首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zoonoses pose a threat to mammalian species. Cross‐species transmission of viruses have given rise to fatal diseases because the host organism is not prepared to resist a new pathogen. Mammals have developed several strategies of defense against viruses, including an intracellular antiretroviral defense, a part of innate immunity. In addition to the conventional innate and acquired immune responses, complex organisms such as mice and primates have evolved an array of dominant, constitutively expressed genes that suppress or prevent retroviral infections. Several of these antiretroviral restriction mechanisms have recently been identified, with two particularly well described factors being members of the tripartite motif (TRIM) and APOBEC families. The TRIM5 class of inhibitors appears to target incoming retroviral capsids and the APOBEC class of cytidine deaminases hypermutates and destabilizes retroviral genomes. Lentiviruses such as HIV‐1 have developed countermeasures that allow them to replicate despite the human host factors. In the course of risk assessment for pig‐to‐human xenotransplantation the capacity of human cells to counteract infections of gamma‐type porcine endogenous retroviruses (PERV) should be analyzed. We raised the question as to whether PERV is affected by APOBEC3 proteins. Initial data indicate that human and porcine cytidine deaminases inhibit PERV replication, thereby possibly reducing the risk for infection of human cells by PERV as a consequence of pig‐to‐human xenotransplantation. The exact mechanism of the TRIM5 mediated restriction has not been clarified up to now. At current, we investigate how many TRIM5 genes are located in the pig genome. Furthermore, the properties of porcine TRIM5α isoform proteins will be tested and we will check the potential of the human TRIM5α to restrict PERVs in order to determine the risk of virus transmission.  相似文献   

2.
The clinical application of xenotransplantation evokes immunological and microbiological as well as virological challenges. Porcine pathogens that do not show any symptoms in their natural host could exhibit a risk of fatal infections to humans. The presence of pig infectious agents including zoonotic and dissimilar agents should be reduced by specific pathogen free (spf) breeding of donor animals. However, the genetic information of porcine endogenous retroviruses (PERV) is integrated in the pig genome and can not be eradicated by spf breeding. The concerns about PERV for human xenograft recipients are based on data of in vitro replication of PERV in some human cell lines. So far, viral replication of PERV has been difficult to demonstrate in non‐human primate cell lines and in preclinical studies of non‐human primates receiving porcine xenografts, respectively. In this regard, natural and effective mechanisms of human and porcine cells counteracting productive infections caused by PERV are important to investigate. Intracellular proteins and components of the innate immune system including endogenous “antiretroviral restriction factors” act at various steps in retroviral replication. The cellular front is composed by several constitutively expressed genes which prevent or suppress retroviral infections. Some of these factors such as members of the tripartite motif (TRIM) and the apolipoprotein B mRNA‐editing polypeptide (APOBEC) families as well as tetherin and zinc‐finger antiviral protein (ZAP) could be useful in the management of PERV in xenotransplantation. The risks of infection and the potential role of antiretroviral restriction factors in xenotransplantation are presented in detail.  相似文献   

3.
4.
Xenotransplantation of porcine cells, tissues, and organs offers a solution to overcome the shortage of human donor materials. In addition to the immunological and physiological barriers, the existence of numerous porcine microorganisms including viruses poses a risk for xenozoonosis. Three classes of functional gamma-type porcine endogenous retroviruses (PERV) have been identified, whereby functional polytropic PERV-A and PERV-B infect human embryonic kidney (HEK 293) and other cell lines in vitro. In the course of risk assessment for xenotransplantation the capacity of human cells to counteract PERV infections should be analyzed. Primates and other mammals display different means of protection against viral infections. APOBEC3 proteins which are cytidine deaminases and a part of the intrinsic immunity mediate potent activity against a wide range of retroviruses including murine leukemia viruses (MLV). As PERV and MLV belong to the same genus, we raised the question as to whether PERV is affected by APOBEC3 proteins. Initial data indicate that human and porcine cytidine deaminases inhibit PERV replication, thereby possibly reducing the risk for infection of human cells by PERV as a consequence of pig-to-human xenotransplantation.  相似文献   

