首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Insecticidal pyrazolines inhibit voltage-sensitive sodium channels of both insect and mammalian neurons in a voltage-dependent manner. Studies on the effects of pyrazoline insecticides on mammalian sodium channels have been limited to experimentation on the tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channel populations of rat dorsal root ganglion (DRG) neurons. In this study, we examined the effects of the insecticidal pyrazolines indoxacarb, the N-decarbomethoxyllated metabolite of indoxacarb (DCJW), and RH 3421 on rat Na(v)1.4 sodium channels expressed in Xenopus laevis oocytes using the two-electrode voltage clamp technique. Both DCJW and RH 3421 were ineffective inhibitors of rat Na(v)1.4 sodium channels at a membrane potential of -120 mV, but depolarization to -60 mV or -30 mV during insecticide exposure resulted in substantial block. Inhibition by pyrazoline insecticides was nearly irreversible with washout, but repolarization of the membrane relieved block. DCJW and RH 3421 also caused hyperpolarizing shifts in the voltage dependence of slow inactivation without affecting the voltage dependence of activation or fast inactivation. These results suggest that DCJW and RH 3421 interact specifically with the slow inactivated state of the sodium channel. Indoxacarb did not cause block at any potential, yet it interfered with the ability of DCJW, but not RH 3421, to inhibit sodium current. Phenytoin, an anticonvulsant, reduced the efficacy of both DCJW and RH 3421. These data imply that the binding site for pyrazoline insecticides overlaps with that for therapeutic sodium channel blockers.  相似文献   

2.
Indoxacarb, a novel insecticide, and its decarbomethoxyllated metabolite, DCJW, are known to block voltage-gated Na(+) channels in insects and mammals, but the mechanism of block is not yet well understood. The present study was undertaken to characterize the action of indoxacarb and DCJW on cockroach Na(+) channels. Na(+) currents were recorded using the whole-cell patch clamp technique from neurons acutely dissociated from thoracic ganglia of the American cockroach Periplaneta americana L. Two types of tetrodotoxin-sensitive Na(+) currents were observed, with different voltage dependencies of channel inactivation. Type-I Na(+) currents were inactivated at more negative potentials than type-II Na(+) currents. As a result, these two types of Na(+) channels responded to indoxacarb compounds differentially. At a holding potential of -100 mV, type-I Na(+) currents were inhibited reversibly by 1 microM indoxacarb and irreversibly by 1 microM DCJW in a voltage-dependent manner, whereas type-II Na(+) currents were not affected by either of the compound. However, type-II Na(+) currents were inhibited by indoxacarb or DCJW at more depolarizing membrane potentials, ranging from -60 to -40 mV. The slow inactivation curves of type-I and type-II Na(+) channels were significantly shifted in the hyperpolarizing direction by indoxacarb and DCJW, suggesting that these compounds have high affinities for the inactivated state of the Na(+) channels. It was concluded that the differential blocking actions of indoxacarb insecticides on type-I and type-II Na(+) currents resulted from their different voltage dependence of Na(+) channel inactivation. The irreversible nature of DCJW block may be partially responsible for its potent action in insects.  相似文献   

