首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify whether the Ca2+ uptake function of the sarcoplasmic reticulum (SR) during arterial contraction is altered in hypertension, the effects of cyclopiazonic acid (CPA) and thapsigargin, which inhibit SR Ca2+-ATPase, on the contractile responses to Bay k 8644, an agonist of L-type Ca2+ channels, were compared in endothelium-denuded strips of carotid arteries from 13-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). The addition of Bay k 8644 (1-300 nM) to the strips caused a concentration-dependent contraction that was larger in SHR than in WKY. The contractile responses to Bay k 8644 were augmented by CPA (10 microM) or thapsigargin (100 nM) in both strains. This augmentation was greater in SHR. Each of CPA and thapsigargin induced a relatively transient contraction, and both of these contractions were larger in SHR than in WKY. The basal 45Ca influx in this artery was larger in SHR than in WKY. The addition of caffeine (1-20 mM) caused a transient contraction that was larger in SHR than in WKY. Our results indicate that 1) the large Ca2+ influx during rest in the SHR carotid artery is strongly buffered by Ca2+ uptake into the superficial SR; and 2) the Ca2+ uptake function of the SR during the contraction with Bay k 8644 was increased in SHR compared with WKY. We conclude that the SHR carotid artery has an increased total capacity of SR for Ca2+ storage as an attempt to compensate for the large Ca2+ influx.  相似文献   

2.
We compared the Ca2+ buffering function of the superficial sarcoplasmic reticulum (SR) during rest and during contraction in endothelium-denuded strips of small mesenteric arteries from 13-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). The addition of caffeine (1-20 mM) caused a transient contraction in both strains, and the contraction was significantly larger in SHR. When the SR Ca2+ buffering function was eliminated by cyclopiazonic acid (CPA; 10 microM) or thapsigargin (100 nM), both of which inhibit SR Ca2+-ATPase, or by ryanodine (10 microM), which depletes the SR Ca2+, there was a larger contraction in SHR than in WKY, suggesting that the Ca2+ buffering function of the SR during rest is more important in SHR than in WKY. Judging from the augmenting effects of these three agents on the contractile responses to Bay k 8644 (1-300 nM), an agonist of L-type Ca2+ channels, or norepinephrine (10(-9)-10(-4) M), an alpha-adrenoceptor agonist, the effects were significantly greater in SHR than in WKY. We conclude that 1) the Ca2+ influx during rest and during stimulation with Bay k 8644 or norepinephrine is strongly buffered by Ca2+ uptake into the superficial SR in the small mesenteric arteries from SHR and WKY; and 2) these Ca2+ buffering functions are increased in SHR because of the larger capacity of SR for Ca2+ storage.  相似文献   

3.
Vascular responses of aortic rings from spontaneously hypertensive rats (SHR) were compared to those of the normotensive Wistar-Kyoto rats (WKY) in three sets of experimental protocols. The responses to cumulative doses of KCl indicated that SHR aortic rings were hyperresponsive to low but not high doses of KCl compared to WKY aortic rings. After Ca depletion by prolonged incubation of the rat aortic rings with Ca2+-free, EGTA containing solution, Ca repletion resulted in contraction. The magnitude of such a contraction was dependent on the period of Ca depletion and was highly sensitive to dihydropyridine Ca channel blocker, nifedipine. Although the Ca-depleted aortic rings eventually developed to the same level of maximum tension development upon Ca repletion, it took a considerably shorter period of Ca depletion for SHR than for WKY aortic rings to reach the maximum contraction upon Ca repletion. Our findings support the view that cell membranes of vascular smooth muscle in hypertension are more excitable and more susceptible to membrane destabilization by Ca removal.  相似文献   