5.
The clinical application of xenotransplantation poses immunologic, ethical, and microbiologic challenges. Significant progress has been made in the investigation of each of these areas. Among concerns regarding infectious risks for human xenograft recipients is the identification in swine of infectious agents including porcine endogenous retroviruses (PERV) that are capable of replication in some human cell lines. PERV replication has, however, been difficult to demonstrate in primate‐derived cell lines and in preclinical studies of non‐human primates receiving porcine xenografts. Endogenous ‘retroviral restriction factors’ are intracellular proteins and components of the innate immune system that act at various steps in retroviral replication. Recent studies suggest that some of these factors may have applications in the management of endogenous retroviruses in xenotransplantation. The risks of PERV infection and the potential role of retroviral restriction factors in xenotransplantation are reviewed in detail.  相似文献   

6.
7.
Introduction: Xenotransplantation using pig cells and tissues may be associated with the transmission of porcine microorganisms including bacteria, parasites, fungi and viruses to the human recipient and may result in zoonones. Porcine endogenous retroviruses (PERVs) represent a special risk since PERV‐A and PERV‐B are present in the genome of all pigs and infect human cells. PERV‐C is not present in all pigs and does not infect human cells. However, recombinants between PERV‐A and PERV‐C have been observed in normal pigs characterised by higher replication rates compared with PERV‐A, and they are also able to infect human cells (1). Methods: In the past years numerous assays based on the PCR technology have been developed to screen for the prevalence and expression of PERV and other porcine microorganisms in the donor pig (2). Whereas most microorganisms may be eliminated by designated pathogen‐free breeding, PERVs cannot be removed this way. In addition, assays have been developed to analyse the recipient for the transmission of PERV and other microorganisms, either using PCR methods or immunological assays to detect an antibody production as a result of infection (3). Results: Using these assays, no transmission of PERV as well as of other porcine microorganisms has been observed in first preclinical and clinical xenotransplantations or animal infection experiments. This was especially true for the first clinical transplantation of pig islet cells approved by the New Zealand government (4). Until now there is no susceptible animal model to study PERV transmission and transplantations of porcine cells or organs to non‐human primates as they are associated with limitations concerning the safety aspect, which do not allow transmitting the negative findings to humans (5). Different experimental approaches are under development to reduce the probability of PERV transmission, e.g. the generation of transgenic pigs expressing PERV‐specific siRNA inhibiting PERV expression by RNA interference (6), genotypic selection of pigs with a low prevalence and expression of PERV and neutralising antibodies against the envelope proteins inhibiting PERV infection (7). Conclusion: Investigations of the last years resulted in highly sensitive and specific methods to study PERV and other microorganisms in donor pigs and human recipients of xenotransplants. These methods showed absence of PERV transmission in all investigated cases, both in more than 200 human xenotransplant recipients, mostly recipients of cellular xenotransplants, as well as in non‐human primates and small animals. New technologies under development may further decrease the probability of transmission. References: 1. Denner J. Recombinant porcine endogenous retroviruses (PERV‐A/C): A new risk for xenotransplantation? Arch Virol 2008; 153: 1421–1426. 2. Kaulitz D, Mihica D, Dorna J, Costa MR, Petersen B, Niemann H, TÖnjes RR, Denner J. Development of sensitive methods for detection of porcine endogenous retrovirus‐C (PERV‐C) in the genome of pigs J Virol Methods 2011; 175(1): 60–65. 3. Denner, J. Infectious risk in xenotransplantation – what post‐transplant screening for the human recipient? Xenotransplantation 2011; 18(3): 151–157. 4. Wynyard S, Garkavenko O, Nathu D, Denner J, Elliott R. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand, submitted. 5. Mattiuzzo G, Takeuchi Y. Suboptimal porcine endogenous retrovirus infection in non‐human primate cells: implication for preclinical xenotransplantation. PLoS One 2010; 5(10): e13203. 6. Semaan M, Kaulitz D, Petersen B, Niemann H, Denner J. Long‐term effects of PERV‐specific RNA interference in transgenic pigs. Xenotransplantation 2012; 19(2): 112–21. 7. Kaulitz D, Fiebig U, Eschricht M, Wurzbacher C, Kurth R, Denner J. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs). Virology 2011; 411(1): 78–86.  相似文献   

