首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
INTRODUCTION: Cancer stem cells (CSCs) are a subpopulation of tumor cells with indefinite proliferative potential that drive the growth of tumors. CSCs seem to provide a suitable explanation for several intriguing aspects of cancer pathophysiology. AREAS COVERED: An explosion of therapeutic options for cancer treatment that selectively target CSCs has been recorded in the recent years. These include the targeting of cell-surface proteins, various activated signalling pathways, different molecules of the stem cell niche and various drug resistance mechanisms. Importantly, approaching cancer research by investigating the pathogenesis of these intriguing cancer cells is increasing the knowledge of the pathophysiology of the disease, emphasizing certain molecular mechanisms that have been partially neglected. EXPERT OPINION: The characterization of the molecular phenotype of these cancer stem-like cells, associated with an accurate definition of their typical derangement in cell differentiation, can represent a fundamental advance in terms of diagnosis and therapy of cancer. Preliminary results seem to be promising but further studies are required to define the therapeutic index of this new anticancer treatment. Moreover, understanding the pathogenetic mechanisms of CSCs can expand the therapeutic applications of normal adult stem cells by reducing the risk of uncontrolled tumorigenic stem cell differentiation.  相似文献   

2.
Cancer stem cells (CSCs) form a highly tumorigenic core in most human tumors. Although there is no consensus regarding CSC phenotype from different tumor types, CSCs from different cancers share a primitive undifferentiated nature, including a capacity to expand and differentiate, albeit aberrantly, into the major cell types observed in the corresponding tumor. This review focuses on the development of therapeutics targeting CSCs, for which new assays that replace those reporting the inhibition of cell division and rapid tumor shrinkage will be required to account for the quiescent nature and properties of CSCs. The inhibition of signaling pathways related to the stem cell nature of the CSCs may appear an attractive target for novel therapeutics, but these targets could result in significant unwanted off-target effects against essential healthy tissue stem cells. Instead, the ideal therapies targeting CSCs will be directed against functions that contribute to the oncogenic nature of CSCs relative to healthy stem cells, an altogether more challenging task.  相似文献   

3.
Introduction: Cancer stem cells (CSCs) are a subpopulation of tumor cells with indefinite proliferative potential that drive the growth of tumors. CSCs seem to provide a suitable explanation for several intriguing aspects of cancer pathophysiology.

Areas covered: An explosion of therapeutic options for cancer treatment that selectively target CSCs has been recorded in the recent years. These include the targeting of cell-surface proteins, various activated signalling pathways, different molecules of the stem cell niche and various drug resistance mechanisms. Importantly, approaching cancer research by investigating the pathogenesis of these intriguing cancer cells is increasing the knowledge of the pathophysiology of the disease, emphasizing certain molecular mechanisms that have been partially neglected.

Expert opinion: The characterization of the molecular phenotype of these cancer stem-like cells, associated with an accurate definition of their typical derangement in cell differentiation, can represent a fundamental advance in terms of diagnosis and therapy of cancer. Preliminary results seem to be promising but further studies are required to define the therapeutic index of this new anticancer treatment. Moreover, understanding the pathogenetic mechanisms of CSCs can expand the therapeutic applications of normal adult stem cells by reducing the risk of uncontrolled tumorigenic stem cell differentiation.  相似文献   

4.
Introduction: Conventional chemotherapies seemed to have reached a therapeutic plateau in the treatment of solid tumors and many metastatic diseases are still incurable. Events of chemo-resistance and relapses appear to be sustained by a subset of putative cancer stem cells (CSCs). New anticancer strategies need to face this new challenge exploring their efficacy against CSCs. Immunotherapy has raised enthusiasms in cancer therapy and its potential against CSCs is an intriguing field of research.

Areas covered: In this work we reviewed the immunotherapy approaches directed against CSCs in solid tumors. We schematically divided adaptive immunotherapy strategies, mainly based on dendritic cell-vaccination, and strategies exploiting MHC-unrestricted effectors like natural killer cells, γδ T lymphocytes and cytokine-induced killer cells. Findings, strength and limitations of these models are discussed and compared highlighting their potential clinical relevance.

