首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulatory mode of the P2Y(11) purinoceptor-mediated signalling cascades towards phospholipase C and adenylyl cyclase was studied in HL-60 promyelocytes. Treatment with the potent P2Y(11) receptor activator dATP evoked an elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) and inositol 1,4,5-trisphosphate (IP(3)) production that was sustained for longer than 30 min. However, the dATP-induced responses were significantly inhibited by the activation of protein kinase C after a short exposure to phorbol 12-myristate 13-acetate (PMA). dATP also potently stimulated cyclic AMP production with half maximum effect seen at 23+/-7 microM dATP. In addition, a 5-min pretreatment with PMA enhanced the dATP-stimulated cyclic AMP accumulation. PMA potentiated the cyclic AMP production when adenylyl cyclase was activated directly by forskolin or indirectly by G protein activation after cholera toxin treatment. dATP also enhanced the forskolin-mediated cyclic AMP generation. Treatment of the cells with 10 microM U-73122, which almost completely blocked the dATP-stimulated IP(3) production and [Ca(2+)](i) rise, had no effect on cyclic AMP accumulation, while 10 microM 9-(tetrahydro-2-furyl)adenine (SQ 22536), which inhibited the adenylyl cyclase activation, did not effect the dATP-stimulated phosphoinositide turnover. Taken together, the results indicate that P2Y(11) receptor-mediated activation of phospholipase C and adenylyl cyclase occurs through independent pathways and is differentially regulated by protein kinase C in HL-60 cells.  相似文献   

2.
We recently cloned and expressed a novel P2Y receptor (tp2y receptor) from a turkey cDNA library. Expression of this receptor in 1321N1 human astrocytoma cells confers nucleotide-dependent stimulation of phospholipase C activity; however, as we demonstrate here, it also confers nucleotide-dependent inhibition of adenylyl cyclase. Both the phospholipase C and adenylyl cyclase responses were promoted by receptor agonists over a similar range of concentrations. Moreover, not only did UTP and ATP activate the avian receptor but ITP, GTP, xanthosine 5'-triphosphate, and CTP were also agonists, with EC(50) values ranging between 0.1 and 1 microM. Similar potencies, rank-order, and selectivity of nucleotide agonists were also demonstrated for intracellular Ca(2+) mobilization measured during a 30-s stimulation under constant superfusion conditions. This observation indicates that receptor activation by nucleoside 5'-triphosphates is not produced by interconversion of these nucleotides into ATP or UTP. Pretreatment of cells with pertussis toxin completely abolished the inhibitory effect of nucleotide agonists on adenylyl cyclase, whereas the activation of phospholipase C was only partially inhibited. These results demonstrate that the avian P2Y receptor is a nucleoside triphosphate receptor of broad agonist selectivity that interacts with both pertussis toxin-insensitive and -sensitive G proteins to activate phospholipase C and to inhibit adenylyl cyclase. This is the first cloned P2Y receptor that is clearly Gi/adenylyl cyclase-linked.  相似文献   

3.
P2Y receptors inhibiting adenylyl cyclase have been found in blood platelets, glioma cells, and endothelial cells. In platelets and glioma cells, these receptors were identified as P2Y(12). Here, we have used PC12 cells to search for adenylyl cyclase inhibiting P2Y receptors in a neuronal cellular environment. ADP and ATP (0.1 - 100 microM) left basal cyclic AMP accumulation unaltered, but reduced cyclic AMP synthesis stimulated by activation of endogenous A(2A) or recombinant beta(2) receptors. Forskolin-dependent cyclic AMP production was reduced by ADPbetaS (71 nM)>ATP (164 nM)=ADP (244 nM). The inhibition by ADP was not antagonized by suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid, or adenosine-3'-phosphate-5'-phosphate, but attenuated by reactive blue 2, ATP(alpha)S, and 2-methylthio-AMP. RT - PCR demonstrated the expression of P2Y(2), P2Y(4), P2Y(6), and P2Y(12), but not P2Y(1), receptors in PC12 cells. In Northern blots, only P2Y(2) and P2Y(12) were detectable. Differentiation with NGF did not alter these hybridization signals and left the nucleotide inhibition of adenylyl cyclase unchanged. We conclude that P2Y(12) receptors are expressed in neuronal cells and inhibit adenylyl cyclase activity.  相似文献   

