首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although donor‐specific transfusion (DST) plus CD154 blockade represents a robust protocol for inducing transplantation tolerance, the underlying mechanisms are incompletely understood. In a murine T‐cell adoptive transfer model, we have visualized alloantigen‐specific, TCR‐transgenic for H2‐Ab/H2‐Kd54–68 epitope (TCR75) CD4+ T cells with indirect allospecificity during the course of tolerance induction. Three main observations were made. First, although the majority of TCR75 CD4+ T cells were deleted following DST plus CD154 blockade, the surviving TCR75 CD4+ T cells were capable of making IL‐2, upregulating CD44, and undergoing cell division, suggesting that they were functionally active. Indeed, residual TCR75 CD4+ T cells reisolated from the primary recipients given DST plus CD154 blockade were fully capable of rejecting allografts upon secondary transfer. Second, in tolerant mice, TCR75 CD4+ T cells were not induced to express Foxp3 in the graft‐draining lymph node. TCR75 CD4+ T cells were also absent in accepted graft tissues in which endogenous Treg cells were enriched. Finally, DST plus CD154 blockade resulted in an abortive expansion of TCR75 CD4+ T cells, a process that required the presence of endogenous Treg cells. Collectively, surviving TCR75 CD4+ T cells are immunocompetent but kept in check by an endogenous immunosuppressive network induced by DST plus CD154 blockade.  相似文献   

2.
Accumulating evidence suggests that alloreactive memory T cells (Tm) may form a barrier to tolerance induction in large animals and humans due in part to a resistance to suppression by Treg. However, why Tm are resistant to regulation and how the Tm response to an allograft differs from that of naïve T cells, which are amenable to suppression by Treg, remains unknown. Here, we show that accelerated graft rejection mediated by CD8+ Tm was due to the enhanced recruitment of PMN to allografts in a mouse skin allograft model. Importantly, depletion of PMN slowed the kinetics of (but did not prevent) rejection mediated by Tm and created a window of opportunity that allowed subsequent suppression of rejection by Treg. Taken together, we conclude that CD8+ Tm are not intrinsically resistant to suppression by Treg but may rapidly inflict substantial graft damage before the establishment of regulatory mechanisms. These data suggest that if Tm responses can be attenuated transiently following transplantation, Treg may be able to maintain tolerance through the suppression of both memory and naïve alloreactive T‐cell responses in the long term.  相似文献   

3.
It is well established that tumours hinder both natural and vaccine‐induced tumour‐specific CD4+ T‐cell responses. Adoptive T‐cell therapy has the potential to circumvent functional tolerance and enhance anti‐tumour protective responses. While protocols suitable for the expansion of cytotoxic CD8+ T cells are currently available, data on tumour‐specific CD4+ T cells remain scarce. We report here that CD4+ T cells sensitized to tumour‐associated Ag in vivo, proliferate in vitro in response to IL‐7 without the need for exogenous Ag stimulation and accumulate several folds while preserving a memory‐like phenotype. Both cell proliferation and survival accounts for the outgrowth of tumour‐sensitized T cells among other memory and naive lymphocytes following exposure to IL‐7. Also IL‐2, previously used to expand anti‐tumour CTL, promotes tumour‐specific CD4+ T‐cell accumulation. However, IL‐7 is superior to IL‐2 at preserving lymphocyte viability, in vitro and in vivo, maintaining those properties, that are required by helper CD4+ T cells to confer therapeutic efficacy upon transplantation in tumour‐bearing hosts. Together our data support a unique role for IL‐7 in retrieving memory‐like CD4+ T cells suitable for adoptive T‐cell therapy.  相似文献   

