首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the humoral immune response in prevention against HIV-1 infection is still incompletely understood. However, neutralizing antibodies to certain epitopes on HIV-1 envelope glycoproteins inhibit HIV-1 infection in vitro and in vivo. Passive administration of these antibodies by themselvesor in combination completely protected hu-PBL-SCID mice or macaques from intravenous, vaginal, as well as maternal-fetal mucosal transmission. All these studies provide direct experimental evidence that neutralizing antibodies are potentenough to prevent HIV infection, and strongly suggest that neutralizing-antibody-based vaccines could provide effective protection against HIV-1, despite the potent action of CTLs. Some neutralizing epitopes have been defined in vitro and in vivo. Unfortunately, none of the neutralizing-antibody-based candidate vaccines has been demonstrated to induce enough protective activity. Weak antigenicity and immunogenicity of neutralizing epitopes on native or recombinant proteins and other factors made it difficult to induce neutralizing-epitope-specific antibody responses in vivo enough to prevent against primary isolates. Recent studies indicated that HIV-1 variations resulted in escape from neutralization or the CTL responses, which may be the principal challenge for HIV-1 prevention. Epitope vaccine as a new strategy activating both arms of the immune system, namely, using the “principal neutralizing epitopes” and the CTL epitopes in combination, should provide new hope for developing an effective vaccine to halt the HIV-1 epidemic.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein gp41 is targeted by broadly-reactive neutralizing antibodies 2F5 and 4E10, making it an attractive target for vaccine development. To better assess immunogenic properties of gp41, we generated five soluble glutathione S-transferase fusion proteins encompassing C-terminal 30, 64, 100, 142, or 172 (full-length) amino acids of gp41 ectodomain from M group consensus envelope sequence. Antibody responses in HIV-1-infected patients were evaluated using these proteins and overlapping peptides. We found (i) antibody responses against different regions of gp41 varied tremendously among individual patients, (ii) patients with stronger antibody responses against membrane-proximal external region exhibit broader and more potent neutralizing activity, and (iii) several patients mounted antibodies against epitopes that are near, or overlap with, those targeted by 2F5 or 4E10. These soluble gp41 fusion proteins could be an important source of antigens for future vaccine development efforts.  相似文献   

3.
A few neutralizing antibodies against human immunodeficiency virus-1 (HIV-1) envelope proteins have been shown to be highly effective at neutralizing different strains in vitro, and exist at very low levels in the sera of HIV-1-infected individuals. Based on our hypothesis that epitope vaccination may be a novel strategy for inducing high levels of antibodies against HIV-1, we prepared multiepitope vaccines using three neutralizing epitopes (GPGRAFY, ELDKWA and RILAVERYLKD) on HIV-1 envelope proteins. The PI [C-G-(ELDKWA-GPGRAFY)2-K] and PII (CG-GPGRAFY-G-ELDKWA-G-RILAVERYLKD) peptides were synthesized and conjugated to a carrier protein, bovine serum albumin (BSA). After vaccination, both the PI-BSA and PII-BSA multiepitope vaccines induced high levels of epitope-specific antibodies to the three neutralizing epitopes (antibody titre: 1 : 12,800-102,400). The recombinant glycoprotein 160 (rgp160) subunit vaccine induced strong antibody responses to rgp160, but only very weak epitope-specific antibody responses to the three epitopes. The epitope-specific antibodies were isolated from rabbit sera by single epitope-peptide-conjugated sepharose columns. A yield of 51 microg of epitope-specific antibodies/ml of serum (mean value) was obtained and identified to recognize these epitopes, while 0.35 microg of protein was isolated from 1 ml of pooled preserum by C-(ELDKWAG)4- or C-(RILAVERYLKD-G)2-K- and C-(GPGRAFY)4-sepharose columns. The levels of these epitope-specific antibodies induced in rabbits were much greater than 1 microg/ml, a level that is considered to confer long-term protection against some viruses. Moreover, these antibodies recognized the neutralizing epitopes on peptides and rgp41. Based on the fact that a very low level of ELDKWA epitope-specific antibodies exist in HIV-1-infected individuals, these results suggesting that synthetic epitope vaccines could induce high levels of multiepitope-specific neutralizing antibodies indicate a new strategy for developing an effective neutralizing antibody-based epitope/peptide vaccine against HIV-1.  相似文献   

