首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thenar motor units (MUs) were studied by the multichannel surface electromyography (EMG) technique. The median nerve was stimulated at the wrist by repetitive submaximal stimulation. Three hundred consecutive evoked responses were recorded from the thenar muscles of 5 healthy volunteers with a 32 channel matrix-type multielectrode. Seven channel F-wave waveforms in a selected electrode array were classified using a template-matching method. The F-wave parameters, amplitudes, latencies and muscle fiber conduction velocities (MFCVs), were calculated to evaluate the properties of single MU F-wave. Most of the F-waves (93.3%) were composed of a single motor unit action potential (MUAP). The numbers of MU classified from single MU F-waves in 5 subjects were 11, 8, 13, 13 and 13, respectively. Many of them (84.5%) were originated from the abductor pollicis brevis (APB), and there were a few MUs originated from the flexor pollicis brevis (FPB). Significant correlations were found between F-wave amplitudes and latencies in 3 subjects.  相似文献   

2.
This paper relates to the use of knowledge-based signal processing techniques in the decomposition of EMG signals. The aim of the research is to automatically decompose EMG signals recorded at force levels up to 20 per cent maximum voluntary contraction (MVC) into their constitutent motor unit action potentials (MUAPS), and to display the MUAP shapes and firing times for the clinician. This requires the classification of nonoverlapping MUAPs and superimposed waveforms formed from overlapping MUAPs in the signal. Nonoverlapping MUAPs are classified using a statistical pattern-recognition method. The decomposition of superimposed waveforms uses a combination of procedural and knowledge-based methods. The decomposition method was tested on real and simulated EMG data recorded at force levels up to 20 per cent MVC. The different EMG signals contained up to six motor units (MUs). The new decomposition program classifies the total number of MUAP firings in an EMG signal with an accuracy always greater than 95 per cent. The decomposition program takes about 15 s to classify all nonoverlapping MUAPs in EMG signal of length 1·0 s and, on average, an extra 9s to classify each superimposed waveform.  相似文献   

3.
A method for non-invasive assessment of single motor unit (MU) properties from electromyographic (EMG), mechanomyographic (MMG) and force signals is proposed. The method is based on the detection and classification of single MU action potentials from interference multichannel surface EMG signals and on the spike-triggered average of the MMG (detected by an accelerometer) and force signals. The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles were investigated at contraction levels of 2% and 5% of the maximum voluntary contraction (MVC) force. A third contraction was performed by selective activation of a single MU with surface MU action potential visual feedback provided to the subject. At 5% MVC, the mean (±standard error) single MU MMG peak-to-peak value was 11.0±1.8 mm s−2 (N=17) and 32.3±6.5 mm s−2 (N=20) for the FDI and AMD muscles, respectively. The peak of the twitch force was, at the same contraction livel, 7.41±1.34 mN and 14.42±2.92 mN, for the FDI and ADM muscles, respectively. The peak-to-peak value of the MMG was significantly different for the same MU at different contraction levels, indicating a non-linear summation of the single MU contributions. For the FDI muscle, the MMG peak-to-peak value of individual MUs was 21.5±7.8 mm s−2, when such MUs were activated with visual feedback provided to the subject, whereas, for the same MUs, it was 11.8±3.8 mm s−2, when the subject maintained a constant force level of 2% MVC. The method proposed allows the non-invasive assessment of single MU membrane and contractile properties during voluntary contractions.  相似文献   

4.
The paper studies a surface electromyogram (SEMG) decomposition technique suitable for identification of complete motor unit (MU) firing patterns and their motor unit action potentials (MUAPs) during low-level isometric voluntary muscle contractions. The algorithm was based on a correlation matrix of measurements, assumed unsynchronised (uncorrelated) MU firings, exhibited a very low computational complexity and resolved the superimposition of MUAPs. A separation index was defined that identified the time instants of an MU's activation and was eventually used for reconstruction of a complete MU innervation pulse train. In contrast with other decomposition techniques, the proposed approach worked well also when the number of active MUs was slightly underestimated, if the MU firing patterns partly overlapped and if the measurements were noisy. The results on synthetic SEMG show 100% accuracy in the detection of innervation pulses down to a signal-to-noise ratio (SNR) of 10 dB, and 93±4.6% (mean± standard deviation) accuracy with 0 dB additive noise. In the case of real SEMG, recorded with an array of 61 electrodes from biceps brachii of five subjects at 10% maximum voluntary contraction, seven active MUs with a mean firing rate of 14.1 Hz were identified on average.  相似文献   