3.
Song W  Liu Z  Dong K 《Neurotoxicology》2006,27(2):237-244
Indoxacarb (DPX-JW062) was recently developed as a new oxadiazine insecticide with high insecticidal activity and low mammalian toxicity. Previous studies showed that indoxacarb and its bioactive metabolite, N-decarbomethoxyllated JW062 (DCJW), block insect sodium channels in nerve preparations and isolated neurons. However, the molecular mechanism of indoxacarb/DCJW action on insect sodium channels is not well understood. In this study, we identified two cockroach sodium channel variants, BgNa(v)1-1 and BgNa(v)1-4, which differ in voltage dependence of fast and slow inactivation, and channel sensitivity to DCJW. The voltage dependence of fast inactivation and slow inactivation of BgNa(v)1-4 were shifted in the hyperpolarizing direction compared with those of BgNa(v)1-1 channels. At the holding potential of -90 mV, 20 microM of DCJW reduced the peak current of BgNa(v)1-4 by about 40%, but had no effect on BgNa(v)1-1. However, at the holding potential of -60 mV, DCJW also reduced the peak currents of BgNa(v)1-1 by about 50%. Furthermore, DCJW delayed the recovery from slow inactivation of both variants. Substitution of E1689 in segment 4 of domain four (IVS4) of BgNa(v)1-4 with a K, which is present in BgNa(v)1-1, was sufficient to shift the voltage dependence of fast and slow inactivation of BgNa(v)1-4 channels to the more depolarizing membrane potential close to that of BgNa(v)1-1 channels. The E1689K change also eliminated the DCJW inhibition of BgNa(v)1-4 at the hyperpolarizing holding potentials. These results show that the E1689K change is responsible for the difference in channel gating and sensitivity to DCJW between BgNa(v)1-4 and BgNa(v)1-1. Our results support the notion that DCJW preferably acts on the inactivated state of the sodium channel and demonstrate that K1689E is a major molecular determinant of the voltage-dependent inactivation and state-dependent action of DCJW.  相似文献   

4.
Pyrazoline-type insecticides (PTIs) selectively block sodium channels at membrane potentials that promote slow sodium channel inactivation and are proposed to interact with a site that overlaps the local anesthetic (LA) receptor site. Mutagenesis studies identified two amino acid residues in the S6 segment of homology domain IV (Phe-1579 and Tyr-1586 in the rat Na(v)1.4 sodium channel) as principal elements of the LA receptor. To test the hypothesis that PTIs bind to the LA receptor, we constructed mutated Na(v)1.4/F1579A and Na(v)1.4/Y1586A cDNAs, expressed native and mutated channels in Xenopus oocytes, and examined the effects of these mutations on channel block by three PTIs (indoxacarb, its bioactivation product DCJW, and RH3421) by two-electrode voltage clamp. DCJW and RH3421 had no effect on Na(v)1.4 channels held at -120mV but caused a slowly developing block upon depolarization to -30mV. Estimated IC(50) values following 15min of exposure were 1 and 4muM for DCJW and RH3421, respectively. Indoxacarb failed to block Na(v)1.4 channels under all experimental conditions. Sensitivity to block by DCJW and RH3421 at -30mV was significantly reduced in Na(v)1.4/F1579A channels, a finding that is consistent with the impact of this mutation on drug binding. In contrast to its effect on drug binding, the Y1586A mutation increased the sensitivity of Na(v)1.4 channels held at -30mV to all three compounds, conferring modest sensitivity to indoxacarb and increasing sensitivity to DCJW and RH3421 by 58- and 16-fold, respectively. These results provide direct evidence for the action of PTIs at the LA receptor.  相似文献   

