首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Target of rapamycin (TOR), a member of the phosphatidylinositol kinase‐related kinase family, plays a critical role in the regulation of growth, metabolism, development and survival, at both the cellular and the organismal levels. Two paralogous Tor genes, BmTor1 and BmTor2, were identified as a pair of inverted repeats in the genome of the silkworm Bombyx mori. The synteny of BmTor1 and CG8360 indicates that BmTor1 is the orthologue while BmTor2 is a duplicate. Analyses of the two BmTor genes at both the nucleotide and amino acid levels reveal that they are evolutionally and structurally conserved. The two BmTor genes had similar expression patterns of tissue distribution with highest levels in the nervous system, and nearly identical developmental change profiles with maximal levels during the 4th‐larval‐moulting and the larval–pupal transition stages. Furthermore, both BmTor genes were up‐regulated by either starvation or the moulting hormone 20‐hydroxyecdysone (20E), while BmTor2 was more sensitive to both treatments than BmTor1. For the first time, we have identified two copies of the Tor gene in a higher eukaryote, which are induced by starvation and 20E during the larval moulting and the larval–pupal transition stage.  相似文献   

2.
Genetic transformation and genome editing technologies have been successfully established in the lepidopteran insect model, the domesticated silkworm, Bombyx mori, providing great potential for functional genomics and practical applications. However, the current lack of cis‐regulatory elements in B. mori gene manipulation research limits further exploitation in functional gene analysis. In the present study, we characterized a B. mori endogenous promoter, Bmvgp, which is a 798‐bp DNA sequence adjacent to the 5′‐end of the vitellogenin gene (Bmvg). PiggyBac‐based transgenic analysis shows that Bmvgp precisely directs expression of a reporter gene, enhanced green fluorescent protein (EGFP), in a sex‐, tissue‐ and stage‐specific manner. In transgenic animals, EGFP expression can be detected in the female fat body from larval?pupal ecdysis to the following pupal and adult stage. Furthermore, in vitro and in vivo experiments revealed that EGFP expression can be activated by 20‐hydroxyecdysone, which is consistent with endogenous Bmvg expression. These data indicate that Bmvgp is an effective endogenous cis‐regulatory element in B. mori.  相似文献   

3.
4.
Xanthine dehydrogenase (XDH) is a molybdoenzyme which catalyses oxidation of xanthine and hypoxanthine to uric acid. We isolated genomic clones of silkworm (Bombyx mori) XDH genes (BmXDH1 and BmXDH2). The BmXDH2 The BmXDH2 gene is located upstream from the BmXDH1 gene and they show a tandemly duplicated structure. Both BmXDH genes were expressed in the fat body and Malpighian tubules, whereas only the BmXDH1 gene was expressed in the midgut. Phylogenetic analysis indicates that BmXDH gene duplication occurred after the divergence of the silkworm and dipteran species. Intron insertion site comparison shows that some introns were lost during insect XDH gene evolution.  相似文献   

5.
6.
7.
The infection profiles of the Bombyx mori nucleopolyhedrovirus (BmNPV) in B. mori larvae revealed that the virus invaded the fat body and haemocyte of both KN and 306 strains, which are highly resistant and susceptible, respectively, to BmNPV infection. However, viral proliferation was notably slowed in the resistant B. mori strain. Using suppression subtractive hybridization, two fat body cDNA libraries were constructed to compare BmNPV responsive gene expression levels between the two silkworm lines. In total, 96 differentially expressed genes were obtained. Real‐time quantitative PCR (qPCR) analysis confirmed that eight genes were significantly up‐regulated in the fat body and haemocyte of the KN strain following BmNPV injection. Our results suggest that these genes may have potential roles in B. mori antiviral infection mechanisms.  相似文献   

8.
9.
10.
11.
Haemocytes play crucial roles in insect metabolism, metamorphosis, and innate immunity. As a model of lepidopteran insects, the silkworm is a useful model to study the functions of both haematopoiesis and haemocytes. Tissue‐specific promoters are excellent tools for genetic manipulation and are widely used in fundamental biological research. Herein, two haemocyte‐specific genes, Integrin β2 and Integrin β3, were confirmed. Promoter activities of Integrin β2 and Integrin β3 were evaluated by genetic manipulation. Quantitative real‐time PCR and western blotting suggested that both promoters can drive enhanced green fluorescent protein (EGFP) specifically expressed in haemocytes. Further evidence clearly demonstrated that the transgenic silkworm exhibited a high level of EGFP signal in plasmatocytes, but not in other detected haemocyte types. Moreover, EGFP fluorescence signals were observed in the haematopoietic organ of both transgenic strains. Thus, two promoters that enable plasmatocytes to express genes of interest were confirmed in our study. It is expected that the results of this study will facilitate advances in our understanding of insect haematopoiesis and immunity in the silkworm, Bombyx mori.  相似文献   