4.
Epitope-vaccine as a new strategy against HIV-1 mutation   总被引:1,自引:0,他引:1  
An effective vaccine is urgently needed to stop AIDS-epidemic. Up to now none of the candidate HIV-vaccines has been developed to prevent HIV-1 infection. A few neutralizing antibodies against HIV-1 enveloping proteins proved to be highly effective to neutralize different strains in vitro. Unfortunately, these antibodies are rare in infected humans, and have never yet been raised by a vaccine. The multiple sequential and antigenic variability of HIV-1 led to unprecedented difficulties in development of effective vaccines and anti-viral drugs. More and more experimental evidences indicated that HIV-1 mutants resulted in immune evasion may be a grave challenge for conventional strategy to prepare effective vaccines. We suggested that epitope-vaccine could be a new strategy to induce high levels of neutralizing antibodies with predefined epitope-specificity against HIV-1. Several candidate epitope-vaccines including mono-epitope-vaccine, multi-epitope-vaccine, epitope-vaccines in combination, were prepared and systematically studied in animal experiments. These studies provided experimental evidences that epitope-vaccine could be a new strategy to develop effective vaccines for prevention and immunotherapy against viral infection of HIV-l or other viruses.  相似文献   

5.
Patients infected with HIV-1 develop a potent humoral immune response against the virus, but HIV-1 primary isolates are remarkably resistant to neutralizing antibodies. Considering that the envelope glycoprotein of HIV-1 (gp120/41) is heavily glycosylated, we investigated whether anti-carbohydrate antibodies could inhibit HIV-1 infection in vitro. We studied the neutralizing activity of three monoclonal antibodies (mAbs) raised to carbohydrates of Schistosoma mansoni, against seven primary isolates of HIV-1. Assays were performed infecting peripheral blood mononuclear cells from normal donors with viral isolates previously treated with mAbs. Viral strains used were tropic for the coreceptors CCR5, CXCR4, and dual-tropic ones. We found that the anti-glycan mAbs vigorously inhibited HIV-1 infection, regardless of the preferential coreceptor usage of the isolate, in a dose-response manner. Importantly, five isolates were resistant to neutralization by two HIV-1 antibody-positive human sera endowed with potent anti-HIV-1 inhibitory activity. Our findings suggest that carbohydrates of the HIV-1 viral envelope may be a target of an effective humoral immune response elicited by vaccination.The first two authors contributed equally to this work  相似文献   

6.
Efforts to develop a vaccine to prevent infection of human immunodeficiency virus (HIV) have focused on the induction of neutralizing antibodies. In our previous study, we reported that chimericgag–envvirus-like particles (VLPs) induce neutralizing antibodies which block HIV infection. In addition to the neutralizing antibodies, the cytotoxic T-lymphocyte (CTL) response is considered to be another major immune defense mechanism required for recovery from many different viral infections. In the present study, we have constructed chimeric fusion proteins using HIV-2gagprecursor protein with (1) four neutralizing epitopes from HIV-1 gp160; (2) three tandem copies of consensus V3 domain, which have been derived from 245 different isolates of HIV-1 and carries both the principal neutralizing determinant (PND) and CTL epitopes; and (3) V3 domains from HIV-1IIIB, HIV-1MN, HIV-1RF, and HIV-1SF2. These chimeric fusion proteins were expressed in a large quantity within insect cells, and released as VLPs into the cell culture medium. The purifiedgag–envVLPs from all three constructs appear to be spherical particles similar to immature HIV but slightly larger than thegagVLPs. Immunoprecipitation analysis showed that the chimeric proteins were recognized not only by HIV-1 positive patient sera, but also by monoclonal and polyclonal antisera raised against V3 peptides of HIV-1IIIB, HIV-1MN, HIV-1RF, and the gp120 antiserum against HIV-1SF2. Balb/C mice immunized with these chimeric VLPs successfully induced CTL activity against V3 peptide-stimulated target cells. In addition, a high degree of cross-reactivity was observed among the four different strains of HIV-1 V3 domain, indicating that the tandem multiple consensus V3 peptide sequence carried by HIV-2gagcan be used as a potential HIV vaccine against various HIVs.  相似文献   

