首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We previously demonstrated that outer surface protein C (OspC) of Borrelia burgdorferi is essential for establishing mammalian infection. However, the role of OspC in mammalian infection is unknown. Here, we report experiments designed to distinguish between two models of OspC function in the mammalian host: (i) OspC fulfills an essential physiological role for growth and host adaptation or (ii) OspC provides a protective role for evasion of components of the innate immune response. We found that a B. burgdorferi ospC mutant, previously demonstrated to be noninfectious in both immunocompetent and SCID mice, could survive in the relatively immune-privileged environment of dialysis membrane chambers implanted within the peritoneum of a rat. The ospC mutant also adapts to the mammalian environment, as determined by the protein profiles of the chamber-cultivated spirochetes. Therefore, OspC does not appear to provide a physiological function for the survival of B. burgdorferi within the mammalian host. The second model, evasion of the innate immune system, was tested by assessing the infectivity of the ospC mutant in mice deficient for myeloid differentiation protein 88 (MyD88). Recent studies have shown that B. burgdorferi is prevented from reaching high cell numbers in the mammalian host by MyD88-dependent signaling pathways. The ospC mutant was incapable of infecting MyD88-deficient mice, suggesting that the role of OspC cannot be related solely to evasion of MyD88-mediated innate immunity. These results reiterate the importance of OspC in mammalian infection and eliminate simple models of function for this enigmatic protein.  相似文献   

3.
Borrelia burgdorferi possesses a sophisticated chemotaxis signaling system; however, the roles of the majority of the chemotaxis proteins in the infectious life cycle have not yet been demonstrated. Specifically, the role of CheD during host colonization has not been demonstrated in any bacterium. Here, we systematically characterized the B. burgdorferi CheD homolog using genetics and biochemical and mouse-tick-mouse infection cycle studies. Bacillus subtilis CheD plays an important role in chemotaxis by deamidation of methyl-accepting chemotaxis protein receptors (MCPs) and by increasing the receptor kinase activity or enhancing CheC phosphatase activity, thereby regulating the levels of the CheY response regulator. Our biochemical analysis indicates that B. burgdorferi CheD significantly enhances CheX phosphatase activity by specifically interacting with the phosphatase. Moreover, CheD specifically binds two of the six MCPs, indicating that CheD may also modulate the receptor proteins. Although the motility of the cheD mutant cells was indistinguishable from that of the wild-type cells, the mutant did exhibit reduced chemotaxis. Importantly, the mutant showed significantly reduced infectivity in C3H/HeN mice via needle inoculation. Mouse-tick-mouse infection assays indicated that CheD is dispensable for acquisition or transmission of spirochetes; however, the viability of cheD mutants in ticks is marginally reduced compared to that of the wild-type or complemented cheD spirochetes. These data suggest that CheD plays an important role in the chemotaxis and pathogenesis of B. burgdorferi. We propose potential connections between CheD, CheX, and MCPs and discuss how these interactions play critical roles during the infectious life cycle of the spirochete.  相似文献   

4.
Humans produce highly specific borreliacidal antibodies against outer surface protein C (OspC) shortly after infection with Borrelia burgdorferi sensu stricto. We previously demonstrated the epitope recognized by immunoglobulin M (IgM) and IgG OspC borreliacidal antibodies was located within the 50 amino acids nearest the carboxy (C) terminus. In this study, we show the immunodominant epitope is located in the highly conserved region within the seven C-terminal amino acids. Six early Lyme disease sera that contained borreliacidal activity and IgM and/or IgG OspC antibodies were chosen randomly and adsorbed with truncated OspC containing the 16 or 7 amino acids nearest the C terminus. Adsorptions with each truncated protein abrogated the borreliacidal activity completely. In addition, only small concentrations of OspC antibodies remained detectable by enzyme-linked immunosorbent assay and Western blotting. Moreover, borreliacidal OspC antibodies were not induced in laboratory mice or hamsters despite heavy infections with B. burgdorferi spirochetes. These findings confirm that borreliacidal antibodies comprise the majority of the IgM and IgG OspC antibody response in human Lyme disease and that the epitope is located in the highly conserved C terminus. In addition, rodent animal models appear to be inappropriate subjects for assessing the effectiveness of the epitope for serodiagnosis or as a human Lyme disease vaccine.  相似文献   

