首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Cell-penetrating peptides (CPPs) mediated tumor-oriented nanocarriers have been widely studied by researchers recently. However, applications of CPPs in vivo were usually hampered by their loss in untargeted tissues and enzymatic degradation. These shortfalls required strategies to camouflage CPPs before their arrival at the targeted site. In this work, we constructed a thermosensitive liposome (TSL) containing Asparagines–Glycine–Arginine (NGR) peptide as the targeting moiety and heat-activable cell-penetrating peptide–doxorubicin conjugate for enhancing specific cancer therapy. Different to the masking strategies of CPPs reported, CPPs existing in conjugation form of CPPs and doxorubicin (CPP-Dox) were hidden in TSL to cloak and protect CPPs. Meanwhile, NGR moiety and local tumor hyperthermia were utilized to achieve specific targeting of CPPs to the tumor. The nanocarrier (CPP-Dox/NGR-TSL) prepared in this work possessed suitable physiochemical properties such as small particle size of about 90 nm, high drug encapsulation efficiency of approximately 95%, good stability in the medium containing 10% fetal bovine serum (FBS) and so on. In vitro experiments on Human fibrosarcoma cells (HT-1080) and human breast adenocarcinoma cells (MCF-7) verified the specific targeting ability and enhanced intracellular drug delivery of the liposomes to HT-1080 cells. Furthermore, comparing with NGR-targeted TSL containing Dox (Dox/NGR-TSL), the results of intravenous administration showed CPP-Dox/NGR-TSL significantly inhibited tumor growth in nude mice xenografted HT-1080 tumors and excellent body safety. In conclusion, the nanocarrier constructed in this study would be a safe and efficiently drug delivery system for specific cancer treatment.  相似文献   

2.
Lu PL  Chen YC  Ou TW  Chen HH  Tsai HC  Wen CJ  Lo CL  Wey SP  Lin KJ  Yen TC  Hsiue GH 《Biomaterials》2011,32(8):2213-2221
This article reports a flexible hollow nanoparticles, self-assembling from poly(N-vinylimidazole-co-N-vinylpyrrolidone)-g-poly(d,l-lactide) graft copolymers and methoxyl/functionalized-PEG-PLA diblock copolymers, as an anticancer drug doxorubicin (Dox) carrier for cancer targeting, imaging, and cancer therapy. This multifunctional hollow nanoparticle exhibited a specific on-off switch drug release behavior, owning to the pH-sensitive structure of imidazole, to release Dox in acidic surroundings (intracellular endosomes) and to capsulate Dox in neutral surroundings (blood circulation or extracellular matrix). Imaging by SPECT/CT shows that nanoparticle conjugated with folic acids ensures a high intratumoral accumulation due to the folate-binding protein (FBP)-binding effect. In vivo tumor growth inhibition shows that nanoparticles exhibited excellent antitumor activity and a high rate of apoptosis in cancer cells. After 80-day treatment course of nanoparticles, it did not appreciably cause heart, liver and kidney damage by inactive Dox or polymeric materials. The results indicate that the flexible carriers with an on-off switched drug release may be allowed to accurately deliver to targeted tumors for cancer therapy.  相似文献   

3.
Based on the hydrophobic interaction with biomembranes, PFVYLI (PFV), a hydrophobic penetration peptide (HPP), was initially introduced to modify doxorubicin-loaded stealth-sustained liposomes (PFV-SSLs-DOX) against different breast cancer cell phenotypes irrespective of their receptor expression or antigen presence. The physicochemical characteristics of PFV-SSLs were determined with approximately 100 nm size, satisfactory distribution and high encapsulation. In addition, drug release experiments demonstrated that modification with PFV has a negligible influence on the release profile of liposomes. Surface plasmon resonance (SPR) analysis revealed that PFV-modified liposomes could increase the binding proportion of PFV-SSLs with a model cell membrane. It was demonstrated that modification with PFV highly facilitated the intracellular delivery of DOX-loaded liposomes and enhanced cytotoxicity via a hydrophobic interaction. An endocytosis inhibition assay revealed a combination of cellular internalization mechanisms for PFV-SSLs involving lipid raft and clathrin-mediated endocytosis in a temperature-dependent manner. The PFV-modified liposomes displayed more lasting accumulation in the tumor and better tumor growth inhibition with relatively low systemic and cardiac toxicity. In conclusion, PFV-SSLs might be a promising delivery system for the delivery of different therapeutic or imaging agents to heterogeneous tumors. More significantly, this study provides a new perspective on developing HPP-modified drug delivery system for antitumor therapy.  相似文献   

