首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ghayor C  Rey A  Caverzasio J 《BONE》2005,36(1):93-100
Transforming growth factor beta (TGF(beta)) is a major coupling factor for bone turnover and is known to stimulate osteoblastic proliferation. Recent information indicates that, in addition to the Smad pathway, TGF(beta) also activates MAP kinases in osteoblastic cells. The role of these signaling cascades in cell proliferation induced by TGF(beta) as well as the cellular and molecular mechanisms of their activation by TGF(beta) has been investigated in this study. In MC3T3-E1 cells, TGF(beta) enhanced cell proliferation by about 2-fold and induced activation of the three MAP kinases, extracellular regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). Surprisingly, however, whereas activation of Smad2 was rapid and maximal after 15-min incubation, activation of MAP kinases was delayed with p38 stimulation detected after 1-h exposure and activation of ERK and JNK after 3 h, suggesting indirect activation of MAP kinases by TGF(beta). Among factors known to be released in response to TGF(beta) in osteoblastic cells and influence their growth, prostaglandins (PGs) were good candidates that were further investigated for mediating TGF(beta)-induced activation of MAP kinases and cell proliferation. Indomethacin, a selective inhibitor of PG synthesis, completely blunted cell proliferation induced by TGF(beta) and markedly reduced activation of MAP kinases without influencing Smad2 phosphorylation. EP4A, a specific PGE2 receptor antagonist, also blunted TGF(beta)-induced osteoblastic proliferation. In addition to these effects, PGE2 rapidly activated MAP kinases in MC3T3-E1 cells and increased cell proliferation by about 2-fold. The role of each MAP kinases in mediating TGF(beta)- and PGE2-induced cell proliferation was investigated using selective inhibitors. U0126, a specific inhibitor of the ERK pathway, completely blocked both TGF(beta)- and PGE2-induced cell proliferation whereas SB203580 and SP600125, which are selective inhibitors of, respectively, p38 and JNK pathways, had no effect. Finally, the effect of PGE2 on activation of ERK was mimicked by phorbol esters and not by forskolin, and was associated with activation of protein kinase C. This latter effect and the stimulation of ERK induced by PGE2 were completely blocked by a specific inhibitor of PKC. In conclusion, data presented in this study strongly suggest that the local release of PGE2 is involved in cell proliferation induced by TGF(beta) in osteoblastic cells. This effect is mediated by the ERK pathway activated by a PKC-dependent mechanism.  相似文献   

3.
BACKGROUND: Integrin-mediated cell migration is essential for wound repair. Previous studies have shown that the interaction between integrins and the extracellular matrix (ECM) can initiate intracellular signaling pathways to regulate cell movement. Both the focal adhesion kinase (FAK) and the extracellular signal-regulated kinase/activated mitogen-activated protein kinase (ERK/MAPK) signaling pathways are required for efficient cell migration. Our previous work has shown that co-expression of the integrin alpha5beta1 inhibits alphavbeta3-mediated cell migration. We hypothesized that alpha5beta1 may regulate cell migration by modulating these alphavbeta3-mediated intracellular signaling events. METHODS: CHO B3 (alphavbeta3+) and B3C5 (alphavbeta3+/alpha5beta1+) cells were monitored by flow cytometry to determine integrin expression. Cells were allowed to migrate on fibrinogen (FBG)-coated transwells, with or without PD98059, an inhibitor of the ERK activator, mitogen-activated protein kinase kinase (MEK). Fixation, staining, and cell counting were used to quantify cell migration. Cells adherent to FBG were lysed and analyzed for FAK and ERK/MAPK activation by immunoblotting followed by image analysis densitometry. All experiments were repeated in triplicate. RESULTS: Treatment with PD98059 significantly decreased alphavbeta3-mediated cell migration on FBG (P = 0.0001) to a level comparable to untreated B3C5 cells. Following adhesion to FBG, B3 cells demonstrated a marked increase in ERK/MAPK activation compared to B3C5 cells. However, no significant difference was detected in FAK activation. CONCLUSION: Signaling through the ERK/MAPK pathway is required for efficient alphavbeta3-mediated migration on FBG. Inhibition of alphavbeta3-mediated migration by the integrin alpha5beta1 correlates with altered intensity and duration of ERK/MAPK activation, but not FAK activation, in response to adhesion. This suggests a mechanism for the regulatory effect of alpha5beta1 on alphavbeta3-mediated cell migration.  相似文献   

