首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation, migration, differentiation, and death. In the nervous system, emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death. Recent studies have suggested that abnormal apoptosis in the central nervous system may be involved in the pathogenesis of autism. Two studies reported that both a microdeletion and microduplication on chromosome 16, which includes the MAPK3 gene that encodes ERK1, are associated with autism. In addition, our recent work showed that Ras/Raf/ERK1/2 signaling activities were significantly up-regulated in the frontal cortex of autistic individuals and in the BTBR murine model of autism. To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of autism, we developed a cellular model of Raf/ERK up-regulation by over-expressing c-Raf in cultured cortical neurons (CNs) and cerebellar granule cells (CGCs). We found that Raf/ERK up-regulation stimulates the migration of both CNs and CGCs, and impairs the formation of excitatory synapses in CNs. In addition, we found that Raf/ERK up-regulation inhibits the development of mature dendritic spines in CNs. Investigating the possible mechanisms through which Raf/ERK up-regulation affects excitatory synapse formation and dendritic spine development, we discovered that Raf/ERK up-regulation suppresses the development and maturation of CNs. Together, these results suggest that the up-regulation of the Raf/ERK signaling pathway may contribute to the pathogenesis of autism through both its impairment of cortical neuron development and causing neural circuit imbalances.  相似文献   

2.
Our aim was to ascertain the role of the extracellular signal-regulated protein kinase (ERK) pathway in human sperm capacitation induced by fetal cord serum ultrafiltrate (FCSu) and its regulation by the superoxide anion (O(2)(-)*). Immunoblotting indicated the presence of Shc, Grb2, Ras(p21), Raf and ERK1 and 2 (ERK1/2) in spermatozoa. Grb2, Ras(p21), Raf and MEK inhibitors dose-dependently prevented sperm capacitation and protein tyrosine phosphorylation, without modifying sperm O(2)(-)* production. Therefore, the whole ERK cascade plays a role in capacitation, downstream of O(2)(-)* but upstream of protein tyrosine phosphorylation. Upon incubation with FCSu, the early (5 min) increase in ERK1/2 activity (as shown by double phosphorylation of the Thr-Glu-Tyr motif) was followed by an important decrease over the next 2 h; superoxide dismutase did not change this pattern. The phosphorylation of the Thr-Glu-Tyr motif present in other sperm proteins (16-33 kDa) also increased (5 min incubation with FCSu) and then progressively decreased, and this effect was regulated by O(2)(-)*, MEK and cAMP. The phospho-Ser/Thr-Pro content (characteristic of ERK1/2 substrates) of Triton-insoluble proteins (75 and 80 kDa) increased during capacitation and also appeared to be regulated by O(2)(-)* and the ERK pathway. Inhibition of ERK1/2 activation reduced lysophosphatidylcholine-induced acrosome reaction and the associated protein tyrosine phosphorylation. These results support a role for the ERK pathway in human sperm function.  相似文献   

3.
In this study, we aimed to investigate the antitumor effects of trichostatin A (TSA), an antifungal antibiotic that inhibits histone deacetylase (HDAC) family of enzymes, alone or in combination with anyone of the three chemotherapeutic agents (cisplatin, gemcitabine, and doxorubicin) for the treatment of human urothelial carcinoma (UC). Two high-grade human UC cell lines (T24 and NTUB1) were used. Cytotoxicity and apoptosis were assessed by MTT assay and flow cytometry, respectively. The expression of phospho-c-Raf, phospho-MEK1/2, and phospho-ERK1/2 was measured by western blotting. ERK siRNA knockdown and the specific MEK inhibitor U0126 were used to examine the role of Raf/MEK/ERK signaling pathway in combined cytotoxicity of TSA and chemotherapy. TSA co-treatment with any one of the three chemotherapeutic agents induced synergistic cytotoxicity (combination index <?1) and concomitantly suppressed chemotherapeutic drug-induced activation of Raf-MEK-ERK pathway. Combination of ERK siRNA knockdown and treatment with the specific MEK inhibitor (U0126) enhanced the cytotoxic effects of the chemotherapy on UC cells. These observations were confirmed in a xenograft nude mouse model. Moreover, activated Raf/MEK/ERK pathway was observed in human bladder UC specimens from patients with chemoresistant status. In conclusion, TSA elicits a synergistic cytotoxic response in combination with chemotherapy via targeting the Raf/MEK/ERK pathway. TSA elicits synergistic cytotoxic response in combination with three DNA-damaging drugs (cisplatin, gemcitabine, and doxorubicin). Activated Raf/MEK/ERK pathway is involved in chemoresistant mechanism of UC. Combining chemotherapeutic agents with HDAC inhibitor (TSA) or with targeting Raf/MEK/ERK pathway is promising to circumvent chemoresistance in UCs.  相似文献   