4.
The Wilms’ tumour‐1 (WT1) protein is considered a prime target for cancer immunotherapy based on its presumptive immunogenicity and widespread expression across a variety of malignancies. However, little is known about the naturally occurring WT1‐specific T‐cell repertoire because self‐derived antigens typically elicit low frequency responses that challenge the sensitivity limits of current detection techniques. In this study, we used highly efficient cell enrichment procedures based on CD137, CD154, and pHLA class I tetramer staining to conduct a detailed analysis of WT1‐specific T cells from the peripheral blood. Remarkably, we detected WT1‐specific CD4+ and CD8+ T‐cell populations in the vast majority of healthy individuals. Memory responses specific for WT1 were commonly present in the CD4+ T‐cell compartment, whereas WT1‐specific CD8+ T cells almost universally displayed a naive phenotype. Moreover, memory CD4+ and naive CD8+ T cells with specificity for WT1 were found to coexist in some individuals. Collectively, these findings suggest a natural discrepancy between the CD4+ and CD8+ T‐cell lineages with respect to memory formation in response to a self‐derived antigen. Nonetheless, WT1‐specific T cells from both lineages were readily activated ex vivo and expanded in vitro, supporting the use of strategies designed to exploit this expansive reservoir of self‐reactive T cells for immunotherapeutic purposes.  相似文献   

5.
《Immunology》2017,152(3):425-438
The success of immune system‐based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti‐CD3 scFv antibody) were previously shown to redirect CD8+ and CD4+ T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma‐specific protein, gp100, presented by HLA‐A*0201) efficiently redirects and activates effector and memory cells from both CD8+ and CD4+ repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8+ T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4+ effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8+ and CD4+ repertoires secrete key pro‐inflammatory cytokines (tumour necrosis factor‐α, interferon‐γ, interleukin‐6) and chemokines (macrophage inflammatory protein‐1αβ, interferon‐γ‐inducible protein‐10, monocyte chemoattractant protein‐1). At an individual cell level, IMCgp100‐redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti‐cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8+ T cell‐mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma.  相似文献   

6.
Bystander activation of T cells, i.e. the stimulation of unrelated (heterologous) T cells by cytokines during an Ag‐specific T‐cell response, has been best described for CD8+ T cells. In the CD8+ compartment, the release of IFN and IFN‐inducers leads to the production of IL‐15, which mediates the proliferation of CD8+ T cells, notably memory‐phenotype CD8+ T cells. CD4+ T cells also undergo bystander activation, however, the signals inducing this Ag‐nonspecific stimulation of CD4+ T cells are less well known. A study in this issue of the European Journal of Immunology sheds light on this aspect, suggesting that common γ‐chain cytokines including IL‐2 might be involved in bystander activation of CD4+ T cells.  相似文献   

7.
Immunotherapies that augment antitumor T cells have had recent success for treating patients with cancer. Here we examined whether tumor‐specific CD4+ T cells enhance CD8+ T‐cell adoptive immunotherapy in a lymphopenic environment. Our model employed physiological doses of tyrosinase‐related protein 1‐specific CD4+ transgenic T cells‐CD4+ T cells and pmel‐CD8+ T cells that when transferred individually were subtherapeutic; however, when transferred together provided significant (p ≤ 0.001) therapeutic efficacy. Therapeutic efficacy correlated with increased numbers of effector and memory CD8+ T cells with tumor‐specific cytokine expression. When combined with CD4+ T cells, transfer of total (naïve and effector) or effector CD8+ T cells were highly effective, suggesting CD4+ T cells can help mediate therapeutic effects by maintaining function of activated CD8+ T cells. In addition, CD4+ T cells had a pronounced effect in the early posttransfer period, as their elimination within the first 3 days significantly (p < 0.001) reduced therapeutic efficacy. The CD8+ T cells recovered from mice treated with both CD8+ and CD4+ T cells had decreased expression of PD‐1 and PD‐1‐blockade enhanced the therapeutic efficacy of pmel‐CD8 alone, suggesting that CD4+ T cells help reduce CD8+ T‐cell exhaustion. These data support combining immunotherapies that elicit both tumor‐specific CD4+ and CD8+ T cells for treatment of patients with cancer.  相似文献   