5.
Muscle fiber conduction velocity in single motor unit (MU) during voluntary contraction was measured by using the multi-channel surface EMG. The subjects examined were 28 normal controls (5-40 years old), four patients with myopathy and three patients with neuropathy. The tibialis anterior and the biceps brachii muscles were investigated at weak and moderate contraction levels. In normal muscles, the mean muscle fiber conduction velocity increased with muscle force (P less than 0.01). In three of four cases with myopathy, the conduction velocities were reduced compared to normal subjects (P less than 0.01), and there was little or no correlation between the conduction velocity and muscle force in myopathy. The conduction velocities were within the normal range in the muscles of patients with neuropathy. However, high-amplitude MUAPs with fast conduction velocities were detected during weak voluntary contraction in one case with neuropathy.  相似文献   

6.
Since electrophysiological techniques for assessment of upper motor neuron disorders have yet to be standardized, the potential of employing F-waves to monitor this condition was examined. Subjects were 32 normal adults, 54 patients with upper motor neuron disorder and 20 patients with lower motor neuron disorder. F-waves were recorded from the abductor digiti minimi muscle at rest and under weak voluntary contraction. F-wave amplitudes expressed as a percentage of maximum M-wave were 1.98 +/- 0.83% at rest and 3.73 +/- 1.25% during voluntary contraction in normal group, compared to 3.69 +/- 1.81% and 3.62 +/- 1.68% in the upper motor neuron disorder group, 2.08 +/- 1.45% and 3.52 +/- 1.83% in the lower motor neuron disorder group, respectively. Analysing individual data, 69% of patients with upper motor neuron disorder showed an F-wave at rest within normal limits (+/- 2.5 standard deviation from normal). Voluntary muscle contraction enlarged the F-wave amplitude in normal subjects and patients with lower motor neuron disorder, but the facilitation did not occur in patients with upper motor neuron disorder. Combining F-wave amplitudes at rest and during voluntary contraction revealed differences between the upper motor neuron disorder group and the normal and lower motor neuron disorder groups. It was therefore concluded that F-waves can be used as a monitor of upper motor neuron disorder.  相似文献   

7.
Intramuscular and surface electromyographic (EMG) activities were recorded from the left and right upper trapezius muscle of eight healthy male subjects during 5-min long static contractions at 2% and 5% of the maximal voluntary contraction (MVC) force. Intramuscular signals were detected by wire electrodes while surface EMG signals were recorded with linear adhesive electrode arrays. The surface EMG signals were averaged using the potentials extracted from the intramuscular EMG decomposition as triggers. The conduction velocity of single motor units (MUs) was estimated over time from the averaged surface potentials while average rectified value and mean power spectral frequency were computed over time from 0.5 s epochs of surface EMG signal. It was found that (1) MUs were progressively recruited after the beginning of sustained contractions of the upper trapezius muscle at 2% and 5% MVC, (2) the conduction velocity of the MUs active since the beginning of the contraction significantly decreased over time, and (3) although the CV of single MUs significantly decreased, the mean power spectral frequency of the surface EMG did not show a consistent trend over time. It was concluded that spectral surface EMG analysis, being affected by many physiological mechanisms, may show limitations for the objective assessment of localized muscle fatigue during low force, sustained contractions. On the contrary, single motor unit conduction velocity may provide an early indication of changes in muscle fiber membrane properties with sustained activity.  相似文献   