5.
The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete''s ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi''s periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector.  相似文献   

6.
The specificity of infection-induced immunity in mice infected with cultured or host-adapted Borrelia burgdorferi sensu lato, the agent of Lyme disease, was examined. Sera obtained from mice following infection with high and low doses of cultured B. burgdorferi sensu stricto, transplantation of infected tissue (host-adapted spirochetes), or tick-borne inoculation all showed protective activity in passive immunization assays. Infection and disease were similar in mice infected with cultured spirochetes or by transplantation. Thus, the adaptive form of inoculated spirochetes did not influence the immune response during active infection. Mice infected with B. burgdorferi sensu stricto and then cured of infection with an antibiotic during early or late stages of infection were resistant to challenge with high doses of homologous cultured spirochetes for up to 1 year. In contrast, actively immune mice infected with different Borrelia species (B. burgdorferi sensu lato, B. burgdorferi sensu stricto cN40, Borrelia afzelii PKo, and Borrelia garinii PBi) and then treated with an antibiotic were resistant to challenge with cultured homologous but not heterologous spirochetes. Similar results were achieved for actively immune mice challenged by transplantation and by passive immunization with sera from mice infected with each of the Borrelia species and then challenged with cultured spirochetes. Arthritis and carditis in mice that had immunizing infections with B. afzelii and B. garinii and then challenged by transplantation with B. burgdorferi sensu stricto were equivalent in prevalence and severity to those in nonimmune recipient mice. These results indicate that protective immunity and disease-modulating immunity that develop during active infection are universal among species related to B. burgdorferi sensu lato but are species specific.  相似文献   

7.
The Lyme disease agent, Borrelia burgdorferi, is able to persistently infect humans and animals for months or years in the presence of an active immune response. It is not known how the organisms survive immune attack in the mammalian host. vlsE, a gene localized near one end of linear plasmid lp28-1 and encoding a surface-exposed lipoprotein in B. burgdorferi B31, was shown recently to undergo extensive genetic and antigenic variation within 28 days of initial infection in C3H/HeN mice. In this study, we examined the kinetics of vlsE sequence variation in C3H/HeN mice at 4, 7, 14, 21, and 28 days and at 7 and 12 months postinfection. Sequence changes were detected by PCR amplification and sequence analysis as early as 4 days postinfection and accumulated progressively in both C3H/HeN and CB-17 severe combined immunodeficient (SCID) mice throughout the course of infection. The sequence changes were consistent with sequential recombination of segments from multiple silent vls cassette sites into the vlsE expression site. No vlsE sequence changes were detected in organisms cultured in vitro for up to 84 days. These results indicate that vlsE recombination is induced by a factor(s) present in the mammalian host, independent of adaptive immune responses. The possible inducing conditions appear to be present in various tissue sites because isolates from multiple tissues showed similar degrees of sequence variation. The rate of accumulation of predicted amino acid changes was higher in the immunologically intact C3H/HeN mice than in SCID mice, a finding consistent with immune selection of VlsE variants.  相似文献   

8.
DbpA is a target for antibodies that protect mice against infection by cultured Borrelia burgdorferi. Infected mice exhibit early and sustained humoral responses to DbpA and DbpB, suggesting that these proteins are expressed in vivo. Many antigens expressed in mammals by B. burgdorferi are repressed in vitro at lower growth temperatures, and we have now extended these observations to include DbpA and DbpB. To confirm that the protective antigen DbpA is expressed in vivo and to address the question of its accessibility to antibodies during infection, we examined B. burgdorferi in blood samples from mice following cutaneous inoculation. B. burgdorferi was visualized by dark-field microscopy in plasma samples from spirochetemic mice, and an indirect immunofluorescence assay showed that these spirochetes were DbpA positive and OspA negative. We developed an ex vivo borreliacidal assay to show that hyperimmune antiserum against DbpA, but not OspA, killed these plasma-derived spirochetes, demonstrating that DbpA is accessible to antibodies during this phase of infection. Blood transferred from spirochetemic donor mice readily established B. burgdorferi infection in naive recipient mice or mice hyperimmunized with OspA, while mice hyperimmunized with DbpA showed significant protection against challenge with host-adapted spirochetes. Antiserum from persistently infected mice had borreliacidal activity against both cultured and plasma-derived spirochetes, and adsorption of this serum with DbpA substantially depleted this killing activity. Our observations show that immunization with DbpA blocks B. burgdorferi dissemination from the site of cutaneous inoculation and suggest that DbpA antibodies may contribute to control of persistent infection.  相似文献   