4.
OBJECTIVE: To determine whether there are any differences in contractile properties of individual cardiac myocytes isolated from the spontaneously hypertensive rat (SHR) in comparison with its normotensive control--the Wistar-Kyoto (WKY) rat. DESIGN: The effects of cardiac hypertrophy upon individual myocytes from SHR have not been studied previously. Isolated cardiac myocytes do not suffer from a number of problems inherent in experiments on multicellular preparations. METHODS: Seven SHR and eight WKY animals were studied. Age-matched animals were compared at 60 and 100 days old. Ventricular myocytes were isolated enzymatically. Myocyte length and width was measured. The cells were stimulated with extracellular electrodes and contraction was measured optically. The effects of altering stimulus rate and extracellular calcium concentration upon contraction were studied. RESULTS: SHR myocytes were found to be significantly wider than WKY myocytes. The contraction (i.e. unloaded cell shortening) of SHR myocytes at stimulation rate of 0.3, 1, 2 and 3 Hz was significantly increased. The time-course of contraction was altered, with SHR myocytes having an increased maximal velocity of shortening and relaxation. The response to changes in bathing calcium was similar in both strains. CONCLUSIONS: Individual cardiac myocytes isolated from SHR have an increased contraction. This indicates that cardiac hypertrophy, at least in the early stages, is a protective adaptation allowing the heart to overcome the increased afterload resulting from hypertension.  相似文献   

5.
BACKGROUND: This study was designed to test the hypothesis that differences exist in the inactivation properties of voltage-gated Ca(2+) channels (Ca(V)) in hypertensive arterial smooth muscle cells (ASMCs), and that these differences contribute to enhanced Ca(V) activity. METHODS: The properties of Ca(V) were studied in freshly isolated myocytes from small mesenteric arteries (SMAs) of Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs) using whole-cell patch-clamp methods. RESULTS: Peak currents (I(Ca)) were larger in SHR with either 2 mmol/l Ca(2+) or Ba(2+) as the charge carrier. In WKY and SHR, the peak current was larger with Ba(2+) than with Ca(2+) with no difference in their ratio. The voltage dependence of Ca(V) activation was shifted to the left in SHR as compared to WKY for Ca(2+) but not for Ba(2+), while availability was not different. The time course of inactivation of current could be represented by two time constants, both of which were larger in SHR than in WKY and also larger for Ba(2+) than for Ca(2+), with a greater fraction of inactivation being associated with the process slower in SHR and with Ba(2+). The time courses of availability, inactivation, and recovery from inactivation were faster in SHR than in WKY in the case of Ca(2+), but there was no difference in the case of Ba(2+). CONCLUSIONS: These results demonstrate that there are differences between WKY and SHR in the inactivation properties of SMA Ca(V), and that these differences could contribute to larger steady-state currents. The differences cannot be explained merely by the presence of a larger number of identical Ca(V) complexes, and it appears likely that differences in intrinsic compositions, primary structures, and/or regulation are involved.  相似文献   

6.
7.
Although alterations in Ca2+ metabolism have been demonstrated in subcultured aortic myocytes of spontaneously hypertensive rats (SHR), changes in intact tissue have not been described. This study compares Ca2+ metabolism in intact mesenteric resistance arteries and in myocytes that were derived from mesenteric arteries and maintained in primary and long-term culture. Using fura-2, basal levels of Ca2+ were found to be similar in intact vessels of SHR and Wistar-Kyoto normotensive rats (WKY), and in primary and first-passage myocytes of the two strains. During subculture, basal levels of Ca2+ became elevated in myocytes of SHR. When norepinephrine-induced Ca2+ mobilization was examined, the threshold of resistance arteries was lower in SHR, but differences were not detected with higher concentrations of the agonist. Norepinephrine-induced Ca2+ mobilization also did not differ between primary myocytes of the two strains. Angiotensin II elicited greater intracellular Ca2+ responses in myocytes of SHR at passages 1, 3 and 5. Cell growth was assessed at each passage level. While no strain differences were detected in primary, first- and second-passage cells, the growth rate became elevated in SHR in subsequent passages. These results are consistent with the hypothesis that vascular myocytes cultured from SHR with established hypertension exhibit differences in Ca2+ metabolism that are not present in the intact vessel wall. Furthermore, intracellular Ca2+ appears to be elevated in myocytes of SHR when the rate of proliferation is increased.  相似文献   