8.
The surface mechanomyogram (MMG) (detectable at the muscle surface as MMG by accelerometers, piezoelectric contact sensors or other transducers) is the summation of the activity of single motor units (MUs). Each MU contribution is related to the pressure waves generated by the active muscle fibres. The first part of this article will review briefly the results obtained by our group studying the possible role of motor unit recruitment and firing rate in determining the characteristics of the MMG during stimulated and voluntary contractions. The second part of this article will study the MMG and EMG during a short isometric force ramp from 0 to 90% of the maximal voluntary contraction (MVC) in fresh and fatigued biceps brachii. The aim is to verify whether changes in motor unit activation strategy in voluntarily fatigued muscle could be specifically reflected in the time and frequency domain parameters of the MMG. MMG-RMS vs. %MVC: at fatigue the MMG-RMS did not present the well known increment, when effort level increases, followed by a clear decrement at near-maximal contraction levels. MMG-MF vs. %MVC: compared to fresh muscle the fatigued biceps brachii showed an MF trend significantly shifted towards lower values and the steeper MF increment, from 65 to 85% MVC, was not present. The alteration in the MMG and EMG parameters vs. %MVC relationships at fatigue seems to be related to the impossibility of recruiting fast, but more fatigable MUs, and to the lowering of the global MUs firing during the short isometric force ramp investigated.  相似文献   

9.
The influence of the rate of firing of separate human motor units (MUs) from m. biceps brachii on the propagation velocity of the extraterritorial MU potentials was investigated. The experiments were carried out under normal physiological conditions--different level of isometric voluntary activity and different rate of firing--respectively. The subjects succeeded to keep 3-5 different levels of relatively constant rate of firing with mean value of the interimpulse intervals ranging from 67.8 to 183.2 ms. Wire subcutaneous branched electrodes and conventional bipolar wire electrodes were used to separate potentials from single motor units and as a trigger to average surface electromyographic (EMG) signals. MUs with superficially and deep lying muscle fibers were investigated. The propagation velocity of the potentials of superficially lying MUs was calculated from the time shift between the EMG signals picked up by means of two monopolar surface electrodes placed along the direction of the muscle fibers. For deep lying MUs the changes in the propagation velocity were estimated indirectly by the changes in the duration of the extraterritorial MU potentials. No systematic relationship between the rate of firing and the velocity of propagation was found.  相似文献   

10.
OBJECTIVE: First, to propose a new technique for measuring muscle fiber conduction velocity (MFCV). Second, to ascertain the validation of the new method that uses F-waves (F-MFCV) in healthy volunteers. Third, to examine the relationship between F-MFCV and motor nerve conduction velocity (MCV) in the same subjects. SUBJECTS AND METHODS: F-waves reflecting single motor units were recorded with a multi-channel surface electrode array and weak electrical stimulation to the median or ulnar nerves in 21 healthy volunteers. F-MFCVs of the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) were calculated from the F-wave peak latency in each channel. MFCV during minimal voluntary contraction (V-MFVC) was measured in the same muscles. RESULTS: There was no significant difference between F-MFCV and V-MFCV in the muscles tested The mean F-MFCV value was similar to recently reported MFCV values generated by minimal voluntary contraction. No significant differences were found between the APB and ADM F-MFCVs, whereas the MCV of the ulnar nerve was faster than that of the median nerve. CONCLUSION: The MFCV in a single motor unit could be measured with a multi-channel surface electrode array by recording F-waves induced by weak stimulation. Since V-MFCV generated by minimal voluntary contraction is explained by the size principle, V-MFCV reflects small and slow conducting motor unit. There was no significant difference between F-MFCV and V-MFCV. It seemed that F-MFCV also reflected small motor unit. The reason for the lack of difference in the F-MFCVs of the ADM and APB is considered to be a relatively slow F-MFCV. Moreover, MCV reflected the speed of the fastest nerve fiber, whereas F-MFCV did not.  相似文献   

11.
The relationship between the propagation velocity of the excitation along the muscle fibers of the motor units (MUs) and their threshold of recruitment at different level of isometric voluntary contraction was investigated. The threshold of recruitment was measured by the value of the muscle force, expressed in percents from the maximal voluntary contraction (MVC) at which the first impulse of the MU appeared. A wire subcutaneous branched electrode was used to select the potentials from a single MU. The selected in this way MU impulses were used as a trigger to average two electromyographic (EMG) signals picked up by means of two monopolar surface electrodes with small leading-off areas mounted on a common plate at a distance of 10 mm from one another. The propagation velocity of the extraterritorial potentials of the MUs increased non-linearly with the increase of the recruitment threshold. The relationship was fitted as V = square root of a+b.theta, where v is the propagation velocity, theta is the threshold of recruitment and a and b are constants. The consideration of the velocity of propagation as a "size principle parameter" was discussed and the limitations of the latter are pointed out.  相似文献   