9.
Lyme arthritis, caused by the spirochete Borrelia burgdorferi, can be recurrent or prolonged, whereas Lyme carditis is mostly nonrecurring. A prominent difference between arthritis and carditis is the differential representation of phagocytes in these lesions: polymorphonuclear leukocytes (PMN) are more prevalent in the joint, and macrophages predominate in the heart lesion. We have previously shown differential efficiency of B. burgdorferi clearance by PMN and macrophages, and we now investigate whether these functional differences at the cellular level may contribute to the observed differences in organ-specific pathogenesis. When we infected mice lacking the neutrophil chemokine receptor (CXCR2−/− mice) with spirochetes, we detected fewer PMN in joints and less-severe arthritis. Here we have investigated the effects of the absence of the macrophage chemokine receptor CCR2 on the development and resolution of Lyme carditis in resistant (C57BL/6J [B6]) and sensitive (C3H/HeJ [C3H]) strains of mice. In B6 CCR2−/− mice, although inflammation in hearts is mild, we detected an increased burden of B. burgdorferi compared to that in wild-type (WT) mice, suggesting reduced clearance in the absence of macrophages. In contrast, C3H CCR2−/− mice have severe inflammation but a decreased B. burgdorferi burden compared to that in WT C3H mice both at peak disease and during resolution. Histopathologic examination of infected hearts revealed that infected C3H CCR2−/− animals have an increased presence of PMN, suggesting compensatory mechanisms of B. burgdorferi clearance in the hearts of infected C3H CCR2−/− mice. The more efficient clearance of B. burgdorferi from hearts by CCR2−/− versus WT C3H mice suggests a natural defect in the recruitment or function of macrophages in C3H mice, which may contribute to the sensitivity of this strain to B. burgdorferi infection.  相似文献   

10.
Yrjänäinen H, Hytönen J, Hartiala P, Oksi J, Viljanen MK. Persistence of borrelial DNA in the joints of Borrelia burgdorferi‐infected mice after ceftriaxone treatment. APMIS 2010; 118: 665–73. We have earlier shown that Borrelia burgdorferi‐infected and ceftriaxone‐treated mice have viable spirochetes in their body, since immunosuppressive treatment allows B. burgdorferi to be detected by culture. However, the niche of the persisting spirochetes remained unknown. In the present study, we analyzed the tissues of B. burgdorferi‐infected and ceftriaxone‐treated mice by culture and PCR to reveal the foci of persisting spirochetes. C3H/HeN mice were infected via intradermal needle injection with B. burgdorferi s.s. N40. The mice were treated as follows: (i) short (5 days) and (ii) long (18 days) course of ceftriaxone at 2 weeks of infection and killed after either 10 or 30 weeks, or (iii) the mice received ceftriaxone for 5 days at 18 weeks of infection and were killed 21 weeks after the treatment. All samples of ceftriaxone‐treated mice were culture negative, whereas all untreated controls were culture positive. Importantly, B. burgdorferi DNA was detected in the joints of 30–100% of the treated mice. In conclusion, these results combined with earlier results suggest that the joint or a tissue adjacent to the joint is the niche of persisting B. burgdorferi in ceftriaxone‐treated mice.  相似文献   