Expert opinion: The important biologic role and clinical relevance of CSCs introduced a ‘noble target’ for immunotherapy and cancer treatments in general. Initial evidences suggest that CSCs may be susceptible to various types of immunotherapy attacks, overcoming their chemo-resistance. Investigation of important safety issues, based on shared features with ‘normal’ stem cells, along with intriguing synergisms with modulatory agents are open challenges for the next future and effective clinical translation.  相似文献   

5.
《临床与病理杂志》2021,(4):885-891
妇科恶性肿瘤严重威胁女性健康,尽管目前治疗策略相对有效,但复发及耐药仍是影响整体生存率的重要因素。研究表明肿瘤的复发及耐药与具有自我更新、无限增殖、多向分化潜能及高致瘤性的肿瘤干细胞(cancer stem cells,CSCs)亚群密切相关。Musashi-1是一种最新研究报道的CSCs标志物,多数研究认为其通过Notch、Wnt等信号通路发挥作用,在多种肿瘤组织中异常表达,在妇科恶性肿瘤中高表达,且与肿瘤的分期、分化、血管浸润及化学药物治疗耐药等密切相关。深入研究其在妇科恶性肿瘤中的作用机制,可为妇科恶性肿瘤的临床治疗提供新思路。现就Musashi-1在妇科恶性肿瘤中的表达情况及作用机制进行综述。  相似文献   

6.
Recent evidence suggests that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are resistant to current anticancer therapies. Hence, novel cancer therapies will need to be tested for both tumor regression and CSC targeting. Herein we show that oncolytic reovirus that induces regression of human breast cancer primary tumor samples xenografted in immunocompromised mice also effectively targets and kills CSCs in these tumors. CSCs were identified based on CD24CD44+ cell surface expression and overexpression of aldehyde dehydrogenase. Upon reovirus treatment, the CSC population was reduced at the same rate as non-CSCs within the tumor. Immunofluorescence of breast tumor tissue samples from the reovirus- and mock-treated mice confirmed that both CSCs and non-CSCs were infectible by reovirus, and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) assay showed that both populations died by apoptosis. Ras, which has been shown to mediate reovirus oncolysis, was found to be present at similar levels in all cell types, and this is consistent with their comparable sensitivity to reovirus. These experiments indicate that oncolytic reovirus has the potential to induce tumor regression in breast cancer patients. More important, the CSC population was equally reduced and was as susceptible to reovirus treatment as the non-CSC population.  相似文献   

7.
Many tumors, including breast cancer, are maintained by a subpopulation of cells that display stem cell properties, mediate metastasis, and contribute to treatment resistance. These cancer stem cells (CSCs) are regulated by complex interactions with the components of the tumor microenvironment - including mesenchymal stem cells, adipocytes, tumor associated fibroblasts, endothelial cells, and immune cells - through networks of cytokines and growth factors. Since these components have a direct influence on CSC properties, they represent attractive targets for therapeutic development.  相似文献   

8.
In the last years, many targeted agents have been developed for metastatic breast cancer (MBC) treatment and are being tested in clinical trials. In spite of this, apart from epidermal growth factor receptor 2 (HER2) positive subset, no significant increase in the median overall survival (OS) has been reported. Similarly to conventional chemo- and radiotherapy, the cancer stem cell theory has been evoked to explain the frustrating results often obtained with this emerging category of drugs. This review examines the results in MBC of the approved targeted therapies or those currently under evaluation in experimental studies or in clinical trials, in the light of their relationships with breast CSCs and of the efforts to circumvent the development of resistance. In the next, there is the principal need to investigate if the effects on CSCs may be used to overcome cancer resistance and it will be opportune to consider whether molecular targeted therapies should be used alone or combined with conventional therapy, or with a different target drug specific for CSCs.  相似文献   

9.
Cancer stem cells (CSCs) are a subpopulation of tumor cells that selectively possess tumor initiation and self-renewal capacity and the ability to give rise to bulk populations of nontumorigenic cancer cell progeny through differentiation. As we discuss here, they have been prospectively identified in several human malignancies, and their relative abundance in clinical cancer specimens has been correlated with malignant disease progression in human patients. Furthermore, recent findings suggest that clinical cancer progression driven by CSCs may contribute to the failure of existing therapies to consistently eradicate malignant tumors. Therefore, CSC-directed therapeutic approaches might represent translationally relevant strategies to improve clinical cancer therapy, in particular for those malignancies that are currently refractory to conventional anticancer agents directed predominantly at tumor bulk populations.  相似文献   