5.
TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) sodium channel currents were analyzed in acutely dissociated dorsal root ganglion (DRG) neurons isolated from 3-12-d-old and adult rats. Currents were recorded using the whole-cell patch-clamp technique. TTX-R current was more likely to be present in younger animals (3-7 d), whereas TTX-S current was more common in older animals (7-10 d), although TTX-R current was recorded from adult rat DRG neurons. The TTX-R and TTX-S currents differed in their steady-state inactivation, with 50% inactivation voltage at -40 +/- 5 mV (n = 10) for TTX-R currents and -70 +/- 4 mV (n = 10) for TTX-S currents. These current types also differed in their activation kinetics, with 50% activation values of -15 +/- 5 mV (n = 5) for TTX-R currents and -26 +/- 6 mV (n = 5) for TTX-S currents. The interactions of TTX-R and TTX-S channels with various pharmacological agents and divalent cations were studied. The Kd values for TTX-S and TTX-R currents were estimated to be 0.3 nM and 100 microM for TTX, 0.5 nM and 10 microM for saxitoxin, and 50 microM and 200 microM for lidocaine, respectively. TTX-S channels did not exhibit a marked use-dependent block by lidocaine, whereas lidocaine significantly decreased TTX-R current in a use-dependent manner at frequencies ranging from 1 to 33.3 Hz. Several external divalent cations exerted different effects on these current types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Kim YS  Shin YK  Lee C  Song J 《Brain research》2000,881(2):190-198
To elucidate the local anesthetic mechanism of diphenhydramine, its effects on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium currents in rat dorsal root ganglion (DRG) neurons were examined by the whole-cell voltage clamp method. Diphenhydramine blocked TTX-S and TTX-R sodium currents with K(d) values of 48 and 86 microM, respectively, at a holding potential of -80 mV. It shifted the conductance-voltage curve for TTX-S sodium currents in the depolarizing direction but had little effect on that for TTX-R sodium currents. Diphenhydramine caused a shift of the steady-state inactivation curve for both types of sodium currents in the hyperpolarizing direction. The time-dependent inactivation became faster and the recovery from the inactivation was slowed by diphenhydramine in both types of sodium currents. Diphenhydramine produced a profound use-dependent block when the cells were repeatedly stimulated with high-frequency depolarizing pulses. The use-dependent block was more pronounced in TTX-R sodium currents. The results show that diphenhydramine blocks sodium channels of sensory neurons similarly to local anesthetics.  相似文献   

7.
Ethanol at concentration of 200 mM induces anesthesia in experimental animals and depresses neurotransmission in isolated spinal cords. To determine whether actions on primary afferent nerve terminals contribute to ethanol's depressant effects on spinal cord, a study was undertaken to test whether ethanol blocks sodium currents (INa) in dorsal root ganglion neurons (DRGn). Whole-cell patch clamp was used to examine INa in DRGn isolated from 1- to 15-day-old rats. At a holding potential of −80 mV ethanol (200 mM) decreased peak tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) INa by 19.0% ± 2.7 (mean ± SEM) and 8.5% ± 2.2, respectively. Maximal available INa was reduced to 82 ± 4% (TTX-R) and 93 ± 1% (TTX-S) of control. Steady-state inactivation curves were shifted in the hyperpolarizing direction by 2.1 ± 0.2 mV (TTX-R) and 1.1 ± 0.1 mV (TTX-S). At prepulse potentials of −30 mV (TTX-R) and −70 mV (TTX-S), these shifts contributed an additional 17 ± 1% (TTX-R) and 7 ± 1% (TTX-S) reduction in available INa. Ethanol thus selectively induced both voltage-independent and voltage-dependent block of TTX-R INa in DRGn. Because DRGn TTX-R sodium channels are associated with small-diameter primary afferent fibers, these results are consistent with a role for ethanol actions on sodium channels in depression of nociceptive-related neurotransmission in spinal cord. J. Neurosci. Res. 54:433–443, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
9.
Wu ZZ  Pan HL 《Brain research》2004,1029(2):251-258
Voltage-activated Na+ channels in the primary sensory neurons are important for generation of action potentials and regulation of neurotransmitter release. The Na+ channels expressed in different types of dorsal root ganglion (DRG) neurons are not fully known. In this study, we determined the possible difference in tetrodotoxin-sensitive (TTX-S) and -resistant (TTX-R) Na+ channel currents between isolectin B4 (IB4)-positive and IB4-negative small DRG neurons. Whole-cell voltage- and current-clamp recordings were performed in acutely isolated DRG neurons labeled with and without IB4 conjugated to Alexa Fluor 594. The peak Na+ current density was significantly higher in IB4-negative than IB4-positive DRG neurons. While all the IB4-negative neurons had a prominent TTX-S Na+ current, the TTX-R Na+ current was present in most IB4-positive cells. Additionally, the evoked action potential had a higher activation threshold and a longer duration in IB4-positive than IB4-negative neurons. TTX had no effect on the evoked action potential in IB4-positive neurons, but it inhibited the action potential generation in about 50% IB4-negative neurons. This study provides complementary new information that there is a distinct difference in the expression level of TTX-S and TTX-R Na+ channels between IB4-negative than IB4-positive small-diameter DRG neurons. This difference in the density of TTX-R Na+ channels is responsible for the distinct membrane properties of these two types of nociceptive neurons.  相似文献   