4.
For development of tumor-specific chemotherapy, we designed liposomes with temperature-triggered drug release and magnetic resonance imaging (MRI) functions. We prepared multi-functional liposomes by incorporating thermosensitive poly(2-ethoxy(ethoxyethyl)vinyl ether) chains with a lower critical solution temperatures around 40 °C and polyamidoamine G3 dendron-based lipids having Gd(3+) chelate residues into pegylated liposomes. These stable doxorubicin (DOX)-loaded liposomes retained DOX in their interior below physiological temperature but released DOX immediately at temperatures greater than 40 °C. They exhibited excellent ability to shorten the longitudinal proton relaxation time. When administered intravenously into colon 26 tumor-bearing mice, accumulated liposomes in tumors increased with time, reaching a constant level 8 h after administration by following T(1)-weighted MRI signal intensity in tumors. Liposome size affected the liposome accumulation efficiency in tumors: liposomes of about 100 nm diameter were accumulated more efficiently than those with about 50 nm diameter. Tumor size also affected accumulation: more efficient accumulation occurred in larger tumors. Tumor growth was strongly suppressed when liposomes loaded with DOX were administered intravenously into tumor-bearing mice and the tumor was heated mildly at 44 °C for 10 min at 8 h after administration. Multi-functional liposomes having temperature-triggered drug release and MRI functions might engender personalized chemotherapy, providing efficient patient-optimized chemotherapy.  相似文献   

5.
Although PEGylated liposome-based drug delivery systems hold great promising applications for cancer therapy due to their prolonged blood circulation time, PEGylation significantly reduces their cellular uptake, which markedly impairs the in vivo tumor retention and antitumor efficiency of drug-loaded liposomes. Most importantly, it has been proved that repeated injections of PEGylated liposomes with cell cycle specific drug such as topotecan (TPT) in the same animal at certain time intervals will induce “accelerated blood clearance” (ABC) phenomenon, which decreases the tumor accumulation of drug-loaded liposomes and presents a tremendous challenge to the clinical use of liposome-based drug delivery systems. Herein, we developed a zwitterionic poly(carboxybetaine) (PCB) modified liposome-based drug delivery system. The presence of PCB could avoid protein adsorption and enhance the stability of liposomes as that for PEG. Quite different from the PEGylated liposomes, the pH-sensitive PCBylated liposomes were internalized into cells via endocytosis with excellent cellular uptake and drug release ability. Furthermore, the PCBylated liposomes would avoid ABC phenomenon, which promoted the tumor accumulation of drug-loaded liposomes in vivo. With higher tumor accumulation and cellular uptake, the PCBylated drug-loaded liposomes significantly inhibited tumor growth and provided a promising approach for cancer therapy.  相似文献   

6.
Li J  Wang B  Liu P 《Medical hypotheses》2008,71(2):249-251
Recently, the concept of drug delivery requires that the release of encapsulated drug be produced only at the diseased site with controllable rates. Given that thermosensitive hydrogels have been widely investigated for controlled delivery based on their phase transition, we speculate that nanoparticles with the novel polymers play a key role in tumor therapy respond to thermal activity. Therefore, we here hypothesize that enhanced delivery of therapeutics might be achieved by conjugation to thermosensitive polymers, in concert with targeted hyperthermia by precisely specifying the phase transition temperature of the thermosensitive polymer. By local hyperthermia at tumor site, a targeted drug delivery system could be obtained, exploiting both the temperature-sensitive and the site-specific behaviors. The proposition may provide a new strategy into the development of a novel drug delivery system for tumor therapy.  相似文献   