4.
5.
Studies in several cell types indicate that the actions of integrin receptors for extracellular matrix and receptors for growth factors are synergistic in regulating cellular differentiation and function. We studied the roles of the alpha1beta1 and alpha2beta1 integrin collagen receptors in regulating the differentiation of 2T3 osteoblastic cells in response to bone morphogenetic protein (BMP)-2. The immortalized 2T3 cell line was established from the calvaria of mice transgenic for a BMP-2 promoter driving SV40 T-antigen. These cells require exogenous BMP-2, as well as ascorbic acid and beta-glycerolphosphate, for expression of a mature osteoblast phenotype and formation of a mineralized matrix. To determine how integrin receptors for collagen-I affect BMP-2 signaling, function-perturbing anti-rat alpha1 and/or alpha2 integrin subunit, or anti-type I collagen (Col-I), antibodies were added to human recombinant (hr)BMP-2-treated 2T3 cultures at confluence (C0) or at 4 or 8 days postconfluence (C4, C8). After 4 days of exposure to the antibodies, cultures were assayed for alkaline phosphatase (ALP) mRNA levels and enzyme activity and for cAMP production in response to parathyroid hormone. Addition of anti-collagen-I or both anti-integrin-alpha1 and -alpha2 antibodies to C0 cultures blocked expression of these early osteoblast markers by more than 90%, and also blocked mineralization (0.5-1.8% control) of these cells. In all cases, adding anti-alpha1 or anti-alpha2 antibodies separately produced partial effects, while their combined effect approached that of anti-collagen-I. When antibodies were added to more differentiated 2T3 cells, the inhibitory effects decreased. 2T3 cells carrying constitutively active BMP receptor (caBMPR-IB) showed elevated ALP activity without hrBMP-2; this constitutive activity was also suppressed by alpha1 and alpha2 integrin antibodies and by anti-Col-I antibody. Together, our data suggest that a signal(s) from collagen integrin receptors regulates the response to BMP downstream of BMPR-IB and upstream of the regulation of ALP mRNA and other early markers of osteoblast differentiation.  相似文献   

6.
FOP is a disabling disorder in which skeletal muscle is progressively replaced with bone. Lymphocytes, our model system for examining BMP signaling, cannot signal through the canonical Smad pathway unless exogenous Smad1 is supplied, providing a unique cell type in which the BMP-p38 MAPK pathway can be examined. FOP lymphocytes exhibit defects in the BMP-p38 MAPK pathway, suggesting that altered BMP signaling underlies ectopic bone formation in this disease. INTRODUCTION: Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by progressive heterotopic ossification of connective tissues. Whereas the primary genetic defect in this condition is unknown, BMP4 mRNA and protein and BMP receptor type IA (BMPRIA) protein are overexpressed in cultured lymphocytes from FOP patients, supporting that altered BMP signaling is involved in this disease. In this study, we examined downstream signaling targets to study the BMP-Smad and BMP-p38 mitogen-activated protein kinase (MAPK) pathways in FOP. MATERIALS AND METHODS: Protein phosphorylation was assayed by immunoblots, and p38 MAPK activity was measured by kinase assays. To examine BMP target genes, the mRNA expression of ID1, ID3, and MSX2 was determined by quantitative real-time PCR. Statistical analysis was performed using Student's t-test or ANOVA. RESULTS: FOP lymphocytes exhibited increased levels of p38 phosphorylation and p38 MAPK activity in response to BMP4 stimulation. Furthermore, in response to BMP4, FOP cells overexpressed the downstream signaling targets ID1 by 5-fold and ID3 by 3-fold compared with controls. ID1 and ID3 mRNA induction was specifically blocked with a p38 MAPK inhibitor, but not extracellular signal-related kinase (ERK) or c-Jun N-terminal kinase (JNK) inhibitors. MSX2, a known Smad pathway target gene, is not upregulated in control or FOP cells in response to BMP, suggesting that lymphocytes do not use this limb of the BMP pathway. However, introduction of Smad1 into lymphocytes made the cells competent to regulate MSX2 mRNA after BMP4 treatment. CONCLUSIONS: Lymphocytes are a cell system that signals primarily through the BMP-p38 MAPK pathway rather than the BMP-Smad pathway in response to BMP4. The p38 MAPK pathway is dysregulated in FOP lymphocytes, which may play a role in the pathogenesis of FOP.  相似文献   