10.
Sodium channel blocker insecticides (SCBIs), such as indoxacarb and metaflumizone, are a new class of insecticides with a mechanism of action different from those of other insecticides that target sodium channels. SCBIs block sodium channels in a manner similar to local anesthetics (LAs) such as lidocaine. Several residues, particularly F1579 and Y1586, in the sixth transmembrane segment (S6) of domain IV (IV) of rat Nav1.4 sodium channels are required for the action of LAs and SCBIs and may form part of overlapping receptor sites. However, the binding site for SCBIs in insect sodium channels remains undefined. We used site-directed mutagenesis, the Xenopus laevis oocyte expression system, and the two-electrode voltage clamp technique to study the effects on SCBI activity of mutating F1817 and Y1824 (analogous to those residues identified in mammalian sodium channels) to alanine, in the voltage-sensitive sodium channel of the German cockroach, Blattella germanica. The mutant channels showed no effect or a marked increase in channel sensitivity to both DCJW (the active metabolite of indoxacarb) and metaflumizone. Thus, it appeared that although the F1817 residue plays a role in the action of SCBIs and that both residues are involved in LA activity in mammalian sodium channels, neither F1817 nor Y1824 are integral determinants of SCBI binding on insect sodium channels. Our results suggest that the receptor site of SCBIs on insect sodium channels may be significantly different from that on mammalian sodium channels.  相似文献   

11.
The expression and properties of voltage-gated Na(+) currents in cardiac dorsal root ganglion (DRG) neurons were assessed in this study. Cardiac DRG neurons were labelled by injecting the Fast Blue fluorescent tracer into the pericardium. Recordings were performed from 138 cells. Voltage-dependent Na(+) currents were found in 115 neurons. There were 109 neurons in which both tetrodotoxin-sensitive (TTX-S, blocked by 1 microM of TTX) and tetrodotoxin-resistant (TTX-R, insensitive to 1 microM of TTX) Na(+) currents were present. Five cells expressed TTX-R current only and one cell only the TTX-S current. The kinetic properties of Na(+) currents and action potential waveform parameters were measured in neurons with cell membrane capacitance ranging from 15 to 75 pF. The densities of TTX-R (110.0 pA/pF) and TTX-S (126.1 pA/pF) currents were not significantly different. Current threshold was significantly higher for TTX-R (-34 mV) than for TTX-S (-40.4 mV) currents. V(1/2) of activation for TTX-S current (-19.6 mV) was significantly more negative than for TTX-R current (-9.2 mV), but k factors did not differ significantly. V(1/2) and the k constant for inactivation for TTX-S currents were -35.6 and -5.7 mV, respectively. These values were significantly lower than those recorded for TTX-R current for which V(1/2) and k were -62.3 and -7.7 mV, respectively. The action potential threshold was lower, the 10-90% rise time and potential width were shorter before than after the application of TTX. Based on this we drew the conclusion that action potential recorded before adding tetrodotoxin was mainly TTX-S current dependent, while the action potential recorded after the application of toxin was TTX-R current dependent. We also found 23 cells with mean membrane capacitance ranging from 12 to 35 pF (the smallest labelled DRG cells found in this study) that did not express the Na(+) current. The function of these cells is unclear. We conclude that the overwhelming majority of cardiac dorsal root ganglion neurons in which voltage-dependent Na(+) currents were present, exhibited both TTX-S and TTX-R Na(+) currents with remarkably similar expression and kinetic properties.  相似文献   