7.
Choi J  Kim HY  Ju EJ  Jung J  Park J  Chung HK  Lee JS  Lee JS  Park HJ  Song SY  Jeong SY  Choi EK 《Biomaterials》2012,33(16):4195-4203
Drug targeting to tumors with limited toxicity and enhanced efficacy of drug is one of the important goals for cancer treatment pharmaceutics. Monocytes/macrophages are able to migrate to tumor sites across the blood barriers by acting as Trojan horses carrying drug cargoes. Taking this advantage, we have intended to develop an efficient administration system using a biologically active carrier of mouse peritoneal macrophage bearing liposomal doxorubicin (macrophage-LP-Dox). We expect that this system could improve the cancer therapeutic efficacy through deeper penetration into tumor even hypoxic region behind tumor blood vessel. We first confirmed that macrophages containing iron oxides could migrate and infiltrate into tumors effectively by MR imaging. Next, we showed that doxorubicin (Dox) encapsulated with liposomes (LP-Dox) was successfully loaded into macrophages, in which the biological activity of macrophage and cytotoxicity of Dox against tumor cells were well preserved. Delivery of Dox into tumor tissue by systemic administration of macrophage-LP-Dox was verified in both subcutaneous and metastasis xenograft tumor models. Importantly, the effective inhibition of in vivo tumor growth was proved with this system. Our results provide the feasibility of macrophages-LP-drug as an active biocarrier for the enhancement of therapeutic effects in cancer treatment and open new perspectives for the active delivery of drugs.  相似文献   

8.
Tagami T  Foltz WD  Ernsting MJ  Lee CM  Tannock IF  May JP  Li SD 《Biomaterials》2011,32(27):6570-6578
Non-invasive in vivo imaging of drug distribution enables real-time monitoring and prediction of therapeutic responses to treatment. We have developed a thermosensitive liposomal formulation (HaT: Hyperthermia-activated-cytoToxic) consisting of DPPC and Brij78, a formulation that enhanced drug delivery compared to the lyso-lipid temperature sensitive liposomes (LTSL). Here we report the development of a multifunctional HaT liposome co-encapsulating Gd-DTPA (an MRI probe) and doxorubicin (DOX), which simultaneously releases and reports on drug delivery in a locally heated tumor. The temperature-dependent release profiles of DOX from HaT were closely related to the change in the MR T(1) relaxation time, in which DOX was 100% released at 40-42 °C in 3 min, accompanied by a 60% reduction in T(1). By T(1) relaxometry analysis, no Gd-DTPA leakage was detected in 30 min at 30-37 °C. In the in vivo study, DOX uptake in the tumor was quantitatively correlated with T(1) response (R(2) = 0.98) and the patterns of the T(1) image and the intratumoral DOX uptake were matched, in which both signals were predominantly detected in the highly perfused tumor periphery. Finally, the extent of T(1) relaxation enhancement in the heated tumor successfully predicted the antitumor efficacy in a standard pharmacological response model (R(2) = 0.98).  相似文献   