7.
8.
9.
Bone morphogenetic proteins (BMPs) play an important role in various kinds of pattern formation and organogenesis during vertebrate development. In the skeleton, BMPs induce the differentiation of cells of chondrocytic and osteoblastic cell lineage and enhance their function. However, the action of BMPs on osteoclastic bone resorption, a process essential for pathophysiological bone development and regeneration, is still controversial. In this study, we examine the direct effect of BMPs on osteoclastic bone-resorbing activity in a culture of highly purified rabbit mature osteoclasts. BMP-2 caused a dose- and time-dependent increase in bone resorption pits excavated by the isolated osteoclasts. BMP-4 also stimulated osteoclastic bone resorption. The increase in osteoclastic bone resorption induced by BMP-2 was abolished by the simultaneous addition of follistatin, a BMP/activin binding protein that negates their biological activity. Just as it increased bone resorption, BMP-2 also elevated the messenger RNA expressions of cathepsin K and carbonic anhydrase II, which are key enzymes for the degradation of organic and inorganic bone matrices, respectively. Type IA and II BMP receptors (BMPRs), and their downstream signal transduction molecules, Smad1 and Smad5, were expressed in isolated osteoclasts as well as in osteoblastic cells, whereas type IB BMPR was undetectable. BMPs directly stimulate mature osteoclast function probably mediated by BMPR-IA and BMPR-II and their downstream molecules expressed in osteoclasts. The results presented here expand our understanding of the multifunctional roles of BMPs in bone development.  相似文献   

10.
Phosphorylation of Smad1/5/8 at carboxyl‐terminal serine residues by type I receptors activates downstream bone morphogenetic protein (BMP) signaling. Protein phosphatase magnesium‐dependent 1A (PPM1A) has been shown to suppress BMP activity by dephosphorylating phospho‐Smads. We report here that PPM1A suppresses BMP signaling via a novel mechanism. PPM1A inhibited a constitutively activated Smad1 mutant lacking BMP receptor phosphorylation sites. PPM1A reduced the protein levels not only of Smad1 but also of Smad5 and Smad8. A proteasome inhibitor blocked the inhibitory effects of PPM1A on Smad1, but the Smurf‐binding motif in the Smad1 linker region was not involved in this inhibition. The phosphatase activity of PPM1A is essential for inhibition. Taken together, these findings suggest that through the dephosphorylation of unidentified substrate(s), PPM1A inhibits BMP signaling by decreasing Smad protein levels via the proteasome pathway. Moreover, knockdown of endogenous PPM1A stimulated osteoblastic differentiation, suggesting that PPM1A may physiologically suppress BMP signaling via Smads. © 2010 American Society for Bone and Mineral Research  相似文献   