8.
Self‐tolerance, presumably through lineage‐unbiased elimination of self‐antigen‐specific lymphocytes (CD4+ T, CD8+ T, and B cells), creates a formidable barrier to cancer immunotherapy. In contrast to this prevailing paradigm, we demonstrate that for some antigens, self‐tolerance reflects selective elimination of antigen‐specific CD4+ T cells, but preservation of CD8+ T‐ and B‐cell populations. In mice, antigen‐specific CD4+ T‐cell tolerance restricted CD8+ T‐ and B‐cell responses targeting the endogenous self‐antigen guanylyl cyclase c (GUCY2C) in colorectal cancer. Although selective CD4+ T‐cell tolerance blocked GUCY2C‐specific antitumor immunity and memory responses, it offered a unique solution to the inefficacy of GUCY2C vaccines through recruitment of self‐antigen‐independent CD4+ T‐cell help. Incorporating CD4+ T‐cell epitopes from foreign antigens into vaccines against GUCY2C reconstituted CD4+ T‐cell help, revealing the latent functional capacity of GUCY2C‐specific CD8+ T‐ and B‐cell pools, producing durable antitumor immunity without autoimmunity. Incorporating CD4+ T‐cell epitopes from foreign antigens into vaccines targeting self‐antigens in melanoma (Trp2) and breast cancer (Her2) produced similar results, suggesting selective CD4+ T‐cell tolerance underlies ineffective vaccination against many cancer antigens. Thus, identification of self‐antigens characterized by selective CD4+ T‐cell tolerance and abrogation of such tolerance through self‐antigen‐independent T‐cell help is essential for future immunotherapeutics.  相似文献   

9.
Staphylococcal enterotoxin B (SEB) activates T cells via non‐canonical signalling through the T cell receptor and is an established model for T cell unresponsiveness in vivo. In this study, we sought to characterize the suppressive qualities of SEB‐exposed CD4+ T cells and correlate this with genetic signatures of anergy and suppression. SEB‐exposed CD25+ and CD25Vβ8+CD4+ T cells expressed forkhead box P3 (FoxP3) at levels comparable to naive CD25+ T regulatory cells and were enriched after exposure in vivo. Gene related to anergy in lymphocytes (GRAIL), an anergy‐related E3 ubiquitin ligase, was up‐regulated in the SEB‐exposed CD25+ and CD25FoxP3+Vβ8+CD4+ T cells and FoxP3CD25Vβ8+CD4+ T cells, suggesting that GRAIL may be important for dominant and recessive tolerance. The SEB‐exposed FoxP3+GRAIL+ T cells were highly suppressive and non‐proliferative independent of CD25 expression level and via a glucocorticoid‐induced tumour necrosis factor R‐related protein‐independent mechanism, whereas naive T regulatory cells were non‐suppressive and partially proliferative with SEB activation in vitro. Lastly, adoptive transfer of conventional T cells revealed that induction of FoxP3+ regulatory cells is not operational in this model system. These data provide a novel paradigm for chronic non‐canonical T cell receptor engagement leading to highly suppressive FoxP3+GRAIL+CD4+ T cells.  相似文献   

10.
11.
Peripheral T‐cell expansion is of major relevance for immune function after lymphopenia. In order to promote regeneration, the process should result in a peripheral T‐cell pool with a similar subpopulation structure as before lymphopenia. We investigated the repopulation of the CD8+ central‐memory T cells (TCM) and effector‐memory T cells (TEM) pools after adoptive transfer of sorted CD8+ T cells from naïve, TCM and TEM subsets into T‐cell‐deficient hosts. We show that the initial kinetics of expansion are distinct for each subset and that the contribution to the repopulation of the CD8+ T‐cell pool by the progeny of each subset is not a mere function of its initial expansion. We demonstrate that CD4+CD25+ Treg play a major role in the repopulation of the CD8+ T‐cell pool and that CD8+ T‐cell subsets impact on each other. In the absence of CD4+CD25+ Treg, a small fraction of naïve CD8+ T cells strongly proliferates, correlating with further expansion and differentiation of co‐expanding CD8+ T cells. CD4+CD25+ Treg suppress these responses and lead to controlled repopulation, contributing decisively to the maintenance of recovered TCM and TEM fractions, and leading to repopulation of each pool with progeny of its own kind.  相似文献   