9.
Iyer AK  Su Y  Feng J  Lan X  Zhu X  Liu Y  Gao D  Seo Y  Vanbrocklin HF  Courtney Broaddus V  Liu B  He J 《Biomaterials》2011,32(10):2605-2613
Immunoliposomes (ILs) anchored with internalizing human antibodies capable of targeting all subtypes of mesothelioma can be useful for targeted imaging and therapy of this malignant disease. The objectives of this study were to evaluate both the in vitro and in vivo tumor targeted internalization of novel internalizing human single chain antibody (scFv) anchored ILs on both epithelioid (M28) and sarcomatoid (VAMT-1) subtypes of human mesothelioma. ILs were prepared by post-insertion of mesothelioma-targeting human scFv (M1) onto preformed liposomes and radiolabeled with (111)In ((111)In-IL-M1), along with control non-targeted liposomes ((111)In-CL). Incubation of (111)In-IL-M1 with M28, VAMT-1, and a control non-tumorigenic cell line (BPH-1) at 37 °C for 24 h revealed efficient binding and rapid internalization of ILs into both subtypes of tumor cells but not into the BPH-1 cells; internalization accounted for approximately 81-94% of total cell accumulation in mesothelioma cells compared to 37-55% in control cells. In tumor-bearing mice intravenous (i.v.) injection of (111)In-IL-M1 led to remarkable tumor accumulation: 4% and 4.7% injected dose per gram (% ID/g) for M28 and VAMT-1 tumors, respectively, 48 h after injection. Furthermore, tumor uptake of (111)In-IL-M1 in live xenograft animal models was verified by single photon emission computed tomography (SPECT/CT). In contrast, i.v. injection of (111)In-CL in tumor-bearing mice revealed very low uptake in both subtypes of mesothelioma, 48 h after injection. In conclusion, M1 scFv-anchored ILs showed selective tumor targeting and rapid internalization into both epithelioid and sarcomatoid subtypes of human mesothelioma, demonstrating its potential as a promising vector for enhanced tumor drug targeting.  相似文献   

10.
The purpose of this study was to evaluate the anti-chlamydial activities in vitro of liposome-encapsulated doxycycline (Dox) and tetracycline (Tet) in comparison with free Dox and Tet. Dox and Tet encapsulated in cationic (CAL), anionic (ANL) and neutral (NTL) liposomes by sonication, were quantified by high-performance liquid chromatography. Anti-chlamydial activities were determined by addition of serial dilutions of antibiotics (MIC 0.12-0.007 mg/L; MBC 4-0.25 mg/L) to HeLa 229 cell monolayers inoculated with Chlamydia trachomatis L2/434/Bu (10(3) ifu/well). After incubation for 72 h at 37 degrees C, chlamydial inclusions were stained by the May-Grünwald Giemsa method to establish MICs. MBCs were determined in chlamydial agent-free medium after second passages. Dox-encapsulation efficiencies were 28.6 SEM 6.4% in cationic (CAL-Dox), 49.1 SEM 6.7% in anionic (ANL-Dox) and 21.0 SEM 0.8% in neutral (NTL-Dox) liposomes. Tet-encapsulation efficiencies were 3.5 SEM 0.3% in anionic (ANL-Tet) and 2.2 SEM 0.6% in neutral (NTL-Tet) liposomes; no Tet was detected in cationic (CAL-Tet) liposomes. MIC values were 0.06 mg/L for Dox, 0.12 mg/L for Tet, 0.03 mg/L for CAL-Dox, NTL-Dox and NTL-Tet, and 0.01 mg/L for ANL-Dox and ANL-Tet. MBCs were 4 mg/L for Tet, 0.5 mg/L for CAL-Dox and NTL-Dox, and 1 mg/L for Dox, ANL-Dox, ANL-Tet, NTL-Tet and NTL-Tet. For MICs, the relative increase in anti-chlamydial activity observed with liposomal formulations compared to the corresponding free antibiotic ranged from 2- to 6-fold with Dox and from 4- to 10-fold with Tet. For MBCs, the relative increases in anti-chlamydial activity were 2- and 4-fold with liposome-encapsulated Dox and Tet, respectively. Dox was better encapsulated than Tet in all liposomes. Liposome-encapsulated drugs showed greater anti-chlamydial activities than their free forms; thus, these drug formulations have potential in the treatment of chlamydial infections.  相似文献   