8.
Ren J  Jefferson L  Sowers JR  Brown RA 《Hypertension》1999,34(6):1215-1222
Evidence suggests a pathophysiological role of insulin-like growth factor 1 (IGF-1) in hypertension. Cardiac function is altered with advanced age, similar to hypertension. Accordingly, the effects of IGF-1 on cardiac myocyte shortening and intracellular Ca(2+) were evaluated in hypertension at different ages. Ventricular myocytes were isolated from Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), aged 12 and 36 weeks. Mechanical and intracellular Ca(2+) properties were examined by edge-detection and fluorescence microscopy. At 12 weeks, IGF-1 (1 to 500 ng/mL) increased peak twitch amplitude (PTA) and FFI changes (DeltaFFI) in a dose-dependent manner in WKY myocytes, with maximal increases of 27.5% and 35.2%, respectively. However, IGF-1 failed to exert any action on PTA and DeltaFFI in the age-matched SHR myocytes. Interestingly, at 36 weeks, IGF-1 failed to exert any response in WKY myocytes but depressed both PTA and DeltaFFI in a dose-dependent manner in SHR myocytes, with maximal inhibitions of 40.5% and 16.1%, respectively. Myocytes from SHR or 36-week WKY were less sensitive to norepinephrine (1 micromol/L) and KCl (30 mmol/L). Pretreatment with nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 micromol/L) did not alter the IGF-1-induced response in 12-week WKY myocytes but unmasked a positive action in 12-week SHR and 36-week WKY myocytes. L-NAME also significantly attenuated IGF-1-induced depression in 36-week SHR myocytes. In addition, the Ca(2+) channel opener Bay K8644 (1 micromol/L) abolished IGF-1-induced cardiac depression in 36-week SHR myocytes. Collectively, these results suggest that the IGF-1-induced cardiac contractile response was reduced with advanced age as well as with hypertension. Alterations in nitric oxide and intracellular Ca(2+) modulation may underlie, in part, the resistance to IGF-1 in hypertension and advanced age.  相似文献   

9.
We examined the Ca2+-buffering function of the sarcoplasmic reticulum (SR) in the resting state of arteries from spontaneously hypertensive rats (SHR) at a prehypertensive stage. Differences in the effects of cyclopiazonic acid (CPA) and thapsigargin, agents that inhibit SR Ca2+-ATPase, and of ryanodine, which depletes SR Ca2+, on tension and cellular Ca2+ level were assessed in endothelium-denuded strips of femoral arteries from 4-week-old SHR and normotensive Wistar-Kyoto rats (WKY). Addition of CPA, thapsigargin or ryanodine to the resting state of the strips caused an elevation of cytosolic Ca2+ level and a contraction in both WKY and SHR. These responses were larger in SHR than in WKY. The contractions were inhibited strongly by 100 nM nifedipine or 3 microM verapamil and were abolished by Ca2+-free solution. Nifedipine, verapamil or Ca2+-free solution itself caused a relaxation from the resting state of SHR strips, but not from that of WKY strips. The resting Ca2+ influx in arteries measured by a 5-min incubation with 45Ca was significantly larger in SHR than in WKY. This influx was decreased by 10 microM CPA or 10 microM ryanodine in both WKY and SHR. These results suggest that in the resting state of the femoral artery from 4-week-old SHR, the greater part of the increased Ca2+ influx via L-type Ca2+ channels is buffered by Ca2+ uptake into the SR, while some Ca2+ reaches the myofilaments, resulting in the maintenance of resting tone.  相似文献   

10.
OBJECTIVE : Localized release of Ca2+ from the sarcoplasmic reticulum (SR) toward the plasmalemma, sometimes visualized as Ca2+ sparks, can activate Ca2+-activated K+ (KCa) channels. We have already reported that the addition of charybdotoxin (ChTX), a blocker of KCa channels, to the resting state of arteries from spontaneously hypertensive rats (SHR) caused a powerful contraction, suggesting that KCa channels were active in the resting state. This study aimed to determine whether the Ca2+ responsible for activity of KCa channels was derived from SR. METHODS : Possible mechanisms underlying the ChTX-induced contractions were examined in endothelium-denuded strips of femoral, mesenteric, small mesenteric and carotid arteries from 13-week-old SHR and normotensive Wistar-Kyoto (WKY) rats by using selective inhibitors of the Ca2+ spark process. RESULTS : ChTX (100 nmol/l) induced a contraction in the SHR arteries. The ChTX-induced contractions were increased by a moderate membrane depolarization by 15.9 mmol/l K+ and were abolished by nifedipine (100 nmol/l). When SR Ca2+ was depleted by treatment of the strips with ryanodine (10 mumol/l) plus caffeine (20 mmol/l) or with thapsigargin (100 nmol/l), the ChTX-induced contraction was decreased in femoral, mesenteric and small mesenteric arteries and was almost abolished in the carotid artery. A similar phenomenon can be observed in arteries from WKY rats after a moderate membrane depolarization. In both SHR and WKY rats, SR Ca2+-dependent ChTX-induced contraction always represents 20-30% of the maximal K+-induced contraction. CONCLUSIONS : We conclude that activation of KCa channels depended upon influx of Ca2+ through L-type Ca2+ channels and release of Ca2+ from the SR, suggesting that recycling of entering Ca2+ from the superficial SR toward the plasmalemma sufficiently elevated Ca2+ near these channels to activate them.  相似文献   