12.
Electromyographic and mechanomyographic estimation of motor unit activation strategy in voluntary force production. In order to determine whether electromyogram (EMG) and mechanomyogram (MMG) are suitable for the noninvasive estimation of the motor unit (MU) activation strategy, the EMG/force and MMG/force relationships were examined simultaneously during isometric ramp contractions in biceps brachii muscle. The highest mean power frequency (MPF) of the EMG, which reflects the full MU recruitment, was determined at 51% MVC. Two obvious inflection points were identified on the MMG-amplitude/force relationship that showed an initial slow increase followed by a rapid increase and a progressive decrease at higher force levels. Our results suggest that the MMG amplitude allows the estimation of the beginning of recruitment of MUs that innervate the first-twitch fibers in addition to identification of the full MU recruitment. The rate coding strategy was qualitatively reflected by the MMG-MPF/force relationship. We conclude that the MU activation strategy is estimated in more detail by the MMG than by the EMG.  相似文献   

13.
The objective of this study was to systematically characterize motor units (MUs) of the musculature of the lower face. MU endplate positions and principal muscle fiber orientations relative to facial landmarks were identified. This was done by the analysis of motor unit action potentials (MUAPs) in the surface electromyogram. Thirteen specially trained, healthy subjects performed selective contractions of the depressor anguli oris, depressor labii inferioris, mentalis, and orbicularis oris inferior muscles. Signals were recorded using recently developed, 0.3-mm thin and flexible high-density surface electromyography (sEMG) grids (120 channels). For each subject and each muscle and for different low contraction levels, representative MUAPs ("MU fingerprints") were extracted from the raw sEMG data according to their spatiotemporal amplitude characteristics. We then topographically characterized the lower facial MUs' endplate zones and main muscle fiber orientations on the individual faces of the subjects. These topographical MU parameters were spatially warped to correct for the different sizes and shapes of the faces of individual subjects. This electrophysiological study revealed a distribution of the lower facial MU endplates in more or less restricted, distinct clusters on the muscle often with eccentric locations. The results add substantially to the basic neurophysiologic and anatomical knowledge of the complex facial muscle system. They can also be used to establish objective guidelines for placement of conventional (surface or needle) EMG electrodes as well as for clinical investigations on neuromuscular diseases affecting the facial musculature. The localized endplate positions may also indicate optimal locations for botulinum toxin injection in the face.  相似文献   

14.
A motor unit (MU) is defined as an anterior horn cell, its axon, and the muscle fibres innervated by the motor neuron. A surface electromyogram (EMG) is a superposition of many different MU action potentials (MUAPs) generated by active MUs. The objectives of this study were to introduce a new adaptive spatio-temporal filter, here called maximum kurtosis filter (MKF), and to compare it with existing filters, on its performance to detect a single MUAP train from multichannel surface EMG signals. The MKF adaptively chooses the filter coefficients by maximising the kurtosis of the output. The proposed method was compared with five commonly used spatial filters, the weighted low-pass differential filter (WLPD) and the marginal distribution of a continuous wavelet transform. The performance was evaluated using simulated EMG signals. In addition, results from a multichannel surface EMG measurement fro from a subject who had been previously exposed to radiation due to cancer were used to demonstrate an application of the method. With five time lags of the MKF, the sensitivity was 98.7% and the highest sensitivity of the traditional filters was 86.8%, which was obtained with the WLPD. The positive predictivities of these filters were 87.4 and 80.4%, respectively. Results from simulations showed that the proposed spatio-temporal filtration technique significantly improved performance as compared with existing filters, and the sensitivity and the positive predictivity increased with an increase in number of time lags in the filter.  相似文献   