12.
Mixed chimerism induction is the most reliable method for establishing transplantation tolerance. We previously described a novel treatment using a suboptimal dose of anti‐CD40 ligand (anti‐CD40L) and liposomal formulation of a ligand for invariant natural killer T cells administered to sub‐lethally irradiated recipient mice after donor bone marrow cell (BMC) transfer. Recipient mice treated with this regimen showed expansion of a Foxp3‐positive regulatory T(Treg) cell phenotype, and formation of mixed chimera. However, the mechanism of expansion and bioactivity of Treg cells remains unclear. Here, we examine the role of donor BMCs in the expansion of bioactive Treg cells. The mouse model was transplanted with a heart allograft the day after treatment. The results showed that transfer of spleen cells in place of BMCs failed to deplete host interferon (IFN)‐γ‐producing CD8+T cells, expand host Ki67+CD4+CD25+Foxp3+ Treg cells, and prolong graft survival. Severe combined immunodeficiency mice who received Treg cells obtained from BMC‐recipients accepted skin grafts in an allo‐specific manner. Myeloid‐derived suppressor cells, which were a copious cell subset in BMCs, enhanced the Ki67 expression of Treg cells. This suggests that donor BMCs are indispensable for the expansion of host bioactive Treg cells in our novel treatment for transplant tolerance induction.  相似文献   

13.
DC can present and cross‐present self‐antigens to autoreactive CD4+ and CD8+ T cells, respectively, and incapacitate them by inducing anergy, deletion or converting them into Treg. In this review, we summarize the recent progress in immune tolerance research, which has been achieved by employing antigen‐ and TCR‐transgenic mice. We cover the numerous discoveries that have furthered our knowledge of the DC subsets and maturation pathways involved in tolerance; the signals, such as CD70, TGF‐β, B7‐H1/PD‐L1, which dictate the decision between immunity and tolerance; and the in vivo role of DC in the maintenance of CD4+ T‐cell tolerance and CD8+ T‐cell cross‐tolerance.  相似文献   

14.
Type 1 diabetes is a T‐cell‐mediated autoimmune disease in which autoreactive CD8+ T cells destroy the insulin‐producing pancreatic beta cells. Vitamin D3 and dexamethasone‐modulated dendritic cells (Combi‐DCs) loaded with islet antigens inducing islet‐specific regulatory CD4+ T cells may offer a tissue‐specific intervention therapy. The effect of Combi‐DCs on CD8+ T cells, however, remains unknown. To investigate the interaction of CD8+ T cells with Combi‐DCs presenting epitopes on HLA class I, naive, and memory CD8+ T cells were co‐cultured with DCs and proliferation and function of peptide‐specific T cells were analyzed. Antigen‐loaded Combi‐DCs were unable to prime naïve CD8+ T cells to proliferate, although a proportion of T cells converted to a memory phenotype. Moreover, expansion of CD8+ T cells that had been primed by mature monocyte‐derived DCs (moDCs) was curtailed by Combi‐DCs in co‐cultures. Combi‐DCs expanded memory T cells once, but CD8+ T‐cell numbers collapsed by subsequent re‐stimulation with Combi‐DCs. Our data point that (re)activation of CD8+ T cells by antigen‐pulsed Combi‐DCs does not promote, but rather deteriorates, CD8+ T‐cell immunity. Yet, Combi‐DCs pulsed with CD8+ T‐cell epitopes also act as targets of cytotoxicity, which is undesirable for survival of Combi‐DCs infused into patients in therapeutic immune intervention strategies.  相似文献   