12.
ATP modulation of sodium currents in rat dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
The modulation of tetrodotoxin-sensitive (TTX-S) and slow tetrodotoxin-resistant (TTX-R) sodium currents in rat dorsal root ganglion neurons by ATP was studied using the whole-cell patch-clamp method. The effects of ATP on two types of sodium currents were either stimulatory or inhibitory depending on the kinetic parameters tested. At a holding potential of -80 mV ATP suppressed TTX-S sodium currents when the depolarizing potential was positive to -30 mV but it increased them when the depolarizing potential was negative to -30 mV. At the same holding potential slow TTX-R sodium currents were always increased by ATP regardless of the depolarizing potential. In both types of sodium currents ATP shifted both the conductance-voltage relationship curve and the steady-state inactivation curve in the hyperpolarizing direction, and accelerated the time-dependent inactivation. ATP decreased the maximum conductance of TTX-S sodium currents but increased that of slow TTX-R sodium currents. The results suggest that ATP would decrease the excitability of neurons with TTX-S sodium channels but would increase that of neurons with slow TTX-R sodium channels. The effects of ATP on sodium currents were preserved in the presence of a G-protein inhibitor, GDP-beta-S, or purinergic antagonists, suramin and Reactive Blue-2, suggesting that purinergic receptors might not be involved in ATP modulation of sodium currents.  相似文献   

13.
The effects of N-ethylmaleimide (NEM), an alkylating reagent to protein sulfhydryl groups, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion (DRG) neurons were studied using the whole cell configuration of patch-clamp technique. When currents were evoked by step depolarizations to 0 mV from a holding potential of −80 mV NEM decreased the amplitude of TTX-S sodium current, but exerted little or no effect on that of TTX-R sodium current. The inhibitory effect of NEM on TTX-S sodium channel was mainly due to the shift of the steady-state inactivation curve in the hyperpolarizing direction. NEM did not affect the voltage-dependence of the activation of TTX-S sodium channel. The steady-state inactivation curve for TTX-R sodium channel was shifted by NEM in the hyperpolarizing direction as that for TTX-S sodium channel. NEM caused a change in the voltage-dependence of the activation of TTX-R sodium channel unlike TTX-S sodium channel. After NEM treatment, the amplitudes of TTX-R sodium currents at test voltages below −10 mV were increased, but those at more positive voltages were not affected. This was explained by the shift in the conductance–voltage curve for TTX-R sodium channels in the hyperpolarizing direction after NEM treatment.  相似文献   

14.
Song JH  Shin YK  Lee CS 《Neuroreport》2000,11(8):1683-1687
The relationship between the level of expression of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium currents and the occurrence of two kinetically different ATP-induced currents in rat dorsal root ganglion neurons was studied. ATP evoked two distinct types of currents, one with fast activation and desensitization (I-fast) and the other with slow and persistent development (I-slow). In all TTX-S cells which expressed solely TTX-S sodium currents ATP evoked I-fast. The other cells expressed a variable proportion of TTX-S and TTX-R sodium currents. Only 15% of these TTX-R+S cells responded to ATP with I-fast. I-slow was evoked in both cell types but the magnitude of response was much greater in TTX-R+S cells. This result suggests that a different array of ion channels is equipped in different types of sensory neurons.  相似文献   