11.
The aim of this study was to prepare camel serum albumin (CSA) nanoparticles using a self-assembly strategy to co-immobilize curcumin (CCM) and doxorubicin (Dox) which was in favor of combined chemotherapy and biomedical applications of bactrian (Camelus bactrianus) CSA. The constructed CSA nanoparticles (CSA-NPs) with the size around 200 nm displayed a high degree of polydispersity and further encapsulation of CCM and Dox caused no apparent morphological changes to the nanocomposite (CCM/Dox CSA-NPs). The synergistic cytotoxic effect of CCM and Dox on cancer cell A549 was observed with the calculated combination index less than 1.0. Moreover, the release kinetic profile of encapsulated drugs showed a concentration dependence of glutathione (GSH) originating from the GSH used in nanoparticle formation to break the intramolecular disulfide bonds. In vitro cytotoxicity evaluations also revealed that CCM/Dox CSA-NPs showed higher cytotoxicity than that of single drug loaded CSA-NPs, which was also validated by high content screen assay. Taken together, the CCM/Dox CSA-NPs with redox-responsive attributes provided an integrated protein-based combinational drug-delivery matrix to exert synergistic effects.  相似文献   

12.
Here, we report hyaluronyl reduced graphene oxide (rGO) nanosheets as a tumor-targeting delivery system for anticancer agents. Hyaluronyl-modified rGO nanosheets were prepared by synthesizing cholesteryl hyaluronic acid (CHA) and using it to coat rGO nanosheets, yielding CHA-rGO. Compared with rGO, CHA-rGO nanosheets showed increased colloidal stability under physiological conditions and improved in vivo safety, with a survival rate of 100% after intravenous administration of 40 mg/kg in mice. The doxorubicin (Dox) loading capacity of CHA-rGO was 4-fold greater than that of rGO. Uptake of Dox by CD44-overexpressing KB cells was higher for CHA-rGO than for rGO, and was decreased in the presence of hyaluronic acid through competition for CD44 receptor binding. After intravenous administration in tumor-bearing mice, CHA-rGO/Dox showed higher tumor accumulation than rGO/Dox. The in vivo antitumor efficacy of Dox delivered by CHA-rGO was significantly increased compared with free Dox or rGO/Dox. In CHA-rGO/Dox-treated mice, tumor weights were reduced to 14.1% ± 0.1% of those in untreated mice. Our findings indicate that CHA-rGO nanosheets possess greater stability, safety, drug-loading capacity, and CD44-mediated delivery of Dox than rGO nanosheets. These beneficial properties of CHA-rGO improved the distribution of Dox to tumors and facilitated the cellular uptake of Dox by CD44-overexpressing tumor cells, resulting in enhanced anticancer effects.  相似文献   

13.
Antibody-mediated targeting therapy has been successful in treating patients with cancers by improving the specificity and clinical efficacy. In this study, we developed a human epidermal growth factor receptor-2 (HER2) antibody-conjugated drug delivery system, using near-infrared (NIR) light-sensitive liposomes containing doxorubicin (DOX) and hollow gold nanospheres (HAuNS). We demonstrated the specific binding and selective toxicity of the system to HER2-positive tumor cells in co-cultures of HER2-positive and -negative cells. Furthermore, the HER2-antibody-mediated delivery of targeted liposomes was confirmed in a double-tumor model in nude mice simultaneously bearing HER2-positive and -negative tumors. This induced a >2-fold increased accumulation in the tumors with positive expression of HER2 than that with non-targeted liposomes (no HER2-antibody conjugation). The combination of targeted liposomes with NIR laser irradiation had significant antitumor activity in vivo with the tumor inhibition efficiency up to 92.7%, attributed to the increased accumulation in tumors and the double efficacy of photothermal-chemotherapy. Moreover, targeted liposomes did not cause systemic toxicity during the experiment period, attributable to the reduced dose of DOX, the decreased accumulation of liposomes in normal tissues, and the low irradiation power. The targeted liposomes provide a multifunctional nanotechnology platform for antibody-mediated delivery, light-trigged drug release, and combined photothermal-chemotherapy, which may have potential in the clinical treatment of cancer.  相似文献   