4.
1 The human P2Y11 receptor is coupled to both the phosphoinositide and the cyclic AMP pathways. A pharmacological characterization of the recombinant human P2Y11 receptor has been conducted following stable expression in two different cell lines: the 1321N1 astrocytoma cells for inositol trisphosphate measurements and the CHO-K1 cells for cyclic AMP assays. The rank order of potency of a series of nucleotides was almost identical for the two pathways: ATPgammaS approximately BzATP > dATP > ATP > ADPbetaS > 2MeSATP. 2 ADPbetaS, AMPalphaS and A3P5PS behaved as partial agonists of the human P2Y11 receptor. At high concentrations, these three nucleotides were able to partially inhibit the ATP response. 3 Suramin was a more potent antagonist than reactive blue 2, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid was completely inactive. The P2Y11 receptor proved to be sensitive to suramin in a competitive way with an apparent Ki value of 0.82+/-0. 07 microM. 4 The ATP derivative AR-C67085 (2-propylthio-beta, gamma-dichloromethylene-D-ATP), a potent inhibitor of ADP-induced platelet aggregation, was the most potent agonist of the P2Y11 receptor, among the various nucleotides tested. 5 The pharmacological profile of the recombinant human P2Y11 receptor is closely similar to that of the cyclic AMP-coupled P2 receptor recently described in HL-60 cells, suggesting that it is the same receptor.  相似文献   

5.
《General pharmacology》1996,27(2):263-268
In this study, we quantitate and compare the ability of the 5-hydroxytryptamine 1A (5-HTIA) receptor to modulate the activities of phospholipase C and adenylyl cyclase as a function of receptor concentration. We used a single clonal cell line permanently expressing the human 5-HTIA receptor, and progressively depleted the receptor concentration using an alkylating antagonist (N8-bromoacetyl-N1-3′-(4-indolyloxy)-2′-hydroxypropyl-Z-1,8-diamino-p-menthane, (±) Pindobind). For serotonin-induced phospholipase C stimulation, reductions in receptor number result in dose-response curves that shift downward and rightward, reflecting both a decreasing maximal effect as well as an increasing ED50. In contrast, depletion of more than 95% of the receptors has no effect on the maximal inhibition of forskolin-stimulated adenylyl cyclase activity. Moreover, at all receptor concentrations, the amount of serotonin required to produce half-maximal phospholipase C stimulation is several-fold more than that required to produce half-maximal inhibition of adenylyl cyclase activity. We conclude that the 5-HT1A receptor modulates these two pathways differently, and that the overall response to challenge with serotonin, in terms of both phosphatidyl inositol hydrolysis and cyclic AMP production, is dependent upon receptor number.  相似文献   

6.
P2Y receptor activation in many cell types leads to phospholipase C activation and accumulation of inositol phosphates, while in blood platelets, C6-2B glioma cells, and in B10 microvascular endothelial cells a P2Y receptor subtype, which couples to inhibition of adenylyl cyclase, historically termed P2Y(AC), (P2T(AC) or P(2T) in platelets) has been identified. Recently, this receptor has been cloned and designated P2Y(12) in keeping with current P2 receptor nomenclature. Three selective P(2T) receptor antagonists, with a range of affinities, inhibited ADP-induced aggregation of washed human or rat platelets, in a concentration-dependent manner, with a rank order of antagonist potency (pIC(50), human: rat) of AR-C78511 (8.5 : 9.1)>AR-C69581 (6.2 : 6.0)>AR-C70300 (5.4 : 5.1). However, these compounds had no effect on ADP-induced platelet shape change. All three antagonists had no significant effect on the ADP-induced inositol phosphate formation in 1321N1 astrocytoma cells stably expressing the P2Y(1) receptor, when used at concentrations that inhibit platelet aggregation. These antagonists also blocked ADP-induced inhibition of adenylyl cyclase in rat platelets and C6-2B cells with identical rank orders of potency and overlapping concentration - response curves. RT - PCR and nucleotide sequence analyses revealed that the C6-2B cells express the P2Y(12) mRNA. These data demonstrate that the P2Y(AC) receptor in C6-2B cells is pharmacologically identical to the P2T(AC) receptor in rat platelets.  相似文献   

