首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The honey bee, Apis mellifera, displays a rich behavioural repertoire, social organization and caste differentiation, and has an interesting mode of sex determination, but we still know little about its underlying genetic programs. We lack stable transgenic tools in honey bees that would allow genetic control of gene activity in stable transgenic lines. As an initial step towards a transgenic method, we identified promoter sequences in the honey bee that can drive constitutive, tissue‐specific and cold shock‐induced gene expression. We identified the promoter sequences of Am‐actin5c, elp2l, Am‐hsp83 and Am‐hsp70 and showed that, except for the elp2l sequence, the identified sequences were able to drive reporter gene expression in Sf21 cells. We further demonstrated through electroporation experiments that the putative neuron‐specific elp2l promoter sequence can direct gene expression in the honey bee brain. The identification of these promoter sequences is an important initial step in studying the function of genes with transgenic experiments in the honey bee, an organism with a rich set of interesting phenotypes.  相似文献   

2.
3.
Eusocial insects have polyphenic caste systems in which each caste exhibits characteristic morphology and behaviour. In insects, caste systems arose independently in different lineages, such as Isoptera and Hymenoptera. Although partial molecular mechanisms for the development of eusociality in termites have been clarified by the functional analysis of genes and hormones, the contribution of microRNAs (miRNAs) to caste differentiation is unknown. To understand the role of miRNAs in termite caste polyphenism, we performed small RNA sequencing in a subterranean termite (Reticulitermes speratus) and identified the miRNAs that were specifically expressed in the soldier and worker castes. Of the 550 miRNAs annotated in the R. speratus genome, 74 were conserved in insects and 174 were conserved in other termite species. We found that eight miRNAs (mir‐1, mir‐125, mir‐133, mir‐2765, mir‐87a and three termite‐specific miRNAs) are differentially expressed (DE) in soldiers and workers of R. speratus. This differential expression was experimentally verified for five miRNAs by real‐time quantitative PCR. Further, four of the eight DE miRNAs in soldier and worker termite castes were also differentially expressed in hymenopteran castes. The finding that Isoptera and Hymenoptera shared several DE miRNAs amongst castes suggests that these miRNAs evolved independently in these phylogenetically distinct lineages.  相似文献   

4.
5.
Diapause is a programmed dormancy that allows organisms to tolerate predictable periods of unfavourable conditions by temporarily halting development and reducing metabolism. Diapause is widespread amongst insects and is crucial for allowing organisms to coordinate their growth and reproduction with favourable environmental conditions. Although the adaptive significance of diapause is well understood, the molecular mechanisms underpinning diapause remain unresolved. We performed high‐throughput sequencing to investigate the role of microRNAs (miRNAs) in the diapause of the Asian tiger mosquito, Aedes albopictus. We first investigated miRNAs in diapause induction by characterizing maternally provisioned miRNAs in mature oocytes of Ae. albopictus under diapause‐inducing and diapause‐averting conditions. Second, we investigated miRNAs in diapause maintenance by characterizing miRNAs in diapause and nondiapause pharate larvae. We identified 162 miRNAs, 152 previously known and 10 putatively novel. We identified no differentially abundant miRNAs in mature oocytes and seven differentially abundant miRNAs in pharate larvae. The predicted targets of differentially abundant miRNAs include genes affecting several processes related to diapause maintenance including ecdysone regulation, immune response, lipid metabolism and regulation of development. Our results suggest that Ae. albopictus does not maternally provision a unique set of miRNAs during diapause induction but miRNAs are a component of diapause maintenance in this species.  相似文献   