14.
A novel pH-sensitive polymeric prodrug of camptothecin (CPT) by polymerizing γ-camptothecin-glutamate N-carboxyanhydride (Glu (CPT)-NCA) on boronate ester-linked poly (ethyleneglycol) (PEG) directly via the amine-initiated ring open polymerization (ROP) has been developed. The resulting amphiphilic prodrug (mPEG-BC-PGluCPT) could self-assemble into nanoparticles and encapsulate doxorubicin (Dox) simultaneously in aqueous solution for dual-drug delivery. The formation of polymeric prodrug micelles (mPEG-BC@PGluCPT) was confirmed by the measurements of critical aggregation concentration (CAC), particle size, and morphology observations. The mPEG-BC@PGluCPT micelles were colloidally stable in solutions for two weeks. Polymeric prodrug micelles mPEG-BC@PGluCPT and Dox-loaded micelles mPEG-BC@PGluCPT?Dox showed sustained drug release profiles over 48 h. As expected, drug release was accelerated by the decreasement of pH value from 7.4 to 6.0, which demonstrated pH-dependent manner of drug release. Additionally, it was found that cellular uptake of mPEG-BC@PGluCPT?Dox micelles on HepG2 cells was higher than that on HL-7702 cells, especially in culture medium at pH 6.0. The enhanced cellular uptake of mPEG-BC@PGluCPT?Dox micelles under acidic condition on HepG2 cells resulted in the higher cytotoxicity of mPEG-BC@PGluCPT?Dox micelles at acidic pH than that at pH 7.4.  相似文献   

15.
Kang YM  Kim GH  Kim JI  Kim da Y  Lee BN  Yoon SM  Kim JH  Kim MS 《Biomaterials》2011,32(20):4556-4564
The effectiveness of systemically administered anticancer treatments is limited by difficulties in achieving therapeutic doses within tumors, a problem that is complicated by dose-limiting side effects to normal tissue. This work examined injectable in situ-forming gels as a localized drug-delivery system. An MPEG-PCL (MP) solution containing doxorubicin (Dox) existed in an emulsion-sol state at room temperature and rapidly gelled in vitro and in vivo at body temperature. The release of Dox from Dox-loaded MP gels was sustained in vitro over 20 days after an initial burst, indicating that the MP gel acted as a drug depot. Dox-loaded MP gels exhibited remarkable in vitro anti-proliferative activities against B16F10 cancer cells. In vivo experiments employing B16F10 cancer cell xenograft-bearing mice showed that a single intratumoral injection of Dox-loaded MP gel inhibited the growth of tumors as effectively as repeated injections of free Dox, and more effectively than a single dose of free Dox, or saline or gel alone. Consistent with the observed suppression of tumor growth, intratumorally injected free Dox or Dox released from Dox-loaded MP gels caused apoptosis of tumor cells. The tumor biodistribution of free Dox after 1 day was ~90%, which dropped to ~15% after 4 days. The biodistribution of Dox following a single injection of Dox-loaded MP gel was also ~90% on day 1, but remained at ~13%, even after 15 days. Only a small amount of Dox was found in other organ tissues following intratumoral injection, implying fewer off-target side effects.  相似文献   