7.
1. Stimulation of P2Y-purinoceptors on turkey erythrocytes and many other cell types results in activation of phospholipase C. In contrast, we have observed recently that P2Y-purinoceptors on C6 rat glioma cells are not coupled to phospholipase C, but rather, inhibit adenylyl cyclase. 2. In this study we investigated the pharmacological selectivity of the P2-purinoceptor antagonists, suramin, reactive blue 2, and pyridoxal phosphate 6-azophenyl 2',4'-disulphonic acid (PPADS) for phospholipase C- and adenylyl cyclase-coupled P2Y-purinoceptors. 3. In C6 glioma cells, suramin and reactive blue 2 competitively antagonized the inhibitory effect of 2MeSATP on adenylyl cyclase (pKB = 5.4 +/- 0.2 and 7.6 +/- 0.1, respectively), whereas PPADS at concentrations up to 100 microM had no effect. 4. In contrast, in the turkey erythrocyte preparation, PPADS at concentrations up to 30 microM was a competitive antagonist of P2Y-purinoceptor-stimulated phospholipase C activity (pKB = 5.9 +/- 0.1). Suramin and reactive blue 2 produced both a shift to the right of the concentration-effect of 2MeSATP for the activation of phospholipase C and a significant decrease in the maximal inositol phosphate response. 5. Turkey erythrocytes also express a phospholipase C-coupled beta-adrenoceptor. Concentrations of PPADS that competitively inhibited the P2Y-purinoceptor-mediated response had only minimal effects on the activation of phospholipase C by beta-adrenoceptors. In contrast, suramin and reactive blue 2 produced a non-competitive inhibition, characterized by decreases in the maximal response to isoprenaline with no change in the potency of this beta-adrenoceptor agonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A1 adenosine receptors are in general coupled to inhibition of adenylyl cyclase, but have more recently been reported to be capable of also activating phospholipase C. The present study was done in order to investigate whether these different effects can be elicited by a single A1 receptor, or whether A1 receptor subtypes have to be invoked. The cDNA of a rat brain A1 adenosine receptor was stably expressed in CHO-cells, resulting in clones with varying receptor densities; a clone expressing 1.9 pmol receptors/mg membrane protein was used for further characterization. The ligand binding properties of the expressed receptors were typical for the rat A1 adenosine receptor. A1 receptor agonists caused a concentration-dependent inhibition of adenylyl cyclase activity in the membranes, with maximal inhibition by 70%. A1 receptor stimulation also caused concentration-dependent stimulation of inositol phosphate generation in these cells, with maximal effects of 300%. Both adenylyl cyclase inhibition and enhancement of inositol phosphate generation were essentially abolished after pretreatment of the cells with pertussis toxin. These results indicate that a single A1 adenosine receptor can couple to two effector pathways, and that both effectors are activated via pertussis toxin sensitive G proteins.Abbreviations CHA N6-cyclohexyladenosine - CPA N6-cyclopentyladenosine - DPCPX 8-cyclopentyl-1,3-dipropylxanthine - NECA 5-N-ethylcarboxamidoadenosine - R-PIA R-N6-phenylisopropyladenosine - IP1 inositol monophosphates - IP2 inositol bisphosphates - IP3 inositol trisphosphates - PCR polymerase chain reaction Correspondence to: M. J. Lohsc at the above address  相似文献   

9.
10.
Many types of cells exhibit increased adenylyl cyclase (AC) activity after chronic agonist treatment of G(i/o)-coupled receptors. This phenomenon, defined as AC superactivation or sensitization, has mostly been studied for the opioid receptors and is implicated in opiate addiction. Here we show that this phenomenon is also observed on chronic activation of the CB(1) cannabinoid receptor. Moreover, using COS-7 cells cotransfected with CB(1) receptor and individual AC isozymes, we could show selective superactivation of AC types I, III, V, VI, and VIII. The level of superactivation was dependent on the concentration of agonist and time of agonist exposure and was not dependent on the AC stimulator used. No superactivation of AC types II, IV, or VII was observed in COS-7 cells cotransfected with CB(1). The superactivation of AC type V was abolished by pretreatment with pertussis toxin and by cotransfection with the carboxy terminus of beta-adrenergic receptor kinase, which serves as a scavenger of G(betagamma) dimers, implying a role for the G(i/o) proteins and especially G(betagamma) dimers in the cannabinoid-induced superactivation of AC.  相似文献   