8.
Abstract: The potential risk of viral transmission in the setting of xenotransplantation has gained major attention. Different porcine cell types have been shown to release retroviral particles, which are infectious for human cell lines in vitro. However, there are only a few data on whether PERV (pig endogenous retrovirus) is able to infect primary human cells. In this study we have analyzed endothelial cells, vascular fibroblasts, mesangial cells, mononuclear cells, hematopoetic stem cells and bone marrow stromal cells for PERV transmission. We now provide evidence for primary human endothelial cells, vascular fibroblasts, and mesangial cells to be susceptible to PERV transmission. PERV infection was productive in endothelial cells and mesangial cells. Our data confirm and extend former reports concerning the PERV infection of human cells. The PERV infection of different primary human cells represents further significant evidence for a viral risk during xenotransplantation. In this context, special attention should be directed towards productive infection of human endothelial cells: in the setting of xenotransplantation this cell type will have close contact with porcine cells and PERV particles.  相似文献   

9.
BACKGROUND: Identification of the antigens that stimulate transplant rejection can help develop graft-specific antirejection strategies. The xenoantigens recognized during rejection of porcine cellular xenografts have not been clearly defined, but it has been assumed that major histocompatibility complex (MHC) xenoantigens are involved. METHODS: The role of porcine endogenous retrovirus (PERV) as a source of xenoantigens was examined. The authors used morphometry to compare the kinetics of swine leukocyte antigen (SLA) pig thyroid xenograft rejection in control mice and mice immunized with PERV PK15 cells (porcine kidney epithelial cells), PERV SLA pig peripheral blood lymphocytes (PBL), PERV virions purified from PK15 cells, and PERV or PERV A pseudotypes produced from infected human 293 cells. The tempo of rejection for cellular xenografts of PERV A pseudotype-producing human 293 cells, uninfected human 293 cells, and PK15 cells in PERV-preimmunized and control mice was also compared. RESULTS: Mice immunized with PK15 cells rejected pig thyroid xenografts significantly faster at day 5 than control mice and mice immunized with pig PBL. This correlated with the amount of PERV RNA and virions produced, but not with the amount of SLA class I MHC expressed by PK15 cells. Immunization of mice with PERV virions purified from porcine PK15 cells and with PERV virions or PERV A pseudotypes produced by human 293 cells also induced accelerated xenograft rejection by 5 days. Accelerated rejection induced by virus pretreatment was CD4 T-cell dependent and restricted to PERV-expressing cellular xenografts of porcine or nonporcine origin. CONCLUSIONS: PERV acts as a significant source of xenoantigens that target porcine cellular xenografts for rejection.  相似文献   

10.
Hurdles exist to clinical xenotransplantation including potential infectious transmission from nonhuman species to xenograft recipients. In anticipation of clinical trials of xenotransplantation, the associated infectious risks have been investigated. Swine and immunocompromised humans share some potential pathogens. Swine herpesviruses including porcine cytomegalovirus (PCMV) and porcine lymphotropic herpesvirus (PLHV) are largely species‐specific and do not, generally, infect human cells. Human cellular receptors exist for porcine endogenous retrovirus (PERV), which infects certain human‐derived cell lines in vitro. PERV‐inactivated pigs have been produced recently. Human infection due to PERV has not been described. A screening paradigm can be applied to exclude potential human pathogens from “designated pathogen free” breeding colonies. Various microbiological assays have been developed for screening and diagnosis including antibody‐based tests and qualitative and quantitative molecular assays for viruses. Additional assays may be required to diagnose pig‐specific organisms in human xenograft recipients. Significant progress has been made in the evaluation of the potential infectious risks of clinical xenotransplantation. Infectious risk would be amplified by intensive immunosuppression. The available data suggest that risks of xenotransplant‐associated recipient infection are manageable and that clinical trials can be performed safely. Possible infectious risks of xenotransplantation to the community at large are undefined but merit consideration.  相似文献   