4.
崔鑫  邢伟 《解剖科学进展》2011,17(2):185-187,191
铝是与脑组织有较大亲和力的神经毒物,可引起神经系统的慢性退行性病变。学习记忆相关脑区海马是铝蓄积于中枢神经系统的重要靶器官。铝通过对信号转导分子及相关转录因子的影响发挥神经毒性作用。Ras/Raf/ERK(Ras/ERK)信号通路与学习记忆功能密切相关。CREB则参与多种神经活动,其中包括突触可塑性和学习记忆。本文对铝暴露干扰学习记忆功能过程予以阐述并提出铝有可能影响Ras/Raf/ERK通路与CREB引发学习记忆障碍。  相似文献   

5.
The TLR agonists, flagellin (FLG) and lipopolysaccharide (LPS) stimulate functional activation and cytokine gene expression via the extracellular signal regulated kinase 1/2 (ERK1/2) MAP kinase cascade. However, the upstream mechanisms of these signaling events remain unknown. In mammals, the small GTP-binding protein Ras mediates ERK1/2 activation through activation of downstream effectors Raf-1-MEK1/2-ERK1/2 in response to a variety of stimuli. It is not clear whether this classic Ras cascade plays a role in TLR signaling in avian cells. In the present study, we investigated the role of Ras in FLG- and LPS-mediated signaling in ERK activation in chicken heterophils. Treatment of heterophils with LPS caused a rapid (within 5min) activation of Ras-GTP. The role of Ras activation in LPS-induced stimulation of ERK1/2 was corroborated when the specific Ras inhibitor, FTI-277, inhibited ERK1/2 activation. The classic Ras-mediated pathway of ERK1/2 activation by LPS was confirmed when the specific Raf-1 inhibitor, GW 5074, and the MEK1/2 inhibitor, U0126, both reduced ERK activation by 51-60%. Of more interest was that treatment of the heterophils with FLG did not activate Ras-GTP. Likewise, neither FTI-277 nor GW 5074 had any effect on FLG-mediated activation of ERK1/2. Another small GTPase, Rap1, has been shown to play a role in mammalian neutrophil function. Using a Rap1-GTP pull-down assay, we found that FLG stimulation, but not LPS, of avian heterophils induced a rapid and transient Rap1 activation. Rap1 has been shown to activate the ERK1/2 via a different Raf family member B-Raf whose downstream effector is MEK1/2. We show here that FLG stimulation of heterophils induces the phosphorylation of Rap1. The FLG induction of the Rap1-->B-Raf-->MEK1/2-->ERK1/2 cascade was confirmed by the reduction of ERK1/2 activation by the specific Rap1 inhibitor (GGTI-298) and U0126. The results demonstrate that for the first time that the small GTPase Ras family is involved in TLR signaling of avian heterophils with the TLR agonists LPS (Ras) and FLG (Rap1) inducing differential signaling cascades to activate the downstream ERK MAP kinase.  相似文献   