11.
Several Borrelia burgdorferi genes induced under mammalian host conditions have been purported to be important in Lyme disease pathogenesis based on their binding to host structures. These genes include the dbpBA locus, whose products bind host decorin and glycosoaminoglycans. Recently, the dbpBA genes were reported to be involved in borrelial infectivity. Here we extended the previous observations by using culture and quantitative PCR to evaluate low- and high-dose murine infection by a ΔdbpBA::Gentr derivative of B. burgdorferi strain B31. The results indicate that the ΔdbpBA::Gentr mutant is attenuated in the ability to initially colonize and then persist in multiple tissues. The mutant exhibited a colonization defect as early as 3 days postinfection, before the development of an adaptive immune response, and after low-dose infection of SCID mice, which are deficient in adaptive immunity. These findings suggest that the inability to adhere to host decorin may promote clearance of B. burgdorferi, presumably via innate immune mechanisms. In a high-dose infection, the mutant disseminated to several tissues, particularly joint tissue, but it was generally cleared from these tissues by 3 weeks postinfection. Finally, following high-dose infection of SCID mice, the dbpBA mutant exhibited only a mild colonization defect, suggesting that the adaptive response is involved in the clearance of the mutant in immunocompetent mice. Taken together, these results suggest that the DbpBA proteins facilitate the colonization of multiple tissues by B. burgdorferi and are required for optimal resistance to both innate and adaptive immune mechanisms following needle inoculation.  相似文献   

12.
HD-GYP domain cyclic dimeric GMP (c-di-GMP) phosphodiesterases are implicated in motility and virulence in bacteria. Borrelia burgdorferi possesses a single set of c-di-GMP-metabolizing enzymes, including a putative HD-GYP domain protein, BB0374. Recently, we characterized the EAL domain phosphodiesterase PdeA. A mutation in pdeA resulted in cells that were defective in motility and virulence. Here we demonstrate that BB0374/PdeB specifically hydrolyzed c-di-GMP with a Km of 2.9 nM, confirming that it is a functional phosphodiesterase. Furthermore, by measuring phosphodiesterase enzyme activity in extracts from cells containing the pdeA pdeB double mutant, we demonstrate that no additional phosphodiesterases are present in B. burgdorferi. pdeB single mutant cells exhibit significantly increased flexing, indicating a role for c-di-GMP in motility. Constructing and analyzing a pilZ pdeB double mutant suggests that PilZ likely interacts with chemotaxis signaling. While virulence in needle-inoculated C3H/HeN mice did not appear to be altered significantly in pdeB mutant cells, these cells exhibited a reduced ability to survive in Ixodes scapularis ticks. Consequently, those ticks were unable to transmit the infection to naïve mice. All of these phenotypes were restored when the mutant was complemented. Identification of this role of pdeB increases our understanding of the c-di-GMP signaling network in motility regulation and the life cycle of B. burgdorferi.  相似文献   

13.
Lyme disease is the fastest-growing zoonotic disease in North America. Current methods for detection of Borrelia burgdorferi infection are challenged by analysis subjectivity and standardization of antigen source. In the present study, we developed an immuno-PCR (iPCR)-based approach employing recombinant in vivo-expressed B. burgdorferi antigens for objective detection of a host immune response to B. burgdorferi infection. iPCR is a liquid-phase protein detection method that combines the sensitivity of PCR with the specificity and versatility of immunoassay-based protocols. Use of magnetic beads coated with intact spirochetes provided effective antigen presentation and allowed detection of host-generated antibodies in experimentally infected mice at day 11 postinoculation, whereas host-generated antibodies were detected at day 14 by enzyme-linked immunosorbent assay (ELISA) and day 21 by immunoblotting. Furthermore, magnetic beads coated with recombinant B. burgdorferi in vivo-expressed antigen OspC or BmpA demonstrated positive detection of host-generated antibodies in mice at day 7 postinoculation with markedly increased iPCR signals above the background, with the quantification cycle (Cq) value for each sample minus the mean background Cq plus 3 standard deviations (ΔCq) being 4 to 10, whereas ΔCq was 2.5 for intact spirochete-coated beads. iPCR demonstrated a strong correlation (Spearman rank correlation = 0.895, P < 0.0001) with a commercial ELISA for detection of host antibodies in human Lyme disease patient sera using the B. burgdorferi VlsE C6 peptide. In addition, iPCR showed potential applicability for direct detection of spirochetes in blood. The results presented here indicate that our iPCR assay has the potential to provide an objective format that can be used for sensitive detection of multiple host response antibodies and isotypes to B. burgdorferi infection.  相似文献   