11.
12.
Transmission of viral, bacterial, parasitic, and fungal infections via organ allografts is uncommon but may be associated with life‐threatening disease. Internationally, programs for screening of human organ donors for infectious risk are non‐uniform and vary with national standards and the availability of screening assays. Further, the failure to recognize and/or to report transmission events limits the utility of available data regarding the incidence of allograft‐associated disease transmission. Advances in xenotransplantation biology have allowed some limited clinical trials with the prospect for increased opportunities for clinical xenotransplantation. As with human allotransplantation, the examination of infectious risk has been a central theme in these studies. Significant advances have been made in the breeding and screening of swine for preclinical studies including the identification of novel, potential human pathogens derived from source animals. Thus far, “expected” xenograft‐derived pathogens such as porcine cytomegalovirus (PCMV) have become activated in immunosuppressed primates but have not resulted in systemic infection outside the xenograft. PCMV has been bred out of swine herds by early weaning strategies. Conversely, host pathogens such as primate‐derived cytomegalovirus (CMV) have become activated and have produced serious infectious complications. These infections are preventable using antiviral prophylaxis. Xenogeneic tissues appear to be relatively resistant to infection by common human pathogens such as HIV, HTLV and the hepatitis viruses. Concerns regarding the potential activation of latent porcine retroviruses from xenograft tissues have resulted in the development of novel assays for xenotropic porcine endogenous retrovirus (PERV). PERV transmission to primate xenograft recipients or to human cells in in vivo models has not been detected. Multiple intrinsic cellular mechanisms appear to be active in the prevention of infection of human cells by PERV. Further, PERV appears to be susceptible to available antiretroviral agents. Thus, while the absolute risk for such infections remains unknown in the absence of human studies with prolonged graft survival in immunosuppressed xenograft recipients, the risk of transmission to human recipients appears limited. Some general principles have been developed to guide clinical trials: Outcomes of xenotransplantation trials, including any infectious disease transmissions, should be reported in the scientific literature and to appropriate public health authorities. Surveillance programs should be developed to detect known infectious agents as well as previously unknown or unexpected pathogens in the absence of recognizable clinical syndromes. Standardization of procedures and validation by expert and/or reference laboratories are needed for microbiological assays. Such validation may require international collaboration. Repositories of samples from source animals and from recipients prior to, and following xenograft transplantation are essential to the investigation of possible infectious disease events. Infection is common in allograft recipients. Thus, in advance of clinical trials, policies and procedures should be developed to guide the evaluation of any infectious syndromes that may develop. (e.g. fever of unknown origin [FUO], leukocytosis, leukopenia, graft dysfunction, pneumonia, hepatitis, abscess formation) in xenograft recipients. Based on preclinical experience these procedures will include: (i) Exclusion of infectious syndromes commonly associated with allotransplantation (e.g. CMV, bacterial pneumonia); (ii) Evaluation of PERV infection by serologic and NAT testing; (iii) Assessment of other recipients of xenografts derived from the same herd or source of swine; and (iv) Evaluation of social contacts of the recipient. Consideration of investigation of xenograft recipients for unknown pathogens may require application of advanced research technologies, possibly including use of broad‐range molecular probes, microarrays or high throughput pyrosequencing. References: 1. Meije Y, TÖnjes RR, Fishman JA. Retroviral restriction factors and infectious risk in xenotransplantation. Amer J Transplant 2010; 10: 1511–1516. 2. Fishman JA, Scobie L, Takeuchi Y. Xenotransplantation‐associated infectious risk: A WHO consultation. Xenotransplantation 2012; 19: 72–81.  相似文献   