11.
Abnormal Ca2+ handling and enhanced aggregation response have been reported in platelets from spontaneously hypertensive rats (SHR) and patients with essential hypertension, and thought to be involved in the progression of target organ damage of hypertension. It is important to examine whether antihypertensive therapy can improve the abnormal platelet response in hypertension. We investigated the effect of antihypertensive treatment such as amlodipine and cilazapril on Ca2+ handling and aggregation response in SHR platelets. Four-week-old male SHR were divided into three groups. Each group was treated with amiodipine (A: 10 mg/kg/day), cilazapril (C: 10 mg/kg/day) or vehicle (V) for 8 weeks by gavage. At 12-week-old, platelet [Ca2+]i was measured with fura-2 in each group of SHR and age-matched Wistar-Kyoto rats (WKY) as normal control. Systolic blood pressure in amlodipine and cilazapril treated groups were similar with WKY and significantly lower than vehicle treated group (A: 124 +/- 9, C: 126 +/- 9, WKY: 122 +/- 10 and V: 180 +/- 9 mmHg, respectively). The basal [Ca2+]i in the three groups of SHR were similar and higher than WKY (A: 47 +/- 1.7, C: 47 +/- 1.2, V: 48 +/- 3.9 and WKY: 40 +/- 4.0 nmol/l, respectively). There were no significant differences in thrombin (0.1 U/ml)-stimulated [Ca2+]i rise in the presence or absence of extracellular Ca2+ among the three groups of SHR and these were higher than WKY. Intracellular Ca2+ discharge capacity, assessed by the ionomycinstimulation was similar in the all groups. Thrombin-induced maximum platelet aggregation responses in the three groups of SHR were similar and higher than WKY. The antihypertensive treatment of Ca2+ antagonist or ACE inhibitor gave no change in intraplatelet Ca2+ metabolism in SHR. These results support the hypothesis that an abnormal Ca2+ handling in SHR platelet is genetically determined and not improved by hypotensive therapy.  相似文献   

12.
The contractions evoked by norepinephrine (NE) and caffeine in Ca2+-free solution were determined using denervated caudal artery rings from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). The magnitude of contractions produced by different concentrations of NE was significantly greater (P less than 0.05) in SHR caudal artery rings compared to WKY. The contractions evoked by NE in Ca2+-free solution were mediated primarily through the activation of postsynaptic alpha 1-adrenoceptors. In addition to alpha 1-adrenoceptor stimulation, caffeine also evoked significantly greater (P less than 0.05) contractions in Ca2+-free solution in SHR caudal arteries compared to WKY. From these observations it is concluded that intracellular Ca2+ pool (presumably sarcoplasmic reticulum, SR) is increased in SHR caudal arteries which, at least in part, may account for the increased contraction observed in response to NE and caffeine stimulation in the absence of extracellular Ca2+.  相似文献   

13.
It has been reported that the increased function of the voltage-dependent calcium channels (VDCC) in the artery is involved in the increase of peripheral resistance in hypertension, and that the sarcoplasmic reticulum (SR) in the artery plays an important role in preventing the development of hypertension via a buffering effect. However, no reports have described the role of VDCC and SR in resistance arterioles in the development or maintenance of hypertension. We investigated the function of VDCC and of SR in the cremaster arterioles of spontaneous hypertensive rats (SHR) and age-matched Wistar Kyoto rats (WKY). The changes in diameter and the intracellular calcium ion concentration ([Ca2+]i) in the microdissected arterioles, using fluorescent dyes, were measured with videomicroscopy. The KCl concentration-response curves were analyzed in 4- to 5- and 7- to 8-week-old SHR and WKY. The changes in the vascular diameter and [Ca2+]i in response to ryanodine, an alpha-1 adrenoceptor, and angiotensin-II stimulation were compared between the 7- to 8-week-old SHR and WKY. We found an increase in the Ca2+ influx by VDCC in the early hypertensive stage, but not in prehypertensive SHR. However, after the onset of hypertension, there were no significant differences from WKY in the SR function mediated by Ca2+-induced Ca2+ release or inositol 1,4,5-trisphosphate-induced Ca2+ release. In conclusion, an increased influx of Ca2+ in the cell membrane, without a buffering effect of SR, was associated with progression of hypertension in the cremaster arterioles of SHR.  相似文献   