11.
The cloning of a human G-protein-coupled receptor (GPCR) that specifically responds to UDP-glucose and related sugar-nucleotides has been reported recently. This receptor has important structural similarities to known members of the P2Y receptor family but also shows a distinctly different pharmacological response profile. Here, the IUPHAR Subcommittee for P2Y receptor nomenclature and classification review the current knowledge of this receptor and present their reasons for including this receptor in the P2Y receptor family as the P2Y(14) receptor.  相似文献   

12.
The nucleotide selectivities of the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor stably expressed in 1321N1 human astrocytoma cells were determined by measuring increases in intracellular [Ca(2+)] under conditions that minimized metabolism, bioconversion, and endogenous nucleotide release. In cells expressing the hP2Y(4) receptor, UTP, GTP, and ITP all increased intracellular [Ca(2+)] with a rank order of potency of UTP (0.55) > GTP (6.59) = ITP (7.38), (EC(50), microM). ATP, CTP, xanthine 5'-triphosphate (XTP), and diadenosine 5',5"'-P(1), P(4)-tetraphosphate (Ap(4)A), all at 100 microM, were inactive at the hP2Y(4) receptor. In cells expressing the rP2Y(4) receptor, all seven nucleotides increased intracellular [Ca(2+)] with similar maximal effects and a rank order of potency of UTP (0.20) > ATP (0. 51) > Ap(4)A (1.24) approximately ITP (1.82) approximately GTP (2. 28) > CTP (7.24) > XTP (22.9). Because ATP is inactive at the hP2Y(4) receptor, we assessed whether ATP displayed antagonist activity. When coapplied, ATP shifted the concentration-response curve to UTP rightward in a concentration-dependent manner, with no change in the maximal response. A Schild plot derived from these data gave a pA(2) value of 6.15 (K(B) = 708 nM) and a slope near unity. Additionally, CTP and Ap(4)A (each at 100 microM) inhibited the response to an EC(50) concentration of UTP by approximately 40 and approximately 50%, respectively, whereas XTP had no effect. The inhibitory effects of ATP, CTP, and Ap(4)A were reversible on washout. Thus, ATP is a potent agonist at the rP2Y(4) receptor but is a competitive antagonist with moderate potency at the hP2Y(4) receptor.  相似文献   

13.
Somatostatin coupling to adenylyl cyclase activity in the mouse retina   总被引:5,自引:0,他引:5  
The peptide somatostatin-14 (SRIF) acts in the mammalian retina through its distinct receptors (sst1–5). Scarce information is available on SRIF function in the retina, including the elucidation of transduction pathways mediating SRIF action. We have investigated SRIF and SRIF receptor modulation of adenylyl cyclase (AC) activity in both wild-type (WT) retinas and sst1 or sst2 knock-out (KO) retinas, which are known to over-express sst2 or sst1 receptors respectively. In WT retinas, application of SRIF compounds does not affect forskolin-stimulated AC activity. In contrast, activation of sst1 or sst2 receptors inhibits AC in the presence of sst2 or sst1 receptor antagonists respectively. Results from sst1 KO retinas demonstrate that either SRIF or the sst2 receptor preferring agonist octreotide, pertussis toxin-dependently inhibit AC activity. In contrast, in sst2 KO retinas, neither SRIF nor CH-275, an sst1 receptor agonist, are found to influence AC activity. As revealed by immunoblotting experiments, in sst1 KO retinas, levels of Go proteins are 60% higher than in WT retinas and this increase in Go protein levels is concomitant with an increase in sst2A receptor expression. We conclude that interactions between sst1 and sst2 receptors may prevent SRIF effects on AC activity. In addition, we suggest that the density of sst2 receptors and/or Go proteins may represent the rate-limiting factor for the sst2 receptor-mediated inhibition of AC.  相似文献   