12.
13.
The induction of apoptosis in vivo is a useful tool for investigating the functions and importance of particular tissues. B‐cell leukaemia/lymphoma 2‐associated X protein (Bax) functions as a pro‐apoptotic factor and induces apoptosis in several organisms. The Bax‐mediated apoptotic system is widely conserved from Caenorhabditis elegans to humans. In order to establish a tissue‐specific cell death system in the domestic silkworm, Bombyx mori, we constructed a transgenic silkworm that overexpressed mouse Bax (mBax) in particular tissues by the Gal4‐upstream activation sequence system. We found that the expression of mBax induced specific cell death in the silk gland, fat body and sensory cells. Fragmentation of genomic DNA was observed in the fat body, which expressed mBax, thereby supporting apoptotic cell death in this tissue. Using this system, we also demonstrated that specific cell death in sensory cells attenuated the response to the sex pheromone bombykol. These results show that we successfully established a tissue‐specific cell death system in vivo that enabled specific deficiencies in particular tissues. The inducible cell death system may provide useful means for industrial applications of the silkworm and possible utilization for other species.  相似文献   

14.
15.
Sex‐specific regulatory elements are key components for developing insect genetic sexing systems. The current insect genetic sexing system mainly uses a female‐specific modification system whereas little success was reported on male‐specific genetic modification. In the silkworm Bombyx mori, a lepidopteran model insect with economic importance, a transgene‐based, female‐specific lethality system has been established based on sex‐specific alternative splicing factors and a female‐specific promoter BmVgp (vitellogenin promoter) has been identified. However, no male‐specific regulatory elements have yet been identified. Here we report the transgenic identification of two promoters that drive reporter gene expression in a testis‐specific manner in B. mori. Putative promoter sequences from the B. mori Radial spoke head 1 gene (BmR1) and beta‐tubulin 4 gene (Bmβ4) were introduced using piggybac‐based germline transformation. In transgenic silkworms, expression of the reporter gene enhanced green fluorescent protein (EGFP) directed by either BmR1 promoter (BmR1p) or Bmβ4p showed precisely testis‐specific manners from the larval to adult stage. Furthermore, EGFP expression of these two transgenic lines showed different localization in the testis, indicating that BmR1p or Bmβ4p might be used as distinct regulatory elements in directing testis‐specific gene expression. Identification of these testis‐specific promoters not only contributes to a better understanding of testis‐specific gene function in insects, but also has potential applications in sterile insect techniques for pest management.  相似文献   

16.
17.
Body shape is one of the most prominent and basic characteristics of any organism. In insects, abundant variations in body shape can be observed both within and amongst species. However, the molecular mechanism underlying body shape fine‐tuning is very complex and has been largely unknown until now. In the silkworm Bombyx mori, the tubby (tub) mutant has an abnormal short fat body shape and the abdomen of tub larvae expands to form a fusiform body shape. Morphological investigation revealed that the body length was shorter and the body width was wider than that of the Dazao strain. Thus, this mutant is a good model for studying the molecular mechanisms of body shape fine‐tuning. Using positional cloning, we identified a gene encoding the serine protease homologue, B. mori scarface (Bmscarface), which is associated with the tub phenotype. Sequence analysis revealed a specific 312‐bp deletion from an exon of Bmscarface in the tub strain. In addition, recombination was not observed between the tub and Bmscarface loci. Moreover, RNA interference of Bmscarface resulted in the tub‐like phenotype. These results indicate that Bmscarface is responsible for the tub mutant phenotype. This is the first study to report that mutation of a serine protease homologue can induce an abnormal body shape in insects.  相似文献   

18.
19.
20.
Isopentenylation at A37 (i6A37) of some transfer RNAs (tRNAs) plays a vital role in regulating the efficiency and fidelity of protein synthesis. However, whether insects, which are well known for their highly efficient protein synthesis machinery, employ this regulatory mechanism remains uninvestigated. In the current study, a candidate tRNA isopentenyltransferase (IPT) gene with three alternative splicing isoforms (BmIPT1BmIPT3) was identified in Bombyx mori (silkworm). Only BmIPT1 could complement a yeast mutant lacking tRNA IPT. Phylogenetic analysis showed that silkworm tRNA IPT is conserved in the Lepidoptera. BmIPT was expressed in all B. mori tissues and organs that were investigated, but was expressed at a significantly higher level in silk glands of the fourth instar compared to the first day of the fifth instar. Interestingly, BmIPT was expressed at a significantly higher level in the domesticated silkworm, B. mori, than in wild Bombyx mandarina in multiple tissues and organs. Knock‐down of BmIPT by RNA interference caused severe abnormalities in silk spinning and metamorphosis. Constitutive overexpression of BmIPT1 using a cytoplasmic actin 4 promoter in B. mori raised its messenger RNA level more than sixfold compared with nontransgenic insects and led to significant decreases in the body weight and cocoon shell ratio. Together, these results confirm the first functional tRNA IPT in insects and show that a suitable expression level of tRNA IPT is vital for silk spinning, normal growth, and metamorphosis. Thus, i6A modification at position A37 in tRNA probably plays an important role in B. mori protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号