14.
Lyme disease in the United States is caused by Borrelia burgdorferi sensu stricto, which is transmitted to mammals by infected ticks. Borrelia spirochetes differentially express immunogenic outer surface proteins (Osp). Our aim was to evaluate antibody responses to Osp antigens to aid the diagnosis of early infection and the management of Lyme disease. We analyzed antibody responses during the first 3 months after the experimental infection of dogs using a novel multiplex assay. Results were compared to those obtained with two commercial assays detecting C6 antigen. Multiplex analysis identified antibodies to OspC and C6 as early as 3 weeks postinfection (p.i.) and those to OspF by 5 weeks p.i. Antibodies to C6 and OspF increased throughout the study, while antibodies to OspC peaked between 7 and 11 weeks p.i. and declined thereafter. A short-term antibody response to OspA was observed in 3/8 experimentally infected dogs on day 21 p.i. Quant C6 enzyme-linked immunosorbent assay (ELISA) results matched multiplex results during the first 7 weeks p.i.; however, antibody levels subsequently declined by up to 29%. Immune responses then were analyzed in sera from 125 client-owned dogs and revealed high agreement between antibodies to OspF and C6 as robust markers for infection. Results from canine patient sera supported that OspC is an early infection marker and antibodies to OspC decline over time. The onset and decline of antibody responses to B. burgdorferi Osp antigens and C6 reflect their differential expression during infection. They provide valuable tools to determine the stage of infection, treatment outcomes, and vaccination status in dogs.  相似文献   

15.
This study demonstrates a strict temporal requirement for a virulence determinant of the Lyme disease spirochete Borrelia burgdorferi during a unique point in its natural infection cycle, which alternates between ticks and small mammals. OspC is a major surface protein produced by B. burgdorferi when infected ticks feed but whose synthesis decreases after transmission to a mammalian host. We have previously shown that spirochetes lacking OspC are competent to replicate in and migrate to the salivary glands of the tick vector but do not infect mice. Here we assessed the timing of the requirement for OspC by using an ospC mutant complemented with an unstable copy of the ospC gene and show that B. burgdorferi's requirement for OspC is specific to the mammal and limited to a critical early stage of mammalian infection. By using this unique system, we found that most bacterial reisolates from mice persistently infected with the initially complemented ospC mutant strain no longer carried the wild-type copy of ospC. Such spirochetes were acquired by feeding ticks and migrated to the tick salivary glands during subsequent feeding. Despite normal behavior in ticks, these ospC mutant spirochetes did not infect naive mice. ospC mutant spirochetes from persistently infected mice also failed to infect naive mice by tissue transplantation. We conclude that OspC is indispensable for establishing infection by B. burgdorferi in mammals but is not required at any other point of the mouse-tick infection cycle.  相似文献   

16.
Previous studies with different Borrelia burgdorferi sensu stricto (s.s.) strains revealed that temperature as well as cocultivation with tick cells modulates the expression of outer surface proteins (Osp) A and C. We investigated the effects of temperature and of interaction with tick cells in culture on the expression of OspA and OspC of the B. afzelii clones cPKo97 and cPKo345 in comparison to the B. burgdorferi s.s. strain N40. To follow the dynamics of Osp expression of single borreliae we used indirect immunofluorescence microscopy with double staining of OspA and OspC. Clone PKo345 always showed expression of only OspA, regardless the conditions it was subjected to. Sequencing of the ospC gene disclosed a insertion leading to a stop codon after base 222 and inability to produce OspC. In cPKo97 and N40 OspC is down-regulated at lower temperatures and up-regulated at higher temperatures, which was especially pronounced on cocultivation with tick cells. Borreliae adherent to tick cells showed greater OspA expression compared to the nonadherent ones, an indication that OspA might play a role as adhesin for tick cells. Interestingly, cPKo97 and N40 displayed different patterns of Osp expression: cPKo97 simultaneously presents OspA and OspC on single borreliae, while N40 has either OspA or OspC on single cells. Adaptation of OspC expression in cPKo97 seems to occur by up- or down-regulation of this protein on single borreliae, as shown by alternating intensities of OspC expression at different temperatures. In contrast, N40 seem to consist of two subsets of borreliae one expressing only OspA and the other only OspC, and change in temperature results in growth benefit for one of these subtypes. Our findings indicate that, regarding OspA and OspC expression, response to temperature and cocultivation with tick cells of B. afzelii is comparable to B. burgdorferi s.s., but the mode of regulation seems phenotypically different. Further European isolates should be investigated for OspA and OspC regulation, especially in the face of vaccine development for the European situation. Received: 19 July 2000  相似文献   