10.
Cancer stem cells (CSCs) are generally dormant or slowly cycling tumor cells that have the ability to reconstitute tumors. They are thought to be involved in tumor resistance to chemo/radiation therapy and tumor relapse and progression. However, neither their existence nor their identity within many cancers has been well defined. Here, we have demonstrated that CD13 is a marker for semiquiescent CSCs in human liver cancer cell lines and clinical samples and that targeting these cells might provide a way to treat this disease. CD13+ cells predominated in the G0 phase of the cell cycle and typically formed cellular clusters in cancer foci. Following treatment, these cells survived and were enriched along the fibrous capsule where liver cancers usually relapse. Mechanistically, CD13 reduced ROS-induced DNA damage after genotoxic chemo/radiation stress and protected cells from apoptosis. In mouse xenograft models, combination of a CD13 inhibitor and the genotoxic chemotherapeutic fluorouracil (5-FU) drastically reduced tumor volume compared with either agent alone. 5-FU inhibited CD90+ proliferating CSCs, some of which produce CD13+ semiquiescent CSCs, while CD13 inhibition suppressed the self-renewing and tumor-initiating ability of dormant CSCs. Therefore, combining a CD13 inhibitor with a ROS-inducing chemo/radiation therapy may improve the treatment of liver cancer.  相似文献   

11.
Current treatments for prostate cancer are still not satisfactory, often resulting in tumor regrowth and metastasis. One of the main reasons for the ineffective anti-prostate cancer treatments is the failure to deplete cancer stem-like cells (CSCs) — a subset of cancer cells with enhanced tumorigenic capacity. Thus, combination of agents against both CSCs and bulk tumor cells may offer better therapeutic benefits. Several molecules with anti-cancer stem/progenitor cell activities have been under preclinical evaluations. However, their low solubility and nonspecific toxicity limit their clinical translation. Herein, we designed a combination macromolecular therapy containing two drug conjugates: HPMA copolymer–cyclopamine conjugate (P–CYP) preferentially toxic to cancer stem/progenitor cells, and HPMA copolymer–docetaxel conjugate (P–DTX) effective in debulking the tumor mass. Both conjugates were synthesized using RAFT (reversible addition–fragmentation chain transfer) polymerization resulting in narrow molecular weight distribution. The killing effects of the two conjugates against bulk tumor cells and CSCs were evaluated in vitro and in vivo. In PC-3 or RC-92a/hTERT prostate cancer cells, P–CYP preferentially kills and impairs the function of CD133 + prostate cancer stem/progenitor cells; P–DTX was able to kill bulk tumor cells instead of CSCs. In a PC-3 xenograft mice model, combination of P–DTX and P–CYP showed the most effective and persistent tumor growth inhibitory effect. In addition, residual tumors contained less CD133 + cancer cells following combination or P–CYP treatments, indicating selective killing of cancer cells with stem/progenitor cell properties.  相似文献   

12.
Cancer stem cells (CSCs) comprise a tumor subpopulation responsible for tumor maintenance, resistance to chemotherapy, recurrence and metastasis. The identification of this cell group is very important, but there is still no consensus on its characterization. Several CSC markers have been described, like CD133, CD24, CD44 and ALDH1, but more research to identify new markers to facilitate the identification of CSC in a heterogeneous tumoral mass is required. Thus, this article describes the CD26 expression as a CSC marker and the role that it plays in different types of cancer. CD26 expression correlates with some characteristics of CSCs, like the formation of spheres in vitro, formation of new tumors, and resistance to chemotherapy. CD26 is therefore suggested as an auxiliary marker for CSC in different types of cancer, and as a potential therapeutic target.  相似文献   