6.
The ERK MAP kinase and PI3-kinase/Akt pathways are major intracellular signaling modules, which are known to regulate diverse cellular processes including cell proliferation, survival and malignant transformation. However, it has not been fully understood how these two pathways interact with each other. Here, we demonstrate that inhibition of the ERK pathway by the MEK inhibitor U0126 or PD98059 significantly potentiates EGF- and FGF-induced Akt phosphorylation at both Thr308 and Ser473. We also show that hyperactivation of the ERK pathway greatly attenuates EGF- and FGF-induced Akt phosphorylation. Furthermore, the enhanced Akt phosphorylation induced by U0126 is inhibited by the PI3-kinase inhibitor LY294002, and is accompanied by the up-regulation of Ras activity. These results suggest that the ERK pathway inhibition enhances Akt phosphorylation through the Ras/PI3-kinase pathway. Thus, our results demonstrate that the ERK pathway negatively modulates the PI3-kinase/Akt pathway in response to growth factor stimulation.  相似文献   

7.
Vav is expressed exclusively in hematopoietic cells and becomes phosphorylated on tyrosine in response to antigen receptor ligation. Although Vav can act as a Rac-specific guanine nucleotide exchange factor in vitro and as a c-Jun N-terminal kinase (JNK) activator in ectopic expression systems, its physiological functions in lymphocytes remain unclear. Indirect evidence suggests that Vav interacts with the Ras/ERK pathway in T cells. Here, we analyzed the effects of Vav on three known downstream targets of Ras, i. e. activation of ERK and NFAT, and up-regulation of the activation antigen CD69. The MEK inhibitor PD90859 inhibited Vav-induced activation of ERK, and Vav- or anti-CD3-induced activation of NFAT, suggesting that MEK and ERK are involved in Vav-mediated NFAT activation. Similarly to Ras, Vav cooperated with constitutively active calcineurin and with ERK to activate NFAT, and was capable of up-regulating CD69 expression in T cells. Moreover, these Vav-mediated functions were all inhibited by a dominant negative Ras mutant. Conversely, however, dominant negative Vav did not inhibit NFAT and ERK activation or CD69 expression induced by an active Ras mutant. These findings indicate that Ras functions as an important downstream target of Vav in signaling pathways that lead to NFAT and ERK activation, and to CD69 expression. Moreover, the finding that Vav- (or Ras-) induced CD69 expression was not inhibited by a dominant negative Rac mutant indicates that Vav mediates some Ras-dependent, but Rac-independent, functions in T cells.  相似文献   

8.
Li W  Han M  Guan KL 《Genes & development》2000,14(8):895-900
Caenorhabditis elegans sur-8 encodes a positive regulator of Ras signaling. We investigated the mechanism by which the human Sur-8 homolog can positively regulate Ras-MAP kinase signaling in mammalian cells. Sur-8 expression enhances Ras- or EGF-induced Raf and ERK activation but has no effect on ERK activation induced by active Raf or MEK. Furthermore, Sur-8 expression does not increase AKT or JNK activation. Sur-8 interacts with Ras and Raf and is able to form a ternary complex with the two proteins. Thus, Sur-8 may function as a scaffold that enhances Ras-MAP kinase signal transduction by facilitating the interaction between Ras and Raf.  相似文献   

9.
Pentoxifylline (PTX), which is a xanthine derivative, is a well-known suppressor of tumor necrosis factor-alpha (TNF-alpha) production in inflammatory cells and has also been shown to inhibit collagen synthesis in hepatic stellate cells (HSCs) in vitro. The present study aimed to evaluate the effects of PTX on proliferation in HSCs as mediated by the Raf/MEK/extracellular-signal-regulated kinase (ERK) signaling pathway. The rat hepatic stellate cell line T6 and activated primary rat HSCs were used in this study. The proliferation rate of the cells treated with 1 mM PTX significantly decreased compared with that of the control in T6 cells (78.3 ± 6.03% at 12 h, 61.0 ± 7.55% at 24 h, and 44.7 ± 2.08% at 48 h, p < 0.05). PTX (1 mM) also decreased the fraction of the HSC population in the S and G2/M-phases of the cell cycle in primary activated rat HSCs. The Raf-1 inhibitor GW5074 and the ERK inhibitor U0126 had inhibitory effects that were similar to those of PTX on HSC proliferation. In addition, PTX inhibited the phosphorylation of Raf-1 (p-Raf-1) and ERK (p-ERK) in a dose- and time-dependent manner in HSCs. These data provide evidence that PTX suppresses HSC proliferation via the Raf/MEK/ERK pathway.  相似文献   