16.
Mitochondrion-orientated transportation of smart liposomes has been developed as a promising strategy to deliver anticancer drugs directly to tumor sites, and these have a tremendous potential for killing cancer cells, especially those with multidrug resistance (MDR). Herein we report a novel dual-functional liposome system possessing both extracellular pH response and mitochondrial targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of drug-resistant cancer cells. Briefly, peptide D[KLAKLAK]2 (KLA) was modified with 2, 3-dimethylmaleic anhydride (DMA) and combined with 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a DSPE-KLA-DMA (DKD) lipid. This dual-functional DKD was then mixed with other commercially available lipids to fabricate liposomes. In vitro anticancer efficacy of this liposome system was evaluated in human lung cancer A549 cells and drug-resistant lung cancer A549/Taxol cells. At tumor extracellular pH (∼6.8), liposomes could reverse their surface charge (negative to positive), facilitating liposome internalization. After cellular uptake, KLA peptide directed delivery-enabled selective accumulation of these liposomes into mitochondria and favored release of their cargo paclitaxel (PTX) into desired sites. Specifically, enhanced apoptosis of MDR cancer cells through mitochondrial signaling pathways was evidenced by release of cytochrome c and increased activity of caspase-9 and -3. These dual-functional liposomes had the greatest efficacy for treating A549 cells and A549/Taxol cells in vitro, and in treating drug-resistant lung cancer A549/Taxol cells xenografted onto nude mice (tumor growth inhibition 86.7%). In conclusion, dual-functional liposomes provide a novel and versatile approach for overcoming MDR in cancer treatment.  相似文献   

17.
《Acta biomaterialia》2014,10(1):300-307
The efficacy of the anticancer drug doxorubicin (Dox) is limited by an insufficient cellular uptake and drug resistance, which is partially due to ion trapping in acidic environments such as the extracellular environment of solid tumors and the interior of endolysosome vesicles. Herein, we describe the preparation and in vitro evaluation of a new type of nanohybrid for anticancer drug delivery which is capable of carrying a high load of the cationic Dox through the cell membrane. In addition, the nanohybrids use the acidic environment of the endolysosomes to release the drug, simultaneously helping to disrupt the endolysosomes and diminishing endolysosome Dox trapping. Furthermore, as the nanohybrid carriers are capable of sustained drug delivery, those that remain in the cytoplasm and still contain Dox are expected to exert a prolonged anticancer activity. Briefly, Dox is loaded onto biocompatible anionic Laponite® (LP) nanodisks with a high aspect ratio (25 nm in diameter and 0.92 nm in thickness) through strong electrostatic interactions to get Dox-loaded LP disks. Alginate (AG), a biocompatible natural polymer, is then coated onto the Dox-loaded LP disks (LP/Dox/AG nanohybrids) to prevent the burst release of the drug. The results demonstrate that the nanohybrids have a high encapsulation efficiency (80.8 ± 10.6%), are sensitive to pH and display a sustained drug release behavior. Cell culture experiments indicate that the LP/Dox/AG nanohybrids can be effectively internalized by CAL-72 cells (an osteosarcoma cell line), and exhibit a remarkable higher cytotoxicity to cancer cells than the free Dox. The merits of Laponite®/alginate nanohybrids, such as biocompatibility, high loading capacity and stimulus responsive release of cationic chemotherapeutic drugs, render them as excellent platforms for drug delivery.  相似文献   

18.
Jain S  Kumar D  Swarnakar NK  Thanki K 《Biomaterials》2012,33(28):6758-6768
Paclitaxel (PTX) loaded layersome formulations were prepared using layer-by-layer assembly of the polyelectrolytes over liposomes. Stearyl amine was utilized to provide positive charge to the liposomes, which were subsequently coated with anionic polymer polyacrylic acid (PAA) followed by coating of cationic polymer polyallylamine hydrochloride (PAH). Optimization of various process variables were carried out and optimized formulation was found to have particle size of 226?±?17.61?nm, PDI of 0.343?±?0.070, zeta potential of?+39.9?±?3.79?mV and encapsulation efficiency of 71.91?±?3.16%. The developed formulation was further subjected to lyophilization using a universal stepwise freeze drying cycle. The lyophilized formulation was found to be stable in simulated gastrointestinal fluids and at accelerated stability conditions. In?vitro drug release studies revealed that layersome formulation was able to sustain the drug release for 24?h; release pattern being Higuchi kinetics. Furthermore, cell culture experiments showed higher uptake of layersomes from lung adenocarcinoma (A549) cell lines as compared to free drug. This was subsequently corroborated by MTT assay, which revealed IC50 value of 29.37?μg/ml for developed layersome formulation in contrast to 35.42?μg/ml for free drug. The in?vivo pharmacokinetics studies revealed about 4.07 fold increase in the overall oral bioavailability of PTX as compared to that of free drug. In?vivo antitumor efficacy in DMBA induced breast tumor model showed significant reduction in the tumor growth as compared to the control and comparable to that of i.v. Taxol(?). In addition, the toxicity studies were carried out to confirm the safety profile of the developed formulation and it was found to be significantly higher as compared to Taxol(?). Therefore, the developed formulation strategy can be fruitfully exploited to improve the oral deliverability of difficult-to deliver drugs.  相似文献   