15.
The purpose of the present study was to investigate motor unit (MU) recruitment and firing rate, and the MU action potential (MUAP) characteristics of the human supraspinatus muscle during prolonged static contraction and subsequent recovery. Eight female subjects sustained a 30° shoulder abduction, requiring 11–12% of maximal voluntary contraction (MVC), for 30 min. At 10 and 30 min into the recovery period, the shoulder abduction was repeated for 1 min. The rating of perceived exertion for the shoulder region increased to “close to exhaustion” during the prolonged contraction, and the surface electromyography (EMG) recorded from the deltoid and trapezius muscles showed signs of local muscle fatigue. From the supraspinatus muscle, a total of 23,830 MU firings from 265 MUs were identified using needle electrodes. Of the identified MUs, 95% were continuously active during the 8-s recordings, indicating a low degree of MU rotation. The mean (range) MU firing rate was 11.2 (5.7–14.5) Hz, indicating the relative force contribution of individual MUs to be larger than the overall mean shoulder muscle load. The average MU firing rate remained stable throughout the prolonged abduction, although firing rate variability increased in response to fatigue. The average concentric MUAP amplitude increased by 38% from the beginning (0–6 min) to the end (24–29 min) of the contraction period, indicating recruitment of larger MUs in response to fatigue. In contrast, after 10 min of recovery the average MU amplitude was smaller than seen initially in the prolonged contraction, but not different after 30 min, while the MU firing rate was higher during both tests. In conclusion, MU recruitment plays a significant role during fatigue, whereas rate coding has a major priority during recovery. Furthermore, a low degree of MU rotation in combination with a high relative load at the MU level may imply a risk of overloading certain MUs during prolonged contractions. Accepted: 6 June 2000  相似文献   

16.
Motor unit firing rates at slight voluntary contraction were studied by standard concentric needle electromyography. Employing digital signal analysis techniques firing rates of motor units (MU) could be evaluated as long as four or less different MUs were activated in the vicinity of the concentric needle electrode. The extension of the recording area is defined by the recording properties of the electrode and the upper limit of rise-time for all MUPs being evaluated. Distant MUs, generating volume conducted potentials with rise-times greater than 0.8 ms, were excluded. In biceps muscles of 15 healthy controls the firing rate of the MU activated first was evaluated at that moment, when a second MU was recruited and was found to be 12.1 +/- 2.1 Hz (mean +/- S.D., n = 40). The firing rate of the fastest MU out of 2, 3, or 4 simultaneously active MUs was 10.7 +/- 2.5 Hz, 10.9 +/- 2.5 Hz and 10.6 +/- 2.4 Hz respectively. Hence at low innervation level there is no increase of firing rate with rising number of activated MUs. The upper normal limit of MU firing rate (3 sigma interval) is calculated as 17 Hz, irrespective whether 1, 2, 3 or 4 MUs are active within the recording area. Fifteen patients with partially denervated biceps muscles were investigated. Maximal firing rates were increased in 10 patients, all showing moderate or severe paresis (grade 1-3). In 10 patients suffering from myopathies firing rates always were normal. The presented data may serve as an additional criterion in evaluating MU firing rates during standard clinical EMG.  相似文献   

17.
Motor unit (MU) synchronisation during isometric force production in the precision grip was analysed in five subjects performing a visually guided steptracking motor task with three different force levels. With this aim multi-unit electromyographic (EMG) activity of 14 intrinsic and extrinsic finger muscles from 15 experimental sessions was decomposed into the potentials of single MUs. The behaviour of 62 intrinsic and 30 extrinsic MUs in the motor task was quantified. Most MUs displayed a positive correlation between firing rate and grip force. Compared to MUs in extrinsic muscles, intrinsic MUs had steeper regression lines with negative intercepts indicating higher force sensitivity and higher recruitment thresholds. A cross-correlation analysis was performed for 69 intra- and 166 intermuscular MU pairs while steady grip force was exerted at the three force levels. Synchronisation, for at least one force level, was found in 78% of the intra- and 45% of the intermuscular pairs. The occurrence of synchronisation was not stable over the force range tested. Factors influencing the fluctuations in occurrence and strength of synchronisation were investigated. Force increase was not paralleled by increased synchronisation; in contrast, in most MU pairs, especially intermuscular pairs, synchronisation occurred preferentially at the lower force levels. The recruitment threshold appeared to play a determining role in synchronisation: the more similar the thresholds of two MUs, the greater the probability of them being synchronised at this force level. Synchronised MUs fired on average at a lower frequency than non-synchronised ones. Finally, synchronisation at the multi-unit EMG level does not indicate that all underlying MUs are synchronised, nor does the absence of temporal coupling at the multi-unit level indicate that none of the MUs is synchronised.  相似文献   