7.
Rabbits were immunized with a novel regimen designed to focus the immune response on a single neutralizing epitope of HIV-1 gp120 and thereby preferentially induce neutralizing antibodies (Abs). Animals were primed with gp120 DNA from a clade A Env bearing the GPGR V3 motif and/or a clade C Env bearing the GPGQ V3 motif, and boosted with one or more fusion proteins containing V3 sequences from clades A, B and/or C. Immune sera neutralized three of four Tier 1 primary isolates, including strains heterologous to the immunizing strains, and potent cross-clade-neutralizing activity was demonstrated against V3 chimeric pseudoviruses carrying in a Tier 1 Env, the consensus V3 sequences from clades A1, AG, B, AE, or F. The broadest and most potent neutralizing responses were elicited with the clade C gp120 DNA and a combination of V3-fusion proteins from clades A, B and C. Neutralizing activity was primarily due to V3-specific Abs. The results demonstrate that the immune response can be focused on a neutralizing epitope and show that the anti-V3 Abs induced recognize a diverse set of V3 loops.  相似文献   

8.
The failure of some candidate HIV-1 vaccines may result from inducing very weak neutralization activity against representative primary viral isolates. Based on our hypothesis that epitope-vaccine may be a new strategy to induce high levels of neutralizing antibodies against HIV-1, we designed two candidate multi-epitope-vaccines, EP1 [C-G-(ELDKWA-GPGRAFY)2-K] and EP2 (CG-GPGRAFY-G-ELDKWA-G-RILAVERYLKD), containing three neutralizing epitopes (GPGRAFY, ELDKWA and RILAVERYLKD) on HIV-1 envelope protein, and expected them to induce epitope-specific antibodies of predefined epitope-specificity. The two peptides were conjugated to carrier protein bovine serum albumin (BSA) and used for immunization of rabbits. Proteins were purified from the rabbit sera induced by both candidate multi-epitope-vaccines (EP1-BSA and EP2-BSA) through affinity chromatography with epitope-peptide-conjugated sepharose-column, and identified as antibodies in silver-staining and immunoblotting. These antibodies were demonstrated to recognize three neutralizing epitopes on peptides and the recombinant gp41 in ELISA-assay and immunoblotting. These results indicated that both candidate multi-epitope-vaccines could induce high levels of antibodies of predefined epitope-specificity which recognized a few of neutralizing epitopes on peptides and protein, providing experimental evidence for the new strategy to develop an effective neutralizing-antibody-based multi-epitope-vaccine against HIV-1.  相似文献   

9.
The presence of neutralizing antibodies against protein therapeutics is a concern in the biomedical field. Such antibodies not only reduce the efficacy of protein therapeutics, but also impose potential dangers to the patients receiving them. To date, a small number of in vitro cell-based bioassays for detecting neutralizing antibodies against therapeutic proteins have been developed. Most of the existing assays, however, either involve the use of radioactive materials or have limited sensitivities and/or poor specificities. With advances in mRNA profiling and detection techniques, we have established a novel and non-radioactive bioassay system using branched DNA (bDNA) technology for detecting protein-therapeutic neutralizing antibodies in patient serum. Our assay measures the variations of target gene expression that reflect the biologic effect of the therapeutic agent and the capability of the antibodies, if present, to neutralize the therapeutics. Compared with most existing assays, the new assay is more sensitive and specific, and completely eliminates the use of radioactive materials. Application of the new assay system can be widely expanded if new target genes and responding cell lines for other therapeutics are identified or engineered.  相似文献   