15.
T cells transferred in small numbers to lymphopenic hosts proliferate spontaneously, and naïve T cells turn into memory cells without complete cellular reconstitution of the lymphoid compartment. In this study, neonatal severe combined immunodeficiency mice were treated with peripheral CD4+ or CD8+ T cells purified from the spleen of syngeneic C.B-17 mice. At 2 weeks and more pronounced at 10 weeks post treatment, a majority of the residing donor T cells showed memory phenotype, with high expression of CD44 and an early onset of proliferation and cytokine production upon stimulation. These memory type of donor cells were sustained in numbers for at least 1.5 years post treatment in a homoeostatic fashion, recognized by normal CD4/CD8 ratio and no bias towards type 1 or type 2 immune response. Furthermore, amongst the memory type of cells, there was a striking difference in their response, where the CD8+ donor cells had higher threshold for stimulation than the CD4+ donor cells.  相似文献   

16.
Previously, we showed that CD11c defines a novel subset of CD8+ T cells whose in vivo activity is therapeutic for arthritis; however, the mechanisms directing their development, identity of their precursors, and basis of their effector function remain unknown. Here, we show that the novel subset develops from CD11csurface?CD8+ T cells and undergoes robust expansion in an antigen‐ and 4‐1BB (CD137)‐dependent manner. CD11c+CD8+ T cells exist in naïve mice (<3%) with limited suppressive activity. Once activated, they suppress CD4+ T cells in vivo and in vitro. Suppression of CD4+ by CD11c+CD8+ T cells is related to an increase in IDO activity induced in competent cells via the general control non‐derepressible‐2 pathway. CD11c+CD8+ T cells are refractory to the effect of IDO but constrict in a novel 1‐methyl D ,L ‐tryptophan‐dependent mechanism resulting in reversal of their suppressive effects. Thus, our data uncover, for the first time, the origin, development, and basis of the suppressive function of this novel CD11c+CD8+ T‐cell subpopulation that has many signature features of Treg.  相似文献   

17.
CD40‐CD40 ligand (CD40L) signaling plays multiple indispensable roles in cellular and humoral immunity. Impaired memory T‐cell responses in the absence of CD40L have been well documented, but the requirement of this interaction for efficient priming of CD8+ T cells especially under inflammatory conditions has been under debate. In contrast to previous publications, we report here that virus‐specific CD8+ T‐cell responses as well as viral clearance are affected not only in the memory but also in the effector phase in CD40L?/? mice infected with lymphocytic choriomeningitis virus (LCMV) Armstrong strain. Interestingly, a considerable part of the LCMV‐specific effector and memory T cells consists of CD40L+ CD8+ T cells. However, deficiency of CD40L in CD8+ T cells did influence neither the quantity nor the quality of primary T‐cell responses in LCMV infection. Virus‐specific CD8+ T cells in conditional knockout mice, with a selective deletion of the CD40L in CD8+ T cells, were fully functional regarding cytokine production and efficient pathogen clearance. Thus, our results unambiguously demonstrate that while CD40L is critical to generate effective primary CD8+ T‐cell responses also under inflammatory conditions, CD40L expression by CD8+ T cells themselves is dispensable in acute LCMV infection.  相似文献   