14.
OBJECTIVE: Catecholamines that accompany acute physiological stress are also involved in mediating the development of hypertrophy and failure. However, the cellular mechanisms involved in catecholamine-induced cardiac hypertrophy, particularly Ca2+ handling, are largely unknown. We therefore investigated the effects of cardiac hypertrophy, produced by isoprenaline, on I(Na/Ca) and sarcoplasmic reticulum (SR) function in isolated myocytes. METHODS: I(Na/Ca) was studied in myocytes from Wistar rats, using descending (+80 to -110 mV) voltage ramps under steady state conditions. Myocytes were also loaded with fura-2 and either field stimulated or voltage clamped to assess [Ca2+]i and SR Ca2+ content. RESULTS: Ca2+-dependent, steady state I(Na/Ca) density was increased in hypertrophied myocytes (P<0.05). Ca2+ release from the SR was also increased, whereas resting [Ca2+]i and the rate of decline of [Ca2+]i to control levels were unchanged. SR Ca2+ content, estimated by using 10.0 mmol/l caffeine, was also significantly increased in hypertrophied myocytes, but only when myocytes were held and stimulated from their normal resting potential (-80 mV) but not from -40 mV. However, the rate of decline of caffeine-induced Ca2+ transients or I(Na/Ca) was not significantly different between control and hypertrophied myocytes. Ca2+-dependence of I(Na/Ca), examined by comparing the slope of the descending phase of the hysteresis plots of I(Na/Ca) vs. [Ca2+]i, was also similar in the two groups of cells. CONCLUSION: Data show that SR Ca2+ release and SR Ca2+ content were increased in hypertrophied myocytes, despite an increase in the steady state I(Na/Ca) density. The observation that increased SR function occurred only when myocytes were stimulated from -80 mV suggests that Na+ influx may play a role in altering Ca2+ homeostasis in hypertrophied cardiac muscle, possibly through increased reverse Na+/Ca2+ exchange, particularly at low stimulation frequencies.  相似文献   

15.
OBJECTIVE: The aim of this study was to characterize the spatio-temporal dynamics of [Ca(2+)](i) in rat heart in the fetal and neonatal periods. METHODS: Using confocal scanning laser microscopy and the Ca(2+) indicator fluo-3, we investigated Ca(2+) transients and Ca(2+) sparks in single ventricular myocytes freshly isolated from rat fetuses and neonates. T-tubules were labeled with a membrane-selective dye (di-8-ANEPPS). Spatial association of dihydropyridine receptors (DHPR) and ryanodine receptors (RyR) was also examined by double-labeling immunofluorescence. RESULTS: Ca(2+) transients in the fetal myocytes were characterized by slower upstroke and decay of [Ca(2+)](i) compared to those in adult myocytes. The magnitude of fetal Ca(2+) transients was decreased after application of ryanodine (1 microM) or thapsigargin (1 microM). However, Ca(2+) sparks were rarely detected in the fetal myocytes. Frequent ignition of Ca(2+) sparks was established in the 6-9-day neonatal period, and was predominantly observed in the subsarcolemmal region. The developmental change in Ca(2+) sparks coincided with development of the t-tubule network. The immunofluorescence study revealed colocalization of DHPR and RyR in the postnatal period, which was, however, not observed in the fetal period. In the adult myocytes, Ca(2+) sparks disappeared after disruption of t-tubules by glycerol incubation (840 mM). CONCLUSIONS: The sarcoplasmic reticulum (SR) of rat ventricular myocytes already functions early in the fetal period. However, ignition of Ca(2+) sparks depends on postnatal t-tubule formation and resultant colocalization of DHPR and RyR.  相似文献   