13.
Is CD133 a marker of metastatic colon cancer stem cells?   总被引:2,自引:0,他引:2       下载免费PDF全文
The concept of the so-called cancer stem cell (CSC) holds that only a minority of cells within a tumor have the ability to generate a new tumor. Over the last decade, a large body of literature has implicated the protein CD133 as a marker of organ-specific adult stem cells and in some cancers as a bona fide CSC marker. In this issue of the JCI, Shmelkov et al. challenge the view that CD133 is a marker of CSCs in colon cancer (see the related article beginning on page 2111). CD133 was thought previously to have a very restricted distribution within tissues; the authors have used genetic knock-in models to demonstrate that CD133 in fact is expressed on a wide range of differentiated epithelial cells in adult mouse tissues and on spontaneous primary colon tumors in mice. In primary human colon tumors, all of the epithelial cells also expressed CD133, whereas metastatic colon cancers isolated from liver had distinct CD133+ and CD133- epithelial populations. Intriguingly, the authors demonstrate that the CD133+ and CD133- populations were equally capable of tumor initiation in xenografts. In light of these new findings, the popular notion that CD133 is a marker of colon CSCs may need to be revised.  相似文献   

14.
The discovery of stem cells and their potential abilities in self-renewal and differentiation has opened a new horizon in medicine. Scientists have found a small population of stem cells in some types of cancers with the same functions as normal stem cells. There are two models for tumor progression: clonal (stochastic) and cancer stem cell (CSCs) models. According to the first model, all transformed cells in the tumor have carcinogenic potential and are able to proliferate and produce the same cells. The latter model, which has received more attention recently, considers the role of CSCs in drug resistance and tumor metastasis. Following the model, researchers have found that targeting CSCs may be a promising way in cancer therapy. This review describes CSC characteristics in general, while also focusing on CSC properties in the context of pancreatic cancer.  相似文献   

15.
背景:上皮起源的肿瘤干细胞可能经历上皮到间充质的转变导致间充质特征的癌干细胞的产生,癌干细胞与失巢凋亡抵抗和肿瘤转移性疾病的起始相关.目的:综述癌干细胞的生物学特点及其与上皮间充质的转变、失巢凋亡的关系.方法:由第一作者采用电子检索的方式在PubMed数据及万方数据库中检索1990-01/2010-12有关肿瘤干细胞的研究,关键词为"上皮间充质转变,癌干细胞".结果与结论:上皮细胞到间充质状态转变的诱导作用已经牵涉到肿瘤细胞的迁移和广泛转移的增强,并且可能促成凋亡和失巢凋亡抵抗.癌干细胞与间充质细胞有关联,并且在肿瘤的开始,生长、转移和治疗抵抗方面起一个关键的作用.有效针对靶向癌干细胞的策略对于监测癌症治疗的进展和评估新的治疗因子是很关键的,间充质状态转变在肿瘤发生和转移方面产生和维持癌干细胞,提供治疗干扰这种新途径起到了调控作用,并且治疗干扰具有超越传统抗癌疗法的潜力.  相似文献   

16.
Cancers are composed of heterogeneous cell populations, including highly proliferative immature precursors and differentiated cells, which may belong to different lineages. Recent advances in stem cell research have demonstrated the existence of tumour-initiating, cancer stem cells (CSCs) in non-solid and solid tumours. These cells are defined as CSCs because they show functional properties that resemble those of their normal counterpart to a significant extent. This concept applies to CSCs from brain tumours and, particularly, to glioblastoma stem-like cells, which self-renew under clonal conditions and differentiate into neuron- and glia-like cells, and into aberrant cells, with mixed neuronal/astroglia phenotypes. Notably, across serial transplantation into immunodeficient mice, glioblastoma stem-like cells are able to form secondary tumours which are a phenocopy of the human disease. A significant effort is underway to identify both CSC-specific markers and the molecular mechanism that underpin the tumorigenic potential of these cells, for this will have a critical impact on the understanding of the origin of malignant brain tumour and the discovery of new and more specific therapeutic approaches. Lately, the authors have shown that some of the bone morphogenetic proteins can reduce the tumorigenic ability of CSCs in GBMs. This suggests that mechanisms regulating the physiology of normal brain stem cells may be still in place in their cancerous siblings and that this may lead to the development of cures that selectively target the population CSCs found in the patients' tumour mass.  相似文献   