18.
LPS comprises a major PAMP and is a key target of the immune system during bacterial infection. While LPS can be recognised by innate immune cells via the TLR4 complex, it is unknown whether T lymphocytes, especially CD8+ T cells are also capable of doing so. We report here that naïve human CD8+ T cells, after activation by TCR stimulation, express surface TLR4 and CD14. These activated CD8+ T cells can then secrete high concentrations of IFN‐γ, granzyme and perforin in response to LPS. These effects can be specifically inhibited using siRNA for TLR4. Furthermore, LPS can synergise with IL‐12 to polarise the CD8+ T cells into cytotoxic T‐cell 1 (Tc1) that produce IFN‐γ but not IL‐4, with or without TCR activation. Moreover, CD8+CD45RO+ memory T cells constitutively expressed TLR4 and markedly enhanced IFN‐γ production when stimulated with LPS. In contrast, activated murine CD8+ T cells lack TLR4 and CD14 expression and fail to respond to LPS for proliferation and cytokine production. Thus, human but not murine CD8+ T cells are able to directly recognise bacterial LPS via LPS receptor complex and TLR4 provides a novel signal for the activation of effector and memory human CD8+ T cells.  相似文献   

19.
Summary: A critical aim of vaccine‐related research is to identify the mechanisms by which memory T cells are formed and maintained over long periods of time. In recent years, we have designed experiments aimed at addressing two key questions: (i) what are the factors that maintain functionally responsive CD8+ memory cells over long periods of time, and (ii) what are the signals during the early stages of infection that drive the differentiation of long‐lived CD8+ memory T cells? We have identified a role for CD4+ T cells in the generation of CD8+ T‐cell‐mediated protection from secondary challenge. While CD4+ T cells appear to play a role in the programme of CD8 memory, we find that they are also required for the long‐term maintenance of CD8+ memory T‐cell numbers and function. This property is independent of CD40–CD40L interactions, and we propose a role for CD4+ T cells in maintaining the ability of CD8+ memory T cells to respond to interleukin‐7 (IL‐7) and IL‐15. By manipulating both the time course of infection and the timing of antigen presentation to newly recruited CD8+ T cells, we also demonstrate that the programming of effector and memory potential are at least partially distinct processes.  相似文献   

20.
Although CD4+/CD25+ T regulatory cells (Tregs) are a potentially powerful tool in bone marrow transplantation, a prerequisite for clinical use is a cell‐separation strategy complying with good manufacturing practice guidelines. We isolated Tregs from standard leukapheresis products using double‐negative selection (anti‐CD8 and anti‐CD19 monoclonal antibodies) followed by positive selection (anti‐CD25 monoclonal antibody). The final cell fraction (CD4+/CD25+) showed a mean purity of 93·6% ± 1·1. Recovery efficiency was 81·52% ± 7·4. The CD4+/CD25+bright cells were 28·4% ± 6·8. The CD4+/CD25+ fraction contained a mean of 51·9% ± 15·1 FoxP3 cells and a mean of 18·9% ± 11·5 CD127 cells. Increased FoxP3 and depleted CD127 mRNAs in CD4+CD25+FoxP3+ cells were in line with flow cytometric results. In Vβ spectratyping the complexity scores of CD4+/CD25+ cells and CD4+/CD25 cells were not significantly different, indicating that Tregs had a broad T cell receptor repertoire. The inhibition assay showed that CD4+/CD25+ cells inhibited CD4+/CD25 cells in a dose‐dependent manner (mean inhibition percentages: 72·4 ± 8·9 [ratio of T responder (Tresp) to Tregs, 1:2]; 60·8% ± 20·5 (ratio of Tresp to Tregs, 1:1); 25·6 ± 19·6 (ratio of Tresp to Tregs, 1:0·1)). Our study shows that negative/positive Treg selection, performed using the CliniMACS device and reagents, enriches significantly CD4+CD25+FoxP3+ cells endowed with immunosuppressive capacities. The CD4+CD25+FoxP3+ population is a source of natural Treg cells that are depleted of CD8+ and CD4+/CD25 reacting clones which are potentially responsible for triggering graft‐versus‐host disease (GvHD). Cells isolated by means of this approach might be used in allogeneic haematopoietic cell transplantation to facilitate engraftment and reduce the incidence and severity of GvHD without abrogating the potential graft‐versus‐tumour effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号