10.
Based on the fact that monoclonal antibody (mAb) 2F5 recognizing ELDKWA-epitope on HIV-1 gp41 separately or in combination with other mAbs showed potent neutralizing activity to a wide range of primary HIV-1 isolates in vivo and in vitro, but this epitope undergoes restricted mutation. ELNKWA is a neutralizing-resistant mutated epitope. We induced ELNKWA-epitope-specific polyclonal and monoclonal antibodies and studied the interaction of the antibodies with ELDKWA-epitope and other two neutralizing-resistant mutated epitopes. The candidate ELNKWA-epitope-vaccine induced a high level of antibodies to the ELNKWA-epitope-peptide. The ELNKWA-epitope-specific polyclonal antibodies bound not only the ELNKWA-, but also ELDKWA-, ELEKWA- and ELDEWA-epitope-peptides in ELISA-assay. Moreover, the antibodies also recognized four C-domain-peptides (P5, P6, P7, P8) which contain these four epitopes, respectively. Interestingly, an ELNKWA-epitope-specific monoclonal antibody (TH-Ab1) induced by the candidate ELNKWA-epitope-vaccine could also recognize the four C-domain-peptides containing ELNKWA-, ELDKWA-, ELEKWA- and ELDEWK-epitopes. These results indicate that the candidate ELNKWA-epitope-vaccine could induce high levels of antibodies, which recognize the neutralizing epitope ELDKWA and three neutralizing-resistant mutated epitopes, suggesting that the candidate ELNKWA-epitope-vaccine may help to overcome the problem of viral escape from neutralization through mutation at D or K position, and may be developed as an effective vaccine with a broad neutralizing activity against HIV-1.  相似文献   

11.
"Centralized" (ancestral and consensus) HIV-1 envelope immunogens induce broadly cross-reactive T cell responses in laboratory animals; however, their potential to elicit cross-reactive neutralizing antibodies has not been fully explored. Here, we report the construction of a panel of consensus subtype B (ConB) envelopes and compare their biologic, antigenic, and immunogenic properties to those of two wild-type Env controls from individuals with early and acute HIV-1 infection. Glycoprotein expressed from full-length (gp160), uncleaved (gp160-UNC), truncated (gp145), and N-linked glycosylation site deleted (gp160-201N/S) versions of the ConB env gene were packaged into virions and, except for the fusion defective gp160-UNC, mediated infection via the CCR5 co-receptor. Pseudovirions containing ConB Envs were sensitive to neutralization by patient plasma and monoclonal antibodies, indicating the preservation of neutralizing epitopes found in contemporary subtype B viruses. When used as DNA vaccines in guinea pigs, ConB and wild-type env immunogens induced appreciable binding, but overall only low level neutralizing antibodies. However, all four ConB immunogens were significantly more potent than one wild-type vaccine at eliciting neutralizing antibodies against a panel of tier 1 and tier 2 viruses, and ConB gp145 and gp160 were significantly more potent than both wild-type vaccines at inducing neutralizing antibodies against tier 1 viruses. Thus, consensus subtype B env immunogens appear to be at least as good as, and in some instances better than, wild-type B env immunogens at inducing a neutralizing antibody response, and are amenable to further improvement by specific gene modifications.  相似文献   

12.
A major goal in HIV-1 vaccine research is to develop an immunogen that can elicit broadly neutralizing antibodies that efficiently neutralize a wide range of the HIV-1 subtypes. Using biopanning procedure we have selected linear peptide VGAFGSFYRLSVLQS mimicking the structure of discontinuous binding sites of broadly neutralizing antibodies 2G12 from phage peptide library. As a protein carrier, we used the earlier designed artificial polyepitope immunogen named TBI (T- and B-cell immunogen), which comprises B-cell and T-helper epitopes from the HIV-1 Env and Gag proteins. On the base of selected peptide mimotope VGAFGSFYRLSVLQS the artificial protein TBI-2g12 was constructed and its immunogenic properties was investigated. It was shown that the TBI-2g12 as well as the original TBI induces antibodies that recognize HIV-1 proteins and TBI protein using ELISA and immunoblotting. However only anti-TBI-2g12 serum recognized the synthetic peptide mimotope VGAFGSFYRLSVLQS, whereas the antibodies against original TBI don't recognize it. The neutralization assay demonstrated that serum antibodies of the mice immunized with TBI-2g12 possess virus neutralizing activity. The addition of selected peptide leads to inhibition neutralizing activity of anti- TBI-2g12 serum. We conclude from these results that immunogen TBI-2g12 containing the selected peptide VGAFGSFYRLSVLQS elicits HIV-1 neutralizing antibodies during immunization. Our data suggest that this immunogen may be useful in designing effective HIV-vaccine candidates.  相似文献   