18.
 The recruitment order of motor units (MU) was compared during voluntary and electrically induced contractions. With the use of spike-triggered averaging, a total of 302 MUs with recruitment thresholds ranging from 1% to 88% of maximal voluntary contraction were recorded in the human tibialis anterior muscle in five subjects. The mean (±SD) MU force was 98.3±93.3 mN (mean torque 16.8±15.9 mNm) and the mean contraction time (CT) 46.2±12.7 ms. The correlation coefficients (r) between MU twitch force and CT versus the recruitment threshold in voluntary contractions were +0.68 and –0.38 (P<0.001), respectively. In voluntary contractions, MUs were recruited in order of increasing size except for only 6% of the cases; whereas, during transcutaneous electrical stimulation (ES) at the muscle motor point, MU pairs showed a reversal of recruitment order in 28% and 35% of the observations, respectively, when the pulse durations were 1.0 ms or 0.1 ms. This recruitment reversal during ES was not related to the magnitude of the difference in voluntary recruitment thresholds between MUs. It is concluded that if the reversal of MU recruitment observed during ES is biophysically controlled by differences in their nerve axon input impedance, in percutaneous stimulation at the motor point, other factors such as the size and the morphological organisation of the axonal branches can also influence the order of activation. Received: 24 May 1996 / Accepted: 30 September 1996  相似文献   

19.
Acoustic phenomena accompanying contractions of single motor units (MUs) have previously received little attention. Therefore, in the present study, the mechanomyographic (MMG) signals during evoked contractions of single MUs have been recorded from the medial gastrocnemius muscle of the rat. A piezoelectric transducer immersed in a paraffin-oil pool was used for the measurement of these signals. Muscle fibre action potentials, tension and MMG were recorded in parallel during twitch (the weakest) and fused tetanic (the strongest) MU contractions. It was observed that the onset of the MMG signals was coincident with the beginning of the increase in tension for both the twitch and tetanus. Weaker MMG signals than those accompanying the beginning of the first phase of the fused tetanus were seen during the beginning of the relaxation after tetanic contraction. During contraction and relaxation, MMG signals were characterised by the reverse-direction of the first extreme phase, positive and negative, respectively. No MMG signals were observed when the tension was constant during the fused tetanus. The amplitude of MMG signals was correlated with both the tension increase and the velocity of tension increase during both the twitch and the fused tetanus. The strongest MUs (fast fatiguable) generated MMG signals of the highest amplitude. MMG signals were not detected for some of the weakest slow MUs (with tension increases of < or = 2 mN). These results indicate a strong correlation between the MMG and the change of tension. Therefore, we believe that MMG signals are generated by muscle deformation that occurs during the contraction of MU muscle fibres. We conclude that the number of active muscle fibres, their topography, and their localisation in relation to the muscle surface (which is variable for different types of MUs) influence these MMG phenomena.  相似文献   

20.
Tongue dysfunction is a hallmark of many human clinical disorders, yet we lack even a rudimentary understanding of tongue neural control. Here, the location and contractile properties of intrinsic longitudinal motor units (MUs) of the rat tongue body are described to provide a foundation for developing and testing theories of tongue motor control. One hundred and sixty-five MUs were studied by microelectrode penetration and stimulation of individual motor axons coursing in the terminal portion of the lateral (retrusor) branch of the hypoglossal nerve in the rat. Uniaxial MU force was recorded by a transducer attached to the protruded tongue tip, and MU location was estimated by electromyographic (EMG) electrodes implanted into the anterior, middle, and posterior portions of the tongue body. All MUs produced retrusive force. MU twitch force ranged from 2-129 mg (mean = 35 mg) and tetanic force ranged from 9-394 mg (mean = 95 mg). MUs reached maximal twitch force in 8-33 ms (mean = 15 ms) and were resistant to fatigue; following 2 min of stimulation, MUs (n = 11) produced 78-131% of initial force. EMG data were collected for 105 MUs. For 65 of these MUs, the EMG response was confined to a single electrode location: for 26 MUs to the anterior, 21 MUs to the middle, and 18 MUs to the posterior portion of the tongue. Of the remaining MUs, EMG responses were observed in two (38/40) or all three (2/40) tongue regions. These data provide the first contractile measures of identified intrinsic tongue body MUs and the first evidence that intrinsic longitudinal MUs are restricted to a portion of tongue length. Localization of MU territory suggests a role for intrinsic MU in the regional control of the mammalian tongue observed during feeding and speech.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号