14.
Besides the regulation of hepatic metabolic pathways in which adrenoceptors are mainly involved, their effect on the second messenger cAMP is thought to be related to the growth and differentiation of neoplastic cells. However, few studies have been done on the status of these structures in the human liver affected by cholangiocarcinoma (CC). Thus, in this study, changes in densities of α1- and β2-adrenoceptors (α1-and β2-ARs) were investigated in membranes of human liver with cholangiocarcinoma, and for comparison, in membranes of non-adjacent non-tumour liver using the potent antagonists [3H]-prazosin and [1I]-iodocyanopindolol (ICYP) respectively. In addition, the activity of membrane-bound phospholipase C (PLC) and adenylate cyclase (AC) was also studied. In CC liver, the density of α1-and β2-ARs was significantly reduced, compared with non-tumour liver tissues (α1-ARs: 23.38±4.69 vs 80.35±10.52, P=0.0002 β2-ARs: 14.27±2.93 vs 33.22±4.32 fmol/mg protein, P=0.03), whereas the ligand affinities (KD) remained unchanged. The β2-selective antagonist ICI 118,551 was about 100 times more potent in inhibiting ICYP binding than the β1-selective antagonist CGP 20712A; thus, more than 98% of the β-ARs were of the β2-subtypes. The AC activity upon stimulants acting on β-AR (isoprenaline), G-protein (GTP, NaF) and AC (forskolin) was decreased in CC liver. Similarly, noradrenaline-stimulated PLC activity was significantly reduced in tumour tissues. In conclusion, in CC liver the α1- and β2-ARs density was down-regulated and the neoplastic invasion blunted AC and PLC activity. These quantitative changes may help to elucidate not fully understood pathogenetic mechanisms of disturbed hepatic metabolic processes, such as hypoglycemia during cancer in human liver.  相似文献   

15.

Background and purpose:

The P2Y11 receptor, a member of the group of metabotropic nucleotide receptors, shows a stereospecific ligand recognition of Pα-substituted ATP derivatives (ATP-α-S isomers). These compounds are suitable candidates for the development of selective P2Y11 receptor agonists that might be used as immune modulators. We have analysed the binding mode of ATP at the P2Y11 receptor by molecular modeling and site-directed mutagenesis. Based on our recent findings, we decided to decipher the molecular determinants of stereoselective recognition at the P2Y11 receptor.

Experimental approach:

Two amino acid residues [Glu186 in the extracellular loop 2 and Arg268 in the transmembrane domain 6 (TM6)], which are part of the nucleotide-binding pocket, were selected and studied by mutational analyses. We expected these residues to be involved in determining the stereospecificity of the P2Y11 receptor.

Key results:

After mutation of Arg268 to alanine or glutamine, the stereospecific recognition of the ATP-α-S isomers at the P2Y11 receptor was lost. In contrast, at the Glu186Ala receptor mutant, the stereoselective differentiation between these isomers was increased. On the Arg268Gln/Glu186Ala double mutant we observed no further effect, except for additivity in the decrease in potency of both isomers, as compared with the single-point mutants.

Conclusions and implications:

Our results show that the stereospecificity of the P2Y11 receptor for Pα-substituted ATP derivatives is largely determined by the basic residue Arg268 in TM6. This will allow the design of receptor-subtype selective ligands.  相似文献   