19.
Liposomes are used for transdermal delivery of drugs and vaccines. Our objective was to develop temperature-responsive (TR) liposomes to achieve temperature-dependent, controlled release of an encapsulated drug, and use fractional laser irradiation to enhance transdermal permeability of these liposomes. TR-liposomes prepared using a thermosensitive polymer derived from poly-N-isopropylacrylamide, N,N-dimethylacrylamide, egg phosphatidylcholine, and dioleoylphosphatidylethanolamine, delivered fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) as a model drug. Effect of temperature on liposome size and drug release rate was estimated at two temperatures. Transdermal permeation through hairless mouse skin, with and without CO2 fractional laser irradiation, and penetration into Yucatan micro-pig skin were investigated using Franz cell and fluorescence microscopy. Dynamic light scattering showed that mean liposome diameter nearly doubled from 190 to 325 nm between 37 and 50 °C. The rate and amount of OVA-FITC released from TR-liposomes were higher at 45 °C that those at 37 °C. Transdermal permeation of OVA-FITC across non-irradiated skin from both TR- and unmodified liposomes was minimal at 37 °C, but increased at 45 °C. Laser irradiation significantly increased transdermal permeation of both liposome groups at both temperatures. Fluorescence microscopy of frozen biopsy specimens showed deeper penetration of FITC from unmodified liposomes compared to that from polymer-modified liposomes. Rhodamine accumulation was not observed with polymer-modified liposomes at either temperature. Temperature-dependent controlled release of an encapsulated drug was achieved using the TR-liposomes. However, TR-liposomes showed lower skin permeability despite higher hydrophobicity. Fractional laser irradiation significantly increased the transdermal permeation. Additional studies are required to control liposome size and optimize transdermal permeation properties.  相似文献   

20.
The combination of chemotherapeutic drug camptothecin (CPT) and siPlk1 could prohibit cancer development with combined effects. To ensure the two drugs could be simultaneously delivered to tumor region with high loading content, and the modulator siPlk1 could be released in advance to down-regulate the Plk1 expression to improve the sensitivity of CPT to cancer cells, dual sensitive and temporally controlled CPT prodrug based cationic liposomes with siPlk1 codelivery system was constructed. The pH-sensitive zwitterionic polymer poly(carboxybetaine) (PCB) was conjugated with CPT through pH and esterase-sensitive ester bond to enhance the stability and loading content of CPT. CPT-based cationic liposomes consisted of CPT-PCB prodrug and cationic lipid DDAB were then constructed for siRNA codelivery for combination therapy. The dual sensitive CPT-PCB/siPlk1 lipoplexes simultaneously delivered the two drugs to tumor cells and enabled a temporally controlled release of two drugs, that the siRNA was quickly released after 4 h incubation due to the protonation of PCB in endosomes/lysosomes, and CPT was released in a sustained manner in response to pH and esterase and highly accumulated in nucleus after 12 h incubation. The CPT-PCB/siPlk1 lipoplexes induced significant cell apoptosis and cytotoxicity in vitro with a synergistic effect. Furthermore, the dual sensitive CPT-PCB lipoplexes enhanced the tumor accumulation of the two payloads and exhibited a synergistic tumor suppression effect in tumor-bearing mice in vivo, which proved to be a promising delivery system for codelivery of CPT and siPlk1 for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号