11.
BACKGROUND: Peritoneal matrix accumulation is a major characteristic of encapsulating peritoneal sclerosis (EPS), which is a serious complication in long-term peritoneal dialysis (PD) patients. We reported previously that TGF-beta stimulates collagen gene expression in cultured HPMC, and is attenuated by pentoxifylline (PTX). The SMAD family and the mitogen-activated protein kinase (MAPK) (ERK1/2, JNK and p38(HOG)) pathways have been shown to participate in TGF-beta signalling. However, how PTX modulates the intracellular signalling downstream to TGF-beta remains undetermined in HPMC. In this study, we explored these signalling pathways in HPMC, and investigated the molecular mechanisms involved in the inhibitory effects of PTX on TGF-beta-induced collagen gene expression in HPMC. METHODS: HPMC was cultured from human omentum by an enzyme digestion method. The expression of collagen alpha1(I) mRNA was determined by northern blotting, while the SMAD proteins and the MAPK kinase activity were determined by western blotting. RESULTS: TGF-beta-stimulated collagen alpha1(I) mRNA expression of HPMC was inhibited by PTX. The Smad2, ERK1/2 and p38(HOG) pathways were activated in response to TGF-beta. However, TGF-beta displayed no activation of the JNK pathway in HPMC. The addition of PD98059 and SB203580, which blocked the activation of ERK1/2 and p38(HOG), respectively, suppressed the TGF-beta-induced collagen alpha1(I) mRNA expression. At a concentration (300 micro g/ml) that inhibited the collagen gene expression, PTX suppressed the ERK1/2 and p38(HOG) activation by TGF-beta. In contrast, PTX had no effect on the TGF-beta-induced activation of Smad2, under the same concentration. CONCLUSION: PTX inhibits the TGF-beta-induced collagen gene expression in HPMC through modulating the ERK1/2 and p38(HOG) pathways. Our study of PTX may provide the therapeutic basis for clinical applications in the prevention of EPS.  相似文献   

12.
Runx2 plays a crucial role in osteoblastic differentiation, which can be upregulated by bone morphogenetic proteins 2 (BMP2). Mitogen-activated protein kinase (MAPK) cascades, such as extracellular signal-regulated kinase (ERK) and p38, have been reported to be activated by BMP2 to increase Runx2 activity. The role of cjun-N-terminal kinase (JNK), the other kinase of MAPK, in osteoblastic differentiation has not been well elucidated. In this study, we first showed that JNK1 is activated by BMP2 in multipotent C2C12 and preosteoblastic MC3T3-E1 cell lines. We then showed that early and late osteoblastic differentiation, represented by ALP expression and mineralization, respectively, are significantly enhanced by JNK1 loss-of-function, such as treatment of JNK inhibitor, knockdown of JNK1 and ectopic expression of a dominant negative JNK1 (DN-JNK1). Consistently, BMP2-induced osteoblastic differentiation is reduced by JNK1 gain-of-function, such as enforced expression of a constitutively active JNK1 (CA-JNK1). Most importantly, we showed that Runx2 is required for JNK1-mediated inhibition of osteoblastic differentiation, and identified Ser104 of Runx2 is the site phosphorylated by JNK1 upon BMP2 stimulation. Finally, we found that overexpression of the mutant Runx2 (Ser104Ala) stimulates osteoblastic differentiation of C2C12 and MC3T3-E1 cells to the extent similar to that achieved by overexpression of wild-type (WT) Runx2 plus JNK inhibitor treatment. Taken together, these data indicate that JNK1 negatively regulates BMP2-induced osteoblastic differentiation through phosphorylation of Runx2 at Ser104. In addition, unraveling these mechanisms may help to develop new strategies in enhancing osteoblastic differentiation and bone formation.  相似文献   