10.
银屑病是一种病因不明的自身免疫性炎症性多基因遗传的皮肤疾病,其病理变化的形成需要多种信号通路和细胞因子的共同参与.近年来关于银屑病相关细胞因子信号转导通路及细胞调控信号的研究受到广泛关注,其中IL-6触发的三条途径,包括Ras/Raf/MEK/ERK途径、PI3K/AKt途径和JAK/STAT途径,共同促进银屑病角质形成细胞增殖、炎症反应及血管生成等病理变化;下面针对IL-6信号通路在银屑病发病机制中的研究进展做一综述.  相似文献   

11.
Mechanisms that regulate signal propagation through the ERK/MAPK pathway are still poorly understood. Several proteins are suspected to play critical roles in this process. One of these is Kinase Suppressor of Ras (KSR), a component previously identified in RAS-dependent genetic screens in Drosophila and Caenorhabditis elegans. Here, we show that KSR functions upstream of MEK within the ERK/MAPK module. In agreement with this, we found that KSR facilitates the phosphorylation of MEK by RAF. We further show that KSR associates independently with RAF and MEK, and that these interactions lead to the formation of a RAF/MEK complex, thereby positioning RAF in close proximity to its substrate MEK. These findings suggest that KSR functions as a scaffold that assembles the RAF/MEK functional pair.  相似文献   

12.
目的: 研究干扰素诱导蛋白p204对大鼠血管平滑肌细胞(VSMCs)增殖的影响并探讨其可能的机制。方法: 应用干扰素α(IFN-α)和p204基因(Ifi204)的小干扰RNA(siRNA)瞬时干预体外培养的VSMCs,用MTT法测定细胞活力反映细胞增殖,流式细胞术分析细胞周期,用实时 qRT-PCR法和Western blotting 分别检测mRNA和蛋白表达。结果: IFN-α可诱导大鼠VSMCs p204 mRNA和蛋白表达上调,抑制VSMCs细胞活力和细胞周期G1/S转换,伴Ras蛋白表达减少,Raf和ERK磷酸化水平下降。转染Ifi204 siRNA可抑制p204表达,提高VSMCs细胞活力和促进细胞周期G1/S转换,伴Ras蛋白表达增多,Raf和ERK磷酸化水平升高。结论: p204表达可抑制鼠VSMCs的增殖,该效应可能与p204抑制Ras/Raf/MEK/ERK信号通路的激活有关。  相似文献   

13.
胶质细胞系源性神经营养因子(GDNF)可以通过跨膜的酪氨酸蛋白激酶受体RET激活细胞内两条信号通路,即磷脂酰肌醇3激酶(PI3K)信号通路和Ras/Raf/MEK/Erk信号通路。为探讨在GDNF促进中脑多巴胺(DA)能神经细胞存活和分化过程中,上述两条信号通路所发挥的作用,本研究在建立GDNF促进中脑DA能神经细胞存活和分化的细胞培养模型的基础上,以PI3K信号通路中PI3K的特异性抑制剂Wortmannin和Ras/Raf/MEK/Erk信号通路中MEK的特异性抑制剂PD98059分别阻断上述两条信号通路;结合免疫细胞化学染色技术,以DA合成的限速酶酪氨酸羟化酶(TH)的染色情况为指标来观察上述两条信号通路对DA能神经细胞存活和分化的影响。结果显示,Wortmannin可以阻断GDNF促进TH阳性神经细胞数目及其突起增加的作用;而PD98059对GDNF的生物学效应没有影响。结果提示PI3K而非Ras/Raf/MEK/Erk信号通路介导了GDNF对中脑DA能神经细胞存活和分化的促进作用。  相似文献   

