5 mg/kg, i.v.) significantly inhibited the fall in MAP stimulated by LTA (10 mg/kg, i.v.) in rats. In conclusion, we demonstrate that YC-1 shows more-potent activity than PMC at abrogating the expression of iNOS in macrophages in vitro and reversing delayed hypotension in rats with endotoxic shock stimulated by LTA. The inhibitory mechanisms of PMC may be due to its antioxidative properties, with a resulting influence on JNK/SAPK and NF-kappaB activations. YC-1 may be mediated by increasing cyclic GMP, followed by, at least partly, inhibition of JNK/SAPK and NF-kappaB activations, thereby leading to inhibition of iNOS expression.  相似文献   

20.
Abstract  A collection of biolabile (E)-1-(4-morpholinophenyl)-3-aryl-prop-2-en-1-ones 8–13 are synthesized, characterized by melting point, elemental analysis, mass spectroscopy (MS), Fourier-transform infrared (FT-IR), and 1H and 13C nuclear magnetic resonance (NMR) spectroscopic data and evaluated for their in vitro antibacterial and antifungal activities. Compounds 8–13 exerted a wide range of antibacterial activities against all tested Gram-positive and Gram-negative bacterial strains. All the compounds 8–13 were more active against Pseudomonas. Of the synthesized compounds, compounds 9 and 11 exhibited a wide range of antibacterial activities against Staphylococcus aureus, β-Heamolytic streptococcus, Escherichia coli, Klebsiella pneumonia, and Pseudomonas. Compounds 10, 12, and 13 exerted strong antifungal activities against all tested fungal strains, namely Aspergillus flavus, Mucor, Rhizopus, and Microsporum gypsuem. Graphical Abstract     相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号