17.
Studies of mice infected with Borrelia burgdorferi have indicated that the severity of arthritis is influenced by the genetic composition of the host: the C3H mouse develops severe arthritis while BALB/c and C57BL/6 mice develop mild arthritis. In this study, the effects of increasing infectious dose on the severity of arthritis were determined in these three mouse strains. C3H/He mice developed severe arthritis at all infectious doses, with 100% infection requiring 200 spirochetes. In BALB/cAnN mice, arthritis severity was dependent on infectious dose; symptoms were mild with infection by 200 B. burgdorferi and progressively more severe with increasing infectious dose. Infection of BALB/cAnN mice with 2 × 104 B. burgdorferi resulted in arthritis with severity identical to that in C3H/He mice. Spirochete levels in rear ankle joints of C3H/HeJ and C3H/HeN mice were relatively high, as detected by PCR, and did not increase with infectious dose. Spirochete levels in joints from BALB/cAnN mice increased with increasing infectious dose to levels found in severely arthritic C3H/He mice. Thus, resistance to severe arthritis in BALB/cAnN mice was conditional: it could be overcome by high infectious dose and the arthritis became severe when high levels of B. burgdorferi were present in joints. A unique response to increasing infectious dose was seen in C57BL/6N mice, which displayed mild to moderate arthritis at all doses of B. burgdorferi tested, up to 2 × 105. At all infectious doses, the levels of spirochetes in ankle joints of C57BL/6N mice were high, equivalent to those found in the severely arthritic C3H/He mice. The arthritis observed in infected (C57BL/6N × C3H/HeN)F1 mice was of severity intermediate between those of the two parental strains. The finding that resistance to severe arthritis in C57BL/6N mice could not be overcome by high infectious doses and was independent of spirochete levels in joints suggested that it was mediated by a distinct mechanism from that operating in BALB/cAnN mice.Lyme disease is caused by infection with the tick-transmitted spirochete Borrelia burgdorferi and is characterized by multisystem involvement (14, 16, 24). Many tissues may display disease involvement, and there is variability in the degree to which patients are affected. This variability could be due to host, microbial, or environmental factors. In fact, infection in Europe by related members of the B. burgdorferi sensu lato group is more frequently associated with chronic skin abnormalities and central nervous system involvement, while infection by B. burgdorferi sensu stricto in the United States is more commonly associated with arthritis (4, 38). Studies using the murine model of Lyme disease, developed by Barthold and colleagues, indicate host factors also influence disease outcome. Arthritis seen in this model is representative of human disease and is characterized by tendonitis, synovial hyperproliferation, and infiltration of neutrophils and other leukocytes (7). Interestingly, a spectrum of arthritis severity has been observed among inbred strains of mice in response to infection by B. burgdorferi. Infected C3H mice develop severe arthritis, whereas infected BALB/c and C57BL/6 mice develop only mild to moderate arthritis (8). Thus, inbred strains of mice provide opportunities to study host influences on disease severity.The results of several studies using the mouse model suggest the presence of inflammatory and/or anti-inflammatory cytokines can influence disease development and resolution. For example, manipulations of interleukin 12, interleukin 4, and gamma interferon levels by treating infected mice with neutralizing antibodies can influence disease severity and alter its resolution (2, 17, 21). The acquired defenses, particularly antibody production, are clearly involved in disease resolution (9, 30) but do not appear to be required for arthritis and carditis development. Not only does disease develop in scid mice, which lack mature T and B lymphocytes, but the relative differences in severity of arthritis in C3H/He and BALB/c mice is maintained in the presence of the scid mutation (12). Finally, studies with congenic mice expressing distinct major histocompatibility complex haplotypes on resistant or susceptible backgrounds suggest that the major histocompatibility complex itself had little influence on disease severity, but rather, that genes located at distinct chromosomal locations were important determinants of disease (41). These studies suggest that genes independent of acquired defenses play a large role in determining severity of disease in infected mice.In order to identify host genes that influence disease severity, the phenotypes of severe and mild arthritis must be well characterized. We previously compared B. burgdorferi levels in many tissues of C3H/HeJ and BALB/cJ mice, at several times following infection (42). Quantitative PCR demonstrated that the highest levels of spirochetes were found in the hearts and ankle joints at most time points. C3H/HeJ mice harbored 5- to 10-fold more B. burgdorferi in ankles and hearts than did BALB/cJ mice. This suggested that the severity of arthritis in C3H/HeJ mice was directly related to the high levels of spirochetes in tissues and that the relative resistance in BALB/cJ mice was associated with more restricted growth of the spirochetes.In this study we report that there are at least two different mechanisms for resistance to severe arthritis in mice. Resistance in BALB/cAnN mice could be overcome by increasing the infectious dose of B. burgdorferi and was associated with low levels of spirochetes in tissues. In contrast, resistance to severe arthritis in C57BL/6N mice was not overcome by increasing infectious dose and did not require the levels of spirochetes in joints to be low. F1 mice from BALB/cAnN × C3H/HeJN mating developed severe arthritis upon infection, suggesting that resistance in BALB/cAnN mice could be masked by alleles from C3H/HeN mice (42). In contrast, infection of F1 mice from a C57BL/6N × C3H/HeN cross resulted in arthritis of intermediate severity, suggesting more equal contribution by C57BL/6N and C3H/HeN genes.  相似文献   