15.
Kim HI  Kim TH  Shin YK  Lee CS  Park M  Song JH 《Brain research》2005,1062(1-2):39-47
Anandamide, the ethanolamide of arachidonic acid, is an endogenous cannabinoid. It is an agonist at CB1 and CB2 cannabinoid receptors as well as the vanilloid receptor, VR1. It is analgesic in inflammatory and neuropathic pain. Both central and peripheral mechanisms are considered to participate in its analgesia. Primary sensory neurons express Na+ currents that are involved in the pathogenesis of pain. We examined the effect of anandamide on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na+ currents in rat dorsal root ganglion neurons. Anandamide inhibited both Na+ currents in a concentration-dependent manner. At a membrane potential of -80 mV, the current inhibition was greater in TTX-S than TTX-R currents (K(d); 5.4 microM vs. 38.4 microM). The activation and inactivation became faster in TTX-R current but not in TTX-S current. Anandamide did not alter the activation voltage in either type of current. It, however, produced a hyperpolarizing shift of the steady-state inactivation voltage in both types of currents. The maximum availability at a large negative potential was not reduced by anandamide. Thus, anandamide seems to affect inactivated Na+ channels rather than resting channels. The inhibition of Na+ currents was not reversed by AM 251 (a CB1 antagonist), AM 630 (a CB2 antagonist) or capsazepine (a VR1 antagonist), suggestive of a direct action of anandamide on Na+ channels. The inhibition of Na+ currents in sensory neurons may contribute to the anandamide analgesia.  相似文献   

16.
Song J  Jang YY  Shin YK  Lee C  Chung S 《Brain research》2000,855(2):267-273
The effects of N-ethylmaleimide (NEM), an alkylating reagent to protein sulfhydryl groups, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion (DRG) neurons were studied using the whole cell configuration of patch-clamp technique. When currents were evoked by step depolarizations to 0 mV from a holding potential of -80 mV NEM decreased the amplitude of TTX-S sodium current, but exerted little or no effect on that of TTX-R sodium current. The inhibitory effect of NEM on TTX-S sodium channel was mainly due to the shift of the steady-state inactivation curve in the hyperpolarizing direction. NEM did not affect the voltage-dependence of the activation of TTX-S sodium channel. The steady-state inactivation curve for TTX-R sodium channel was shifted by NEM in the hyperpolarizing direction as that for TTX-S sodium channel. NEM caused a change in the voltage-dependence of the activation of TTX-R sodium channel unlike TTX-S sodium channel. After NEM treatment, the amplitudes of TTX-R sodium currents at test voltages below -10 mV were increased, but those at more positive voltages were not affected. This was explained by the shift in the conductance-voltage curve for TTX-R sodium channels in the hyperpolarizing direction after NEM treatment.  相似文献   

17.
The effects of the dihydropyrazole insecticide RH-3421 on the retrodotoxin-resistant (TTX-R) voltage-gated sodium channels in rat dorsal root ganglion (DRG) neurons were studied using the whole-cell patch clamp technique. RH-3421 at 10 nM to 1 microM completely blocked action potentials. The sodium currents were irreversibly suppressed by 1 microM RH-3421 in a time- and a dose-dependent manner and the IC50 value of RH-3421 was estimated to be 0.7 microM after 10 min of application. RH-3421 blocked the sodium currents to the same extent over the entire range of test potentials. The sodium conductance-voltage curve was not shifted along the voltage axis by 1 microM RH-3421 application In contrast, both fast and slow steady-state sodium channel inactivation curves were shifted in the hyperpolarizing direction in the presence of 1 microM RH-3421. It was concluded that RH-3421 bound to the resting and inactivated sodium channels to cause block with a higher affinity for the latter state.  相似文献   