13.
The failure of some candidate HIV-1 vaccines may result from inducing very weak neutralization activity against representative primary viral isolates. Based on our hypothesis that epitope-vaccine may be a new strategy to induce high levels of neutralizing antibodies against HIV-1, we designed two candidate multi-epitope-vaccines, EP1 [C-G-(ELDKWA-GPGRAFY)2-K] and EP2 (CG-GPGRAFY-G-ELDKWA-G-RILAVERYLKD), containing three neutralizing epitopes (GPGRAFY, ELDKWA and RILAVERYLKD) on HIV-1 envelope protein, and expected them to induce epitope-specific antibodies of predefined epitope-specificity. The two peptides were conjugated to carrier protein bovine serum albumin (BSA) and used for immunization of rabbits. Proteins were purified from the rabbit sera induced by both candidate multi-epitope-vaccines (EP1-BSA and EP2-BSA) through affinity chromatography with epitope-peptide-conjugated sepharose-column, and identified as antibodies in silver-staining and immunoblotting. These antibodies were demonstrated to recognize three neutralizing epitopes on peptides and the recombinant gp41 in ELISA-assay and immunoblotting. These results indicated that both candidate multi-epitope-vaccines could induce high levels of antibodies of predefined epitope-specificity which recognized a few of neutralizing epitopes on peptides and protein, providing experimental evidence for the new strategy to develop an effective neutralizing-antibody-based multi-epitope-vaccine against HIV-1.  相似文献   

14.
Li H  Liu ZQ  Ding J  Chen YH 《Immunology letters》2002,84(2):153-157
Monoclonal antibody 2F5 recognizing ELDKWA-epitope on HIV-1 gp41 has significant neutralization potency against 90% of the investigated viruses of African, Asia, American and European strains, but antibodies responses to ELDKWA-epitope in HIV-1 infected individuals were very low. Based on the epitope-vaccine strategy suggested by us, a recombinant glutathione S-transferase (GST) fusion protein (GST-MELDKWAGELDKWAGELDKWAVDIGPGRAFYGPGRAFYGPGRAFY) as vaccine antigen containing three repeats of neutralizing epitope ELDKWA on gp41 and GPGRAFY on gp120 was designed and expressed in Escherichia coli. After vaccination course, the recombinant multi-epitope vaccine could induce high levels of predefined multi-epitope-specific antibodies in mice. These antibodies in sera could bind to both neutralizing epitopes on gp41 peptide, V3 loop peptide and recombinant soluble gp41 (aa539-684) in ELISA assay (antisera dilution: 1:1,600-25,600), while normal sera did not. Moreover, these antibodies in sera could recognize the CHO-WT cells which expressed HIV-1 envelope glycoprotein on the cell surfaces, indicating that the predefined epitope-specific antibodies could recognize natural envelope protein of HIV-1 though these antibodies were induced by recombinant multi-epitope-vaccine. These experimental results suggested a possible way to develop recombinant multi-epitope vaccine inducing multi-antiviral activities against HIV-1.  相似文献   

15.
Broadly neutralizing antibodies and appropriate immunogens are critical for preexposure prophylaxis and therapeutic HIV vaccines. In this study, we aimed to explore effective antibodies against the genetically diverse HIV-1 strains by investigating the roles of human CD4 D1D2 domain and nonvariable immugens. The human CD4 D1D2 domain and the chimeric protein of mouse D1 domain/human D2 domain were expressed in Sf9 insect cells and purified by gel-filtration chromatography. The human CD4 D1D2 domain potently inhibited the infection of 77.8% HIV-1 pseudoviruses, including the clades AE, B’ and BC, with less than 20 μg/mL of IC50. pcDNA3.1-mhD1D2m and pcDNA3.1-mhD2m plasmids were used for the production of mouse anti-human CD4 polyclonal antibodies. The neutralizing activities of the polyclonal antibodies were determined by using pseudotyped HIV-1 viruses. The antibodies induced by plasmids containing human CD4 D1D2 domain were able to potently inhibit all pseudotyped HIV-1 strains. The antibodies from mhD1D2m-immunized mice also showed strong binding capacity to CD4 expressed on the surface of TZM-bl cells. The potent and broad inhibitory activity of antibodies against the human CD4 D1D2 domain may be used to develop effective passive immunization agent to control the spread of HIV infection.  相似文献   