18.
Borrelia burgdorferi, the spirochetal agent of Lyme disease, is transmitted by Ixodes ticks. When an infected nymphal tick feeds on a host, the bacteria increase in number within the tick, after which they invade the tick’s salivary glands and infect the host. Antibodies directed against outer surface protein A (OspA) of B. burgdorferi kill spirochetes within feeding ticks and block transmission to the host. In the studies presented here, passive antibody transfer experiments were carried out to determine the OspA antibody titer required to block transmission to the rodent host. OspA antibody levels were determined by using a competitive enzyme-linked immunosorbent assay that measured antibody binding to a protective epitope defined by monoclonal antibody C3.78. The C3.78 OspA antibody titer (>213 μg/ml) required to eradicate spirochetes from feeding ticks was considerably higher than the titer (>6 μg/ml) required to block transmission to the host. Although spirochetes were not eradicated from ticks at lower antibody levels, the antibodies reduced the number of spirochetes within the feeding ticks and interfered with the ability of spirochetes to induce ospC and invade the salivary glands of the vector. OspA antibodies may directly interfere with the ability of B. burgdorferi to invade the salivary glands of the vector; alternately, OspA antibodies may lower the density of spirochetes within feeding ticks below a critical threshold required for initiating events linked to transmission.  相似文献   

19.
20.
Sze CW  Zhang K  Kariu T  Pal U  Li C 《Infection and immunity》2012,80(7):2485-2492
Borrelia burgdorferi, the causative agent of Lyme disease, can be recovered from different organs of infected animals and patients, indicating that the spirochete is very invasive. Motility and chemotaxis contribute to the invasiveness of B. burgdorferi and play important roles in the process of the disease. Recent reports have shown that motility is required for establishing infection in mammals. However, the role of chemotaxis in virulence remains elusive. Our previous studies showed that cheA2, a gene encoding a histidine kinase, is essential for the chemotaxis of B. burgdorferi. In this report, the cheA2 gene was inactivated in a low-passage-number virulent strain of B. burgdorferi. In vitro analyses (microscopic observations, computer-based bacterial tracking analysis, swarm plate assays, and capillary tube assays) showed that the cheA2 mutant failed to reverse and constantly ran in one direction; the mutant was nonchemotactic to attractants. Mouse needle infection studies showed that the cheA2 mutant failed to infect either immunocompetent or immunodeficient mice and was quickly eliminated from the initial inoculation sites. Tick-mouse infection studies revealed that although the mutant was able to survive in ticks, it failed to establish a new infection in mice via tick bites. The altered phenotypes were completely restored when the mutant was complemented. Collectively, these data demonstrate that B. burgdorferi needs chemotaxis to establish mammalian infection and to accomplish its natural enzootic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号