18.
The profile of tetrodotoxin sensitive (TTX-S) and resistant (TTX-R) Na(+) channels and their contribution to action potentials and firing patterns were studied in isolated small dorsal root ganglion (DRG) neurons after L5/L6 spinal nerve ligation (SNL). Total TTX-R Na(+) currents and Na(v) 1.8 mRNA were reduced in injured L5 DRG neurons 14 days after SNL. In contrast, TTX-R Na(+)currents and Na(v) 1.8 mRNA were upregulated in uninjured L4 DRG neurons after SNL. Voltage-dependent inactivation of TTX-R Na(+) channels in these neurons was shifted to hyperpolarized potentials by 4 mV. Two types of neurons were identified in injured L5 DRG neurons after SNL. Type I neurons (57%) had significantly lower threshold but exhibited normal resting membrane potential (RMP) and action potential amplitude. Type II neurons (43%) had significantly smaller action potential amplitude but retained similar RMP and threshold to those from sham rats. None of the injured neurons could generate repetitive firing. In the presence of TTX, only 26% of injured neurons could generate action potentials that had smaller amplitude, higher threshold, and higher rheobase compared with sham rats. In contrast, action potentials and firing patterns in uninjured L4 DRG neurons after SNL, in the presence or absence of TTX, were not affected. These results suggest that TTX-R Na(+) channels play important roles in regulating action potentials and firing patterns in small DRG neurons and that downregulation in injured neurons and upregulation in uninjured neurons confer differential roles in shaping electrogenesis, and perhaps pain transmission, in these neurons.  相似文献   

19.
Du Z  Meng Z 《Brain research》2004,1010(1-2):127-133
The effect of sulfur dioxide (SO2) derivatives, a common air pollutant and exists in vivo as an equilibrium between bisulfate and sulfite, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in cultured post-natal dorsal root ganglion (DRG) neurons were studied using the whole cell configuration of patch-clamp technique. SO2 derivatives on two types of sodium currents were either inhibitory or stimulatory depending on the kinetic parameters tested. At a holding potential of -80 mV, SO2 derivatives suppressed TTX-S sodium currents when depolarizing potential was negative to -30 mV and TTX-R sodium currents when negative to -10 mV but they increased them when the depolarizing potential was positive to -30 or -10 mV. SO2 derivatives shifted the conductance-voltage curve for TTX-R sodium currents in the depolarizing direction but had little effect on that for TTX-S sodium currents. The steady-state inactivation curve for TTX-R sodium channel was shifted by SO2 derivatives in the depolarizing direction as that for TTX-S sodium channel. SO2 derivatives changed the reversal potential and increased the maximum conductance of two types of sodium channels. SO2 derivatives postponed the activating time and delayed the inactivation of sodium currents. The results suggest that SO2 derivatives would increase the excitability of neurons and alter the ion selectivity for two types of sodium currents.  相似文献   

20.
Fluphenazine (Prolixin(R)) is a potent phenothiazine-based dopamine receptor antagonist, first introduced into clinical practice in the late 1950s as a novel antipsychotic. The drug emerged as a 'hit' during a routine ion channel screening assay, the present studies describe our electrophysiological examination of fluphenazine at tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) voltage-gated sodium channel variants expressed in three different cell populations. Constitutively expressed TTX-S conductances were studied in ND7/23 cells (a dorsal root ganglion-derived clonal cell line) and rat primary cerebrocortical neurons. Recombinant rat Na(V)1.8 currents were studied using ND7/23 cells as a host line for heterologous expression. Sodium currents were examined using standard whole-cell voltage-clamp electrophysiology. Current-voltage relationships for either ND7/23 cell or Na(V)1.8 currents revealed a prominent fluphenazine block of sodium channel activity. Steady-state inactivation curves were shifted by approximately 10 mV in the hyperpolarizing direction by fluphenazine (3 microM for ND7/23 currents and 10 microM for Na(V)1.8), suggesting that the drug stabilizes the inactivated channel state. Fluphenazine's apparent potency for blocking either ND7/23 or Na(V)1.8 sodium channels was increased by membrane depolarization, corresponding IC(50) values for the ND7/23 cell conductances were 18 microM and 960 nM at holding potentials of -120 mV and -50 mV, respectively. Frequency-dependent channel block was evident for each of the cell/channel variants, again suggesting a preferential binding to inactivated channel state(s). These experiments show fluphenazine to be capable of blocking neuronal sodium channels. Several unusual pharmacokinetic features of this drug suggest that sodium channel block may contribute to the overall clinical profile of this classical neuroleptic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号