6.
Gut microbiota research is an emerging field that improves our understanding of the ecological and functional dynamics of gut environments. The honey bee gut microbiota is a highly rewarding community to study, as honey bees are critical pollinators of many crops for human consumption and produce valuable commodities such as honey and wax. Most significantly, unique characteristics of the Apis mellifera gut habitat make it a valuable model system. This review discusses methods and pipelines used in the study of the gut microbiota of Ap. mellifera and closely related species for four main purposes: identifying microbiota taxonomy, characterizing microbiota genomes (microbiome), characterizing microbiota–microbiota interactions and identifying functions of the microbial community in the gut. The purpose of this contribution is to increase understanding of honey bee gut microbiota, to facilitate bee microbiota and microbiome research in general and to aid design of future experiments in this growing field.  相似文献   

7.
8.
9.
In social insect colonies the presence of a queen, secreting her pheromones, is a key environmental cue for regulating the reproductive state of workers. However, until recently the proximate molecular mechanisms underlying facultative worker sterility were unidentified. Studies into worker oogenesis in the honey bee (Apis mellifera) have indicated that programmed cell death is central to the regulation of oogenesis. Here we investigate how queen pheromone, age of the worker and ovary state affect both programmed cell death and cell number in worker ovaries. We describe a novel method to simultaneously measure programmed cell death (caspase activity) and live cell number (estimated from the amount of adenosine triphosphate) in an insect tissue. Workers exposed to queen pheromone have higher levels of caspase activity in the ovary than those not exposed. Our results suggest that queen pheromone triggers programmed cell death at the mid‐oogenesis checkpoint causing the abortion of worker oocytes and reproductive inhibition of the worker caste. Nonetheless, high caspase activity is present in activated ovaries from workers not exposed to queen pheromone. This caspase activity is most likely to be from the nurse cells undergoing programmed cell death, in late oogenesis, for normal oocyte development. Our study shows that the social environment of an organism can influence programmed cell death within a tissue.  相似文献   

10.
11.
12.
The honey bee (Apis mellifera L.) has developed into an important ethological model organism for social behaviour and behavioural plasticity. Bees perform a complex age‐dependent division of labour with the most pronounced behavioural differences occurring between in‐hive bees and foragers. Whereas nurse bees, for example, stay inside the hive and provide the larvae with food, foragers leave the hive to collect pollen and nectar for the entire colony. The biogenic amine octopamine appears to play a major role in division of labour but the molecular mechanisms involved are unknown. We here investigated the role of two characterized octopamine receptors in honey bee division of labour. AmOctαR1 codes for a Ca2+‐linked octopamine receptor. AmOctβR3/4 codes for a cyclic adenosine monophosphate‐coupled octopamine receptor. Messenger RNA expression of AmOctαR1 in different brain neuropils correlates with social task, whereas expression of AmOctβR3/4 changes with age rather than with social role per se. Our results for the first time link the regulatory role of octopamine in division of labour to specific receptors and brain regions. They are an important step forward in our understanding of complex behavioural organization in social groups.  相似文献   

13.
It has been proposed that a honey bee (Apis mellifera) worker's preference for foraging for pollen or nectar is modulated by a gene network that was originally involved in regulating the reproductive cycles of an ancestral solitary species. We used carbon dioxide to induce narcosis in queens and workers. This treatment is known to initiate oogenesis in queens, reduce oogenesis in queenless workers and to change worker foraging preference. We then assessed changes in gene expression of genes suspected to be involved in either foraging behaviour or reproduction. We show that some genes change expression in the opposite direction between castes in response to treatment. Our results therefore support the hypothesis that reproductive and foraging traits are causally related in the honey bee.  相似文献   

14.
Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6‐year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long‐chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa‐tolerant honey bees.  相似文献   