16.
Many hormones have been shown to activate phospholipase C, which results in the hydrolysis of membrane polyphosphoinositides, such as phosphatidylinositol 4,5-bisphosphate (PIP2). Two second messengers are known to be produced by PIP2 hydrolysis, 1,2-diacylglycerol, an endogenous activator of a family of enzymes called protein kinase C (PKCs), and inositol 1,4,5-trisphosphate, which raises free levels of intracellular Ca2+. Treatment of various cells with 4 beta-phorbol 12-myristate 13-acetate (PMA), a specific exogenous activator of PKCs, causes an enhancement or sensitization of adenylyl cyclase activities. This finding prompted us to examine the effects of direct hormonal activation of PIP2 hydrolysis on the sensitization of adenylyl cyclase. Liao et al. [J. Biol. Chem. 265:11273-11284 (1990)] have shown that P2 purinergic receptor agonists such as ATP and muscarinic receptor agonists such as carbachol stimulate PIP2 hydrolysis in L cells expressing the M5 muscarinic acetylcholine receptor. We investigated the effects of these hormones on adenylyl cyclase and contrasted these effects with the sensitizing effects of PMA. We found that ATP pretreatment of two different types of L cells resulted in a rapid 50-150% sensitization of prostaglandin E1-, epinephrine-, and forskolin-stimulated adenylyl cyclase activity, with an EC50 of 3 microM ATP. This effect was qualitatively similar to that caused by 10 nM PMA. The enhancement of adenylyl cyclase activity was associated with an increase in the Vmax for hormonal stimulation and with a lack of significant effects of ATP on the EC50. The effect was completely eliminated when adenylyl cyclase was assayed in the presence of high free Mg2+ levels (10 mM). Down-regulation of PKCs with long term PMA treatment did not affect the ATP-induced sensitization of adenylyl cyclase, although the PMA-induced sensitization of adenylyl cyclase was eliminated. In contrast to the effects of ATP and PMA, treatment of the cells with carbachol alone had no effect on adenylyl cyclase; however, in combination with nanomolar concentrations of PMA, synergism of the sensitization of adenylyl cyclase was observed. These data indicate that the activation of P2 purinergic receptors by ATP, and possibly activation of M5 muscarinic receptors by carbachol, may be important in the signal transduction pathways leading to the increases in the responsiveness of hormone-stimulated adenylyl cyclase.  相似文献   

17.
In intact NIH 3T3 murine fibroblasts, prostaglandins (PGs) F2 alpha and E2 induce dose-dependent stimulation of inositol monophosphate generation. PGF2 alpha is greater than 50-fold more potent than PGE2 in eliciting this response. In streptolysin O-permeabilized NIH 3T3 cells, PGF2 alpha and PGE2 induced dose-dependent accumulations of inositol bis- and trisphosphates, which were dependent on the presence of the guanine nucleotide guanosine-5'-O-(3-thio)triphosphate (GTP gamma S) (10 microM). Pretreatment of cells for 16 hr with 100 nM PGF2 alpha resulted in a significant reduction of not only subsequent PGF2 alpha- and PGE2-induced but also GTP gamma S-induced stimulation of inositol phosphate formation in permeabilized cells. PGF2 alpha-induced accumulation of inositol phosphates was partially inhibited by pretreatment with pertussis toxin (1 microgram/ml, 4 hr). The inhibition by pertussis toxin was small but was not related to cyclic AMP formation, because forskolin, which activates adenylate cyclase, did not mimic pertussis toxin-induced inhibition. In the same cell line, PGF2 alpha and PGE2 induced a dose-dependent accumulation of cAMP and a dose-dependent potentiation of 0.5 microM forskolin-stimulated cAMP formation. PGF2 alpha and PGE2 were almost equipotent in eliciting both responses. However, PGF2 alpha was less efficacious than PGE2 and, in the presence of forskolin, PGF2 alpha at 10 microM induced an inhibitory effect on cAMP accumulation. Such inhibition may be related to PGF2 alpha-mediated phospholipase C activation and subsequent stimulation of protein kinase C, because the phorbol ester phorbol 12-myristate-13-acetate, which directly activates protein kinase C, also inhibited forskolin- and PGE2-induced cAMP accumulation. Pretreatment with PGF2 alpha for 16 hr did not reduce subsequent stimulation of cAMP accumulation by PGF2 alpha or PGE2. The results indicate that in NIH 3T3 cells two receptors for PGs are present, one that couples to adenylate cyclase, probably through Gs, and does not exhibit selectivity between PGF2 alpha and PGE2 and a second receptor that couples to phospholipase C through a guanine nucleotide-binding protein that is not sensitive to pertussis toxin pretreatment. The latter shows at least 40-fold selectivity towards PGF2 alpha over PGE2. Because long treatment with PGF2 alpha resulted in desensitization of the GTP gamma S-induced response, it is possible that long exposure to PGF2 alpha may down-regulate the guanine nucleotide-binding involved in phospholipase C signal transduction.  相似文献   