16.
Voltage-gated L-type Ca(2+) channels (LCCs) provide Ca(2+) ingress into cardiac myocytes and play a key role in intracellular Ca(2+) homeostasis and excitation-contraction coupling. We investigated the effects of a constitutive increase of LCC density on Ca(2+) signaling in ventricular myocytes from 4-month-old transgenic (Tg) mice overexpressing the alpha(1) subunit of LCC in the heart. At this age, cells were somewhat hypertrophic as reflected by a 20% increase in cell capacitance relative to those from nontransgenic (Ntg) littermates. Whole cell I(Ca) density in Tg myocytes was elevated by 48% at 0 mV compared with the Ntg group. Single-channel analysis detected an increase in LCC density with similar conductance and gating properties. Although the overexpressed LCCs triggered an augmented SR Ca(2+) release, the "gain" function of EC coupling was uncompromised, and SR Ca(2+) content, diastolic cytosolic Ca(2+), and unitary properties of Ca(2+) sparks were unchanged. Importantly, the enhanced I(Ca) entry and SR Ca(2+) release were associated with an upregulation of the Na(+)-Ca(2+) exchange activity (indexed by the half decay time of caffeine-elicited Ca(2+) transient) by 27% and SR Ca(2+) recycling by approximately 35%. Western analysis detected a 53% increase in the Na(+)-Ca(2+) exchanger expression but no change in the abundance of ryanodine receptor (RyR), SERCA2, and phospholamban. Analysis of I(Ca) kinetics suggested that SR Ca(2+) release-dependent inactivation of LCCs remains intact in Tg cells. Thus, in spite of the modest cardiac hypertrophy, the overexpressed LCCs form functional coupling with RyRs, preserving both orthograde and retrograde Ca(2+) signaling between LCCs and RyRs. These results also suggest that a modest but sustained increase in Ca(2+) influx triggers a coordinated remodeling of Ca(2+) handling to maintain Ca(2+) homeostasis.  相似文献   

17.
Left ventricular hypertrophy (LVH) is an adaptive change in response to hypertensive pressure overload. Some evidence indicates that the decrease in sarcoplasmic reticulum (SR) Ca2+-ATPase mRNA expression, which may contribute to a diastolic dysfunction of the heart, occurs in the experimental pressure overload model. Also, recent studies have demonstrated that angiotensin II (Ang II) and angiotensin II receptor type 1 (AT1) play important roles in LVH. The purpose of this study was to investigate the function of the SR and the role of AT1 in genetic hypertension in spontaneously hypertensive rats (SHR) at ages 10 and 18 weeks. In SHR, cardiac hypertrophy has already developed at 10 weeks of age. SR Ca2+-ATPase activity and mRNA expression were significantly lower in SHR than in Wistar-Kyoto rats (WKY). Plasma renin activity in SHR was unchanged compared with WKY, whereas the Ang II concentration in SHR was significantly higher than that in WKY. AT1 mRNA expression in SHR was similar to that in WKY. These results suggest that in the early stage of hypertension in SHR Ang II may stimulate hypertrophy in the cardiomyocytes through the AT1, which is not downregulated by a high concentration of Ang II.  相似文献   