15.
16.
A defining characteristic of eusocial animals is their division of labour into reproductive and nonreproductive specialists. Here, we used a microarray study to identify genes associated with functional sterility in the worker honey bee Apis mellifera. We contrasted gene expression in workers from a functionally sterile wild‐type strain with that in a mutant (anarchist) strain selected for high rates of ovary activation. We identified a small set of genes from the brain (n = 7) and from the abdomen (n = 5) that are correlated in their expression with early stages of ovary activation. Sterile wild‐type workers up‐regulated two unknown genes and a homologue of Drosophila CG6004. By contrast, reproductive anarchist workers up‐regulated genes for the yolk protein vitellogenin, venom peptides and a member of the AdoHycase superfamily, among others. The differentially expressed genes identified are likely to be involved in early differentiation into sterile and reproductive worker phenotypes and may therefore form part of the gene networks associated with the regulation of honey bee worker sterility. Our study may have lacked sufficient power to detect all but a minority of biologically relevant changes taking place; however, the differential expression of vitellogenin and a putative AdoHycase suggests that our screen has captured core reproductive genes and that ovary activation may involve an epigenetic mechanism.  相似文献   

17.
Like all other insects, two key signalling pathways [Toll and immune deficiency (Imd)] regulate the induction of honey bee immune effectors that target microbial pathogens. Amongst these effectors are antimicrobial peptides (AMPs) that are presumed to be produced by the nuclear factors kappa B (NF‐κB) Dorsal and Relish from the Toll and Imd pathways, respectively. Using in silico analysis, we previously proposed that the honey bee AMP defensin‐1 was regulated by the Toll pathway, whereas hymenoptaecin was regulated by Imd and abaecin by both the Toll and Imd pathways. Here we use an RNA interference (RNAi) assay to determine the role of Dorsal in regulating abaecin and defensin‐1. Honey bees have two dorsal genes (dorsal‐1 and dorsal‐2) and two splicing isoforms of dorsal‐1 (dorsal‐1A and dorsal‐1B). Accordingly, we used both single and multiple (double or triple) isoform knockdown strategies to clarify the roles of dorsal proteins and their isoforms. Down‐regulation of defensin‐1 was observed for dorsal‐1A and dorsal‐2 knockdowns, but abaecin expression was not affected by dorsal RNAi. We conclude that defensin‐1 is regulated by Dorsal (Toll pathway).  相似文献   

18.
19.
The Colorado potato beetle [Leptinotarsa decemlineata (Say)] is an important insect pest that can inflict considerable damage to potato plants. This insect can survive extended periods of cold exposure, and yet the molecular switches underlying this phenomenon have not been fully elucidated. A better characterization of this process would highlight novel vulnerabilities associated with L. decemlineata that could serve as targets for the management of this devastating pest. Using high‐throughput sequencing, the current work reveals a cold‐associated signature group of microRNAs (miRNAs) in control (15 °C) and ?5 °C‐exposed L. decemlineata. The results show 42 differentially expressed miRNAs following cold exposure including miR‐9a‐3p, miR‐210‐3p, miR‐276‐5p and miR‐277‐3p. Functional analysis of predicted targets associated with these cold‐responsive miRNAs notably linked these changes with vital metabolic and cellular processes. Overall, this study highlights the miRNAs probably responsible for facilitating cold adaptation in L. decemlineata and implicates miRNAs as a key molecular target to consider in the development of novel pest management strategies against these insects.  相似文献   

20.
The citrus red mite (Panonychus citri) can feed on more than 112 plant species around the world. Endogenous small RNAs (sRNAs) have proved to be important components of gene regulation in many eukaryotes. Recently, many sRNAs have been shown to be involved in various biological processes, such as development in many animals, including insects; however, to date, no sRNAs have been reported in the citrus red mite. Using Illumina sequencing, several categories of sRNAs were identified, including 594 known microRNAs (miRNAs) grouped into 206 families and 31 novel miRNAs in the four developmental stages of citrus red mite. In addition, according to bioinformatics analysis and S‐Poly(T) miRNA assays, the expression level of many miRNAs varied among the developmental stages. Furthermore, the prediction of miRNAs target genes and their functional annotation indicated that miRNAs are involved in the regulation of multiple pathways in the citrus red mite. As the first report of the sRNA world in citrus red mite, the present study furthers our understanding of the roles played by sRNAs in the development of citrus red mite and the data may help to develop methods of controlling the pests in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号