13.
Abstract: Background: Xenotransplantation using porcine cells, tissues or organs may be associated with the transmission of porcine endogenous retroviruses (PERVs). More than 50 viral copies have been identified in the pig genome and three different subtypes of PERV were released from pig cells, two of them were able to infect human cells in vitro. RNA interference is a promising option to inhibit PERV transmission. Methods: We recently selected an efficient si (small interfering) RNA corresponding to a highly conserved region in the PERV DNA, which is able to inhibit expression of all PERV subtypes in PERV‐infected human cells as well as in primary pig cells. Pig fibroblasts were transfected using a lentiviral vector expressing a corresponding sh (short hairpin) RNA and transgenic pigs were produced by somatic nuclear transfer cloning. Integration of the vector was proven by PCR, expression of shRNA and PERV was studied by in‐solution hybridization analysis and real‐time RT PCR, respectively. Results: All seven born piglets had integrated the transgene. Expression of the shRNA was found in all tissues investigated and PERV expression was significantly inhibited when compared with wild‐type control animals. Conclusion: This strategy may lead to animals compatible with PERV safe xenotransplantation.  相似文献   

14.
15.
Blusch JH  Roos C  Nitschko H 《Transplantation》2000,69(10):2167-2172
BACKGROUND: Xenotransplantation of pig organs and tissues to humans bears the risk of infection of immunosuppressed recipients by porcine endogenous retrovirus (PERV) released from the transplanted tissue. However, when diagnosing potential PERV transmission, it is essential to exclude microchimerism, i.e., persisting pig cells in analyzed bioptic material of xenotransplanted patients, which give rise to false positive PERV signals. Polymerase chain reaction (PCR) is so far the only suitable method to diagnose a cross-species transfer of PERV, but the exclusion of microchimerism might be a serious problem because most of the presently employed primer pairs detect PERV sequences with higher sensitivity than primers used for the detection of contaminating pig sequences. METHODS: We designed and evaluated a novel and improved primer set for detection of pig sequences as well as complementing positive control primers on the basis of mitochondrial cytochrome B, an approved marker for phylogenetic studies. We further established primer pairs derived from the long terminal repeat/leader region of PERV isolated from a Duroc German Landrace cross-bred pig and tested their sensitivity in comparison with known PERV- and pig-specific PCR markers. RESULTS: In standard PCR assays, the new cytochrome B-derived primers are at least 10 times more sensitive than the presently used PERV retroviral polymerase gene and mammalian beta-actin primers. When tested in a tissue culture infection model, PERV transmission to human 293 cells can be unambiguously demonstrated, even in the presence of up to 10% pig cells. One of the primer combinations derived from the PERV DuxDL3791 long terminal repeat/leader region amplifies with even lower sensitivity than primers detecting porcine beta-globin, thus permitting the exclusion of microchimerism also via chromosomal loci. CONCLUSIONS: The availability of the new PCR markers allows the proposal of a rigorous setup for the routine detection of PERV transmission after xenotransplantation.  相似文献   

16.
BACKGROUND: Recent demonstration of human cell infection in vitro with porcine endogenous retrovirus (PERV) has raised safety concerns for new therapies that involve transplantation of pig cells or organs to humans. To assess better the specific risk that may be associated with the transplantation of fetal pig neuronal cells to the central nervous system of patients suffering from intractable neurologic disorders (Parkinson's disease, Huntington's disease, and epilepsy), we have performed studies to determine whether there is evidence for in vivo or in vitro transmission of PERV from fetal pig neuronal cells to human cells. METHODS: Ventral mesencephalon (VM) and lateral ganglionic eminence cells were isolated from fetal pigs and transplanted into patients with neurological conditions as part of clinical studies. Blood samples taken from patients at various time points posttransplant were tested for evidence of PERV. In vitro studies to test for PERV infection of human cells after cocultivation with either fetal porcine ventral mesencephalon or porcine fetal lateral ganglionic eminence cells were also performed. RESULTS: We found no evidence of PERV provirus integration in the DNA from PBMC of 24 neuronal transplant recipients. In addition, no PERV was released from cultured fetal porcine neuronal cultures, and there was no transfer of PERV from fetal pig neuronal cells to human cells in vitro. CONCLUSIONS: Our results demonstrate by both examination of transplant patient blood samples and in vitro studies that there is no evidence for transmission of PERV from porcine fetal neural cells to human cells.  相似文献   