18.
Pharmacological characterization of the human P2Y13 receptor   总被引:6,自引:0,他引:6  
The P2Y13 receptor has recently been identified as a new P2Y receptor sharing a high sequence homology with the P2Y12 receptor as well as similar functional properties: coupling to Gi and responsiveness to ADP (Communi et al., 2001). In the present study, the pharmacology of the P2Y13 receptor and its differences with that of the P2Y12 receptor have been further characterized in 1321N1 cells (binding of [33P]2-methylthio-ADP (2MeSADP) and of GTPgamma[35S]), 1321N1 cells coexpressing Galpha16 [AG32 cells: inositol trisphosphate (IP3) measurement, binding of GTPgamma[35S]) and Chinese hamster ovary (CHO)-K1 cells (cAMP assay)]. 2MeSADP was more potent than ADP in displacing [33P]2MeSADP bound to 1321N1 cells and increasing GTPgamma[35S] binding to membranes prepared from the same cells. Similarly, 2MeSADP was more potent than ADP in stimulating IP3 accumulation after 10 min in AG32 cells and increasing cAMP in pertussis toxin-treated CHO-K1 cells stimulated by forskolin. On the other hand, ADP and 2MeSADP were equipotent at stimulating IP3 formation in AG32 cells after 30 s and inhibiting forskolininduced cAMP accumulation in CHO-K1 cells. These differences in potency cannot be explained by differences in degradation rate, which in AG32 cells was similar for the two nucleotides. When contaminating diphosphates were enzymatically removed and assay of IP3 was performed after 30 s, ATP and 2MeSATP seemed to be weak partial agonists of the P2Y13 receptor expressed in AG32 cells. The stimulatory effect of ADP on the P2Y13 receptor in AG32 cells was antagonized by reactive blue 2, suramin, pyridoxal-phosphate-6-azophenyl-2',4'disulfonic acid, diadenosine tetraphosphate, and 2-(propylthio)-5'-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (AR-C67085MX), but not by N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate (MRS-2179) (up to 100 microM). The most potent antagonist was N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-5'-adenylic acid, monoanhydride with dichloromethylenebis (phosphonic acid) (ARC69931MX) (IC50 = 4 nM), which behaved in a noncompetitive way. The active metabolite of clopidogrel was unable to displace bound 2MeSADP at concentrations up to 2 microM.  相似文献   

19.
20.
The adenosine A(2A) receptor and the dopamine D(2) receptor are prototypically coupled to G(s) and G(i)/G(o), respectively. In striatal intermediate spiny neurons, these receptors are colocalized in dendritic spines and act as mutual antagonists. This antagonism has been proposed to occur at the level of the receptors or of receptor-G protein coupling. We tested this model in PC12 cells which endogenously express A(2A) receptors. The human D(2) receptor was introduced into PC12 cells by stable transfection. A(2A)-agonist-mediated inhibition of D(2) agonist binding was absent in PC12 cell membranes but present in HEK293 cells transfected as a control. However, in the resulting PC12 cell lines, the action of the D(2) agonist quinpirole depended on the expression level of the D(2) receptor: at low and high receptor levels, the A(2A)-agonist-induced elevation of cAMP was enhanced and inhibited, respectively. Forskolin-stimulated cAMP formation was invariably inhibited by quinpirole. The effects of quinpirole were abolished by pretreatment with pertussis toxin. A(2A)-receptor-mediated cAMP formation was inhibited by other G(i)/G(o)-coupled receptors that were either endogenously present (P(2y12)-like receptor for ADP) or stably expressed after transfection (A(1) adenosine, metabotropic glutamate receptor-7A). Similarly, voltage activated Ca(2+) channels were inhibited by the endogenous P(2Y) receptor and by the heterologously expressed A(1) receptor but not by the D(2) receptor. These data indicate functional segregation of signaling components. Our observations are thus compatible with the proposed model that D(2) and A(2A) receptors are closely associated, but they highlight the fact that this interaction can also support synergism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号