18.
Rationale: Mitochondrial Ca(2+) uptake is essential for the bioenergetic feedback response through stimulation of Krebs cycle dehydrogenases. Close association of mitochondria to the sarcoplasmic reticulum (SR) may explain efficient mitochondrial Ca(2+) uptake despite low Ca(2+) affinity of the mitochondrial Ca(2+) uniporter. However, the existence of such mitochondrial Ca(2+) microdomains and their functional role are presently unresolved. Mitofusin (Mfn) 1 and 2 mediate mitochondrial outer membrane fusion, whereas Mfn2 but not Mfn1 tethers endoplasmic reticulum to mitochondria in noncardiac cells. Objective: To elucidate roles for Mfn1 and 2 in SR-mitochondrial tethering, Ca(2+) signaling, and bioenergetic regulation in cardiac myocytes. Methods and Results: Fruit fly heart tubes deficient of the Drosophila Mfn ortholog MARF had increased contraction-associated and caffeine-sensitive Ca(2+) release, suggesting a role for Mfn in SR Ca(2+) handling. Whereas cardiac-specific Mfn1 ablation had no effects on murine heart function or Ca(2+) cycling, Mfn2 deficiency decreased cardiomyocyte SR-mitochondrial contact length by 30% and reduced the content of SR-associated proteins in mitochondria-associated membranes. This was associated with decreased mitochondrial Ca(2+) uptake (despite unchanged mitochondrial membrane potential) but increased steady-state and caffeine-induced SR Ca(2+) release. Accordingly, Ca(2+)-induced stimulation of Krebs cycle dehydrogenases during β-adrenergic stimulation was hampered in Mfn2-KO but not Mfn1-KO myocytes, evidenced by oxidation of the redox states of NAD(P)H/NAD(P)(+) and FADH(2)/FAD. Conclusions: Physical tethering of SR and mitochondria via Mfn2 is essential for normal interorganelle Ca(2+) signaling in the myocardium, consistent with a requirement for SR-mitochondrial Ca(2+) signaling through microdomains in the cardiomyocyte bioenergetic feedback response to physiological stress.  相似文献   

19.
In cardiac ventricular myocytes, sarcoplasmic reticulum (SR) Ca(2+) load is a key determinant of SR Ca(2+) release. This release normally occurs predominantly from SR junctions at sarcolemmal invaginations (t-tubules), ensuring synchronous SR Ca(2+) release throughout the cell. However under conditions of Ca(2+) overload, spontaneous SR Ca(2+) release and propagating Ca(2+) waves can occur, which are pro-arrhythmic. We used detubulated rat ventricular myocytes to determine the dependence of Ca(2+) wave propagation on SR Ca(2+) load, and the role of t-tubules in SR Ca(2+) uptake and spontaneous release. After SR Ca(2+) depletion, recovery of Ca(2+) transient amplitude (and SR Ca(2+) load) was slower in detubulated than control myocytes (half-maximal recovery: 9.9+/-1.4 vs. 5.5+/-0.7 beats). In detubulated myocytes the extent and velocity of Ca(2+) propagation from the cell periphery increased with each beat and depended steeply on SR Ca(2+) load. Isoproterenol (ISO) accelerated recovery, increased maximal propagation velocity and reduced the threshold SR Ca(2+) load for propagation. Ca(2+) spark frequency was uniform across control cell width and was similar at the periphery of detubulated cells. However, internal Ca(2+) spark frequency in detubulated cells was 75% lower (despite comparable local SR Ca(2+) load); this transverse spark frequency profile was similar to that in atrial myocytes. We conclude that: (1) t-tubule Ca(2+) fluxes normally control SR Ca(2+) refilling; (2) Ca(2+) wave propagation depends steeply on SR Ca(2+) content (3) SR-t-tubule junctions are important in initiating SR Ca(2+) release and (4) ISO enhances propagation of SR Ca release, but not the initiation of SR Ca release events (for given SR Ca(2+) loads).  相似文献   

20.
The molecular mechanisms underlying increased arterial tone during hypertension are unclear. In vascular smooth muscle, localized Ca2+ release events through ryanodine-sensitive channels located in the sarcoplasmic reticulum (Ca2+ sparks) activate large-conductance, Ca2+-sensitive K+ (BK) channels. Ca2+ sparks and BK channels provide a negative feedback mechanism that hyperpolarizes smooth muscle and thereby opposes vasoconstriction. In this study, we examined Ca2+ sparks and BK channel function in Wistar-Kyoto (WKY) rats with borderline hypertension and in spontaneously hypertensive rats (SHR), a widely used genetic model of severe hypertension. We found that the amplitude of spontaneous BK currents in WKY and SHR cells were smaller than in normotensive cells even though Ca2+ sparks were of similar magnitude. BK channels in WKY and SHR cells were less sensitive to physiological changes in intracellular Ca2+ than normotensive cells. Our data indicate that decreased expression of the BK channel beta1 subunit underlies the lower Ca2+ sensitivity of BK channels in SHR and WKY myocytes. We conclude that the lower expression of the beta1 subunit during genetic borderline and severe hypertension reduced BK channel activity by decreasing the sensitivity of these channels to physiological changes in Ca2+. These results support the view that changes in the molecular composition of BK channels may be a fundamental event contributing to the development of vascular dysfunction during hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号