16.
A key unresolved challenge for developing an effective HIV-1 vaccine is the discovery of strategies to elicit immune responses that are able to cross-protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV-1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine-elicited T-cell responses, which contribute to the control of HIV-1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novel vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross-reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV-1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage-based design strategies to illustrate how such in-depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.  相似文献   

17.
HIV-1 subtype C is the most common HIV-1 group M subtype in Africa and many parts of Asia. However, to date HIV-1 vaccine candidate immunogens have not induced potent and broadly neutralizing antibodies against subtype C primary isolates. We have used a centralized gene strategy to address HIV-1 diversity and generated a group M consensus envelope gene with shortened consensus variable loops (CON-S) for comparative studies with wild-type (WT) Env immunogens. Our results indicate that the consensus HIV-1 group M CON-S Env elicited cross-subtype neutralizing antibodies of similar or greater breadth and titer than the WT Envs tested, indicating the utility of a centralized gene strategy. Our study also shows the feasibility of iterative improvements in Env immunogenicity by rational design of centralized genes.  相似文献   

18.
These studies were undertaken to examine whether the presence of human immunodeficiency virus type 1 (HIV-1)-neutralizing antibodies in sera of infected individuals would alter the rate of disease progression. HIV-1-infected individuals (n = 87) were initially examined for neutralizing activity in vitro against both laboratory and tissue culture-adapted clinical heterologous HIV-1 isolates. The neutralizing activities of sera were determined by a 90% or greater reduction in HIV-1 p24 levels in vitro. In a cross-sectional analysis of all infected individuals, we observed that sera from asymptomatic individuals neutralized a significantly greater number of heterologous HIV-1 isolates than sera from symptomatic patients. Patients who could be followed up longitudinally (n = 24) were then studied to determine the impact of neutralizing antibodies on the rate of disease progression. We observed no significant difference between the numbers of HIV-1 isolates neutralized in vitro by sera from patients who remained clinically stable and by those from patients who progressed rapidly. Our data indicated that the presence or absence of neutralizing antibodies to heterologous HIV-1 isolates was not associated with the rate of disease progression.  相似文献   

19.
Despite immense progress in our ability to prevent and treat HIV-1 infection, HIV-1 remains an incurable disease and a highly efficacious HIV-1 vaccine is not yet available. Additional tools to prevent and treat HIV-1 are therefore necessary. The identification of potent and broadly neutralizing antibodies (bNAbs) against HIV-1 has revolutionized the field and may prove clinically useful. Significant advances have been made in identifying broader and more potent antibodies, characterizing antibodies in preclinical animal models, engineering antibodies to extend half-life and expand breadth and functionality, and evaluating the efficacy of single bNAbs and bNAb combinations in people with and without HIV-1. Here, we review recent progress in developing bNAbs for the prevention and treatment of HIV-1.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein (Env) complex, a homotrimer containing gp120 surface glycoprotein and gp41 transmembrane glycoprotein subunits, mediates the binding and fusion of the virus with susceptible target cells. The Env complex is the target for neutralizing antibodies (NAbs) and is the basis for vaccines intended to induce NAbs. Early generation vaccines based on monomeric gp120 subunits did not confer protection from infection; one alternative approach is therefore to make and evaluate soluble forms of the trimeric Env complex. We have directly compared the immunogenicity in rabbits of two forms of soluble trimeric Env and monomeric gp120 based on the sequence of HIV-1(JR-FL). Both protein-only and DNA-prime, protein-boost immunization formats were evaluated, DNA-priming having little or no influence on the outcome. One form of trimeric Env was made by disrupting the gp120-gp41 cleavage site by mutagenesis (gp140(UNC)), the other contains an intramolecular disulfide bond to stabilize the cleaved gp120 and gp41 moieties (SOSIP.R6 gp140). Among the three immunogens, SOSIP.R6 gp140 most frequently elicited neutralizing antibodies against the homologous, neutralization-resistant strain, HIV-1(JR-FL). All three proteins induced NAbs against more sensitive strains, but the breadth of activity against heterologous primary isolates was limited. When antibodies able to neutralize HIV-1(JR-FL) were detected, antigen depletion studies showed they were not directed at the V3 region but were targeted at other, undefined gp120 and also non-gp120 epitopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号