17.
Recent evidence suggests that breast cancer and other solid tumors possess a rare population of cells capable of extensive self-renewal that contribute to metastasis and treatment resistance. We report here the development of a strategy to target these breast cancer stem cells (CSCs) through blockade of the IL-8 receptor CXCR1. CXCR1 blockade using either a CXCR1-specific blocking antibody or repertaxin, a small-molecule CXCR1 inhibitor, selectively depleted the CSC population in 2 human breast cancer cell lines in vitro. Furthermore, this was followed by the induction of massive apoptosis in the bulk tumor population via FASL/FAS signaling. The effects of CXCR1 blockade on CSC viability and on FASL production were mediated by the FAK/AKT/FOXO3A pathway. In addition, repertaxin was able to specifically target the CSC population in human breast cancer xenografts, retarding tumor growth and reducing metastasis. Our data therefore suggest that CXCR1 blockade may provide a novel means of targeting and eliminating breast CSCs.  相似文献   

18.
Cancers are composed of heterogeneous cell populations, including highly proliferative immature precursors and differentiated cells, which may belong to different lineages. Recent advances in stem cell research have demonstrated the existence of tumour-initiating, cancer stem cells (CSCs) in non-solid and solid tumours. These cells are defined as CSCs because they show functional properties that resemble those of their normal counterpart to a significant extent. This concept applies to CSCs from brain tumours and, particularly, to glioblastoma stem-like cells, which self-renew under clonal conditions and differentiate into neuron- and glia-like cells, and into aberrant cells, with mixed neuronal/astroglia phenotypes. Notably, across serial transplantation into immunodeficient mice, glioblastoma stem-like cells are able to form secondary tumours which are a phenocopy of the human disease. A significant effort is underway to identify both CSC-specific markers and the molecular mechanism that underpin the tumorigenic potential of these cells, for this will have a critical impact on the understanding of the origin of malignant brain tumour and the discovery of new and more specific therapeutic approaches. Lately, the authors have shown that some of the bone morphogenetic proteins can reduce the tumorigenic ability of CSCs in GBMs. This suggests that mechanisms regulating the physiology of normal brain stem cells may be still in place in their cancerous siblings and that this may lead to the development of cures that selectively target the population CSCs found in the patients' tumour mass.  相似文献   

19.
目的建立合适的骨髓间质干细胞突变的肿瘤细胞系F6(肿瘤干细胞)分离及体外长期培养方法并探讨其生物学特性。方法采用抗CD133-PE抗体经流式细胞仪分选F6肿瘤干细胞(F6 CSCs),研究不同培养体系对F6 CSCs体外生长的影响,探讨最适体外培养条件。结果一次分选获得F6 CSCs纯度达到80%。分选的F6 CSCs对Balb/c小鼠有体内致瘤能力,在含2%胎牛血清的L-DMEM营养液中可以长期稳定的培养,其CD133表面标志的表达维持在68.87%。结论低浓度胎牛血清的培养液能维持F6 CSCs的生长并保留其相应的生物学特性,这为肿瘤干细胞体外培养及研究提供了新的思路和方法。  相似文献   

20.
Cancer stem cells (CSCs) are a small subpopulation of cancer cells that have increased resistance to conventional therapies and are capable of establishing metastasis. However, only a few biomarkers of CSCs have been identified. Here, we report that ganglioside GD2 (a glycosphingolipid) identifies a small fraction of cells in human breast cancer cell lines and patient samples that are capable of forming mammospheres and initiating tumors with as few as 10 GD2+ cells. In addition, the majority of GD2+ cells are also CD44hiCD24lo, the previously established CSC-associated cell surface phenotype. Gene expression analysis revealed that GD3 synthase (GD3S) is highly expressed in GD2+ as well as in CD44hiCD24lo cells and that interference with GD3S expression, either by shRNA or using a pharmacological inhibitor, reduced the CSC population and CSC-associated properties. GD3S knockdown completely abrogated tumor formation in vivo. Also, induction of epithelial-mesenchymal transition (EMT) in transformed human mammary epithelial cells (HMLER cells) dramatically increased GD2 as well as GD3S expression in these cells, suggesting a role of EMT in the origin of GD2+ breast CSCs. In summary, we identified GD2 as a new CSC-specific cell surface marker and GD3S as a potential therapeutic target for CSCs, with the possibility of improving survival and cure rates in patients with breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号