13.
Following the idea that integrin receptors function as mechanotransducers, we applied defined physical forces to integrins in osteoblastic cells using a magnetic drag force device to show how cells sense different modes of physical forces. Application of mechanical stress to the beta1-integrin subunit revealed that cyclic forces of 1 Hz were more effective to stimulate the cellular calcium response than continuous load. Cyclic forces also induced an enhanced cytoskeletal anchorage of tyrosine-phosphorylated proteins and increased activation of the focal adhesion kinase (FAK) and mitogen activated protein (MAP) kinase. These events were dependent on an intact cytoskeleton and the presence of intracellular calcium. Analyses of the intracellular spatial organization of the calcium responses revealed that calcium signals originate in a restricted region in the vicinity of the stressed receptors, which indicates that cells are able to sense locally applied stress on the cell surface via integrins. The calcium signals can spread throughout the cell including the nucleus, which shows that calcium also is a candidate to transmit mechanically induced information into different cellular compartments.  相似文献   

14.
15.
16.
17.
18.
19.
Bone morphogenetic protein (BMP)-2, a member of the transforming growth factor-beta (TGF-beta) superfamily, is able to induce osteoblastic differentiation of C2C12 cells. Both Smad and mitogen-activated protein kinase (MAPK) pathways are essential components of the TGF-beta superfamily signaling machinery. Although Smads have been demonstrated to participate in the BMP-2-induced osteoblastic differentiation of C2C12 cells, the role of MAPK has not been addressed. This report shows that BMP-2 activates ERK and p38, but not JNK, in C2C12 cells. Pretreatment of cells with the p38 inhibitor, SB203580, dramatically reduced BMP-2-induced expression of the osteoblast markers alkaline phosphatase (ALP) and osteocalcin (OC). Nevertheless, overexpression of MKK3, a protein kinase that phosphorylates and activates p38, failed to induce ALP or OC expression in the absence of BMP-2, indicating that p38 activation is necessary but not sufficient for the acquisition of the osteoblast phenotype by these cells. Although ALP induction was increased slightly in the presence of PD-98059, a selective inhibitor of the ERK cascade, this compound significantly inhibited both steady-state and BMP-2-induced OC RNA levels. Our results indicate that p38 and ERK cascades play a crucial role in the osteoblast differentiation of C2C12 cells mediated by BMP-2.  相似文献   

20.
Cell‐matrix interactions constitute a fundamental aspect of skeletal cell biology and play essential roles in bone homeostasis. These interactions are primarily mediated by transmembrane integrin receptors, which mediate cell adhesion and transduce signals from the extracellular matrix to intracellular responses via various downstream effectors, including integrin‐linked kinase (ILK). ILK functions as adaptor protein at focal adhesion sites, linking integrins to the actin cytoskeleton, and has been reported to act as a kinase phosphorylating signaling molecules such as GSK‐3β and Akt. Thereby, ILK plays important roles in cellular attachment, motility, proliferation and survival. To assess the in vivo role of ILK signaling in osteoprogenitors and the osteoblast lineage cells descending thereof, we generated conditional knockout mice using the Osx‐Cre:GFP driver strain. Mice lacking functional ILK in osterix‐expressing cells and their derivatives showed no apparent developmental or growth phenotype, but by 5 weeks of age they displayed a significantly reduced trabecular bone mass, which persisted into adulthood in male mice. Histomorphometry and serum analysis indicated no alterations in osteoclast formation and activity, but provided evidence that osteoblast function was impaired, resulting in reduced bone mineralization and increased accumulation of unmineralized osteoid. In vitro analyses further substantiated that absence of ILK in osteogenic cells was associated with compromised collagen matrix production and mineralization. Mechanistically, we found evidence for both impaired cytoskeletal functioning and reduced signal transduction in osteoblasts lacking ILK. Indeed, loss of ILK in primary osteogenic cells impaired F‐actin organization, cellular adhesion, spreading, and migration, indicative of defective coupling of cell‐matrix interactions to the cytoskeleton. In addition, BMP/Smad and Wnt/β‐catenin signaling was reduced in the absence of ILK. Taken together, these data demonstrate the importance of integrin‐mediated cell‐matrix interactions and ILK signaling in osteoprogenitors in the control of osteoblast functioning during juvenile bone mass acquisition and adult bone remodeling and homeostasis. © 2017 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号