17.
Xenotransplantation may be associated with the transmission of pig microorganisms including viruses, bacteria, fungi, and parasites. As the recipient may be immunosuppressed, infection and pathologic consequences may be more pronounced compared to non-immunosuppressed individuals. Transmission of most microorganisms with exception of porcine endogenous retroviruses (PERV) may be prevented by screening the donor pig and qualified pathogen-free breeding. PERVs represent a special risk as they are present in the genome of all pigs and infect human cells in vitro. Until now, no PERV transmission was observed in experimental and clinical xenotransplantations as well as in numerous infection experiments. Nevertheless, several strategies have been developed to prevent PERV transmission.  相似文献   

18.
Abstract: Background: Porcine endogenous retroviruses (PERVs) released from pig tissue can infect selected human cells in vitro and therefore represent a safety risk for xenotransplantation using pig cells, tissues, or organs. Although PERVs infect cells of numerous species in vitro, attempts to establish reliable animal models failed until now. Absence of PERV transmission has been shown in first experimental and clinical xenotransplantations; however, these trials suffered from the absence of long‐term exposure (transplant survival) and profound immunosuppression. Methods: We conducted infectivity studies in rhesus monkeys, pig‐tailed monkeys, and baboons under chronic immunosuppression with cyclosporine A, methylprednisolone, and the rapamycin derivative. These species were selected because they are close to the human species and PERVs can be transmitted in vitro to cells of these species. In addition, the animals received twice, a C1 esterase inhibitor to block complement activation before inoculation of PERV. In order to overcome the complications of microchimerism, animals were inoculated with high titers of cell‐free PERV. In addition, to enable transmission via cell–cell contact, some animals also received virus‐producing cells. For inoculation the primate cell‐adapted strain PERV/5° was used which is characterized by a high infectious titer. Produced on human cells, this virus does not express alpha 1,3 Gal epitopes, does not contain porcine antigens on the viral surface and is therefore less immunogenic in non‐human primates compared with pig cell‐derived virus. Finally, we present evidence that PERV/5° productively infects cells from baboons and rhesus monkeys. Results: In a follow‐up period of 11 months, no antibody production against PERV and no integration of proviral DNA in blood cells was observed. Furthermore, no PERV sequences were detected in the DNA of different organs taken after necropsy. Conclusion: These results indicate that in a primate model, in the presence of chronic immunosuppression, neither the inoculation of cell‐free nor cell‐associated PERV using a virus already adapted to primate cells results in an infection; this is despite the fact that peripheral blood mononuclear cells of the same animals are infectible in vitro.  相似文献   

19.
Xenotransplantation using porcine cells or organs may be associated with the risk of transmission of zoonotic microorganisms. Porcine endogenous retroviruses (PERVs) pose a potentially high risk because they are integrated into the genome of all pigs and PERV-A and PERV-B at least, which are present in all pigs, can infect human cells. However, PERV transmission could not be demonstrated in the first recipients of clinical xenotransplantation or after numerous experimental pig-to-non-human primate transplantations. In addition, inoculation of immunosuppressed small animals and non-human primates failed to result in demonstrable PERV infection. Nevertheless, strategies to reduce the possible danger of PERV transmission to humans, however low, could be of benefit for the large-scale clinical use of porcine xenotransplants. One strategy is to select pigs free of PERV-C, thereby preventing recombination with PERV-A. A second strategy involves the selection of animals that express only very low levels of PERV-A and PERV-B. To this end, sensitive and specific methods have been developed to allow the distribution and expression of PERV to be analyzed. A third strategy is to develop a vaccine capable of protecting against PERV transmission. Finally, a fourth strategy is based on the inhibition of PERV expression by RNA interference. Using PERV-specific short hairpin RNA (shRNA) and retroviral vectors, inhibition of PERV expression in primary pig cells was demonstrated and transgenic pigs were generated that show reduced PERV expression in all tissues analyzed. Intensive work is required to improve and to combine these strategies to further decrease the putative risk of PERV transmission following xenotransplantation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号