14.
Amphetamine analogs are known to induce not only neurotoxicity at serotonergic axon terminals but also neocortical neuronal degeneration. However, a much less studied aspect involves the impact of amphetamine exposure on neuronal development. The present study investigated whether pretreatment of PC12 cells with dioxyamphetamine (DA) alters differentiation of PC12 cells by NGF and, if so, which components of the Ras/Raf/MEK/ERK pathway known to be involved in the differentiation response to NGF are particularly affected. Though exposure of PC12 cells to DA 1 h prior to NGF treatment resulted in apopotosis, several PC12 cells survived. However, neurite outgrowth of these NGF-responsive cells was repressed. Immunoblots of whole cell extracts revealed a strong induction rather than inhibition of ERK phosphorylation up to 48 h after DA/NGF treatment. Our results indicate that NGF-mediated neurite outgrowth was inhibited by pretreatment with DA, and this blockage of NGF-induced neuritogenesis was not due to an inhibition of ERK phosphorylation.  相似文献   

15.
Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are aggressive myeloproliferative neoplasms that are incurable with conventional chemotherapy. Mutations that deregulate Ras signaling play a central pathogenic role in both disorders, and Mx1-Cre, Kras(LSL-G12D) mice that express the Kras oncogene develop a fatal disease that closely mimics these two leukemias in humans. Activated Ras controls multiple downstream effectors, but the specific pathways that mediate the leukemogenic effects of hyperactive Ras are unknown. We used PD0325901, a highly selective pharmacological inhibitor of mitogen-activated or extracellular signal-regulated protein kinase kinase (MEK), a downstream component of the Ras signaling network, to address how deregulated Raf/MEK/ERK (extracellular signal-regulated kinase) signaling drives neoplasia in Mx1-Cre, Kras(LSL-G12D) mice. PD0325901 treatment induced a rapid and sustained reduction in leukocyte counts, enhanced erythropoiesis, prolonged mouse survival, and corrected the aberrant proliferation and differentiation of bone marrow progenitor cells. These responses were due to direct effects of PD0325901 on Kras mutant cells rather than to stimulation of normal hematopoietic cell proliferation. Consistent with the in vivo response, inhibition of MEK reversed the cytokine hypersensitivity characteristic of Kras(G12D) hematopoietic progenitor cells in vitro. Our data demonstrate that deregulated Raf/MEK/ERK signaling is integral to the growth of Kras-mediated myeloproliferative neoplasms and further suggest that MEK inhibition could be a useful way to ameliorate functional hematologic abnormalities in patients with CMML and JMML.  相似文献   

16.
Renal cell carcinoma (RCC) is common genitourinary malignancy in human, 30-40% of patients with RCC would be diagnosed with metastatic RCC (mRCC). Even in the era of targeted therapy, patients with mRCC would inevitably progress due to drug resistance. Herein, exploration of the mechanisms of resistance is noteworthy to study. In the present study, we firstly reported the expression profile of SOX9 in renal carcinoma cells and tissues, and found that its expression was significantly associated with Fuhrman grading. Dual luciferase analysis confirmed that Raf/MEK/ERK pathway could directly be regulated by SOX9, and sequential experiments demonstrated that, renal carcinoma cells could sensitize to Sorafenib/Sunitinib through Raf/MEK/ERK signaling pathway inhibition regulated by SOX9 down-regulation. In a small cases with mRCC treated with Sorafenib/Sunitinib (n=38), comparative analysis showed that patients with SOX9 (-) had much better therapeutic response to TKIs than those with SOX9 (+) (PD: 9.1% vs. 56.2%, P=0.002, DCR: 90.9% vs. 43.8%, P=0.002). Based on these findings, we concluded that, SOX9 was firstly described to be highly expressed in renal cell carcinoma, and its expression was involved in TKIs drug resistance through activation of Raf/MEK/ERK pathway. In vitro, patients with SOX9 (-) was related to better response to TKIs treatment than thoses with SOX9 (+). SOX9 could be expected to be a promising biomarker predicting TKIs response and even expected to be another novel target in the treatment of mRCC.  相似文献   

17.
Dexamethasone (DEX), one of the corticosteroid hormones, is one of the most common therapeutic strategies in ophthalmological treatment. Despite its widespread use and clinical efficiency, little is known regarding the specific effects of DEX on cell growth, differentiation and cell death in human trabecular meshwork cells. The presence of the glucocorticoid receptor (GR, dexamethasone receptor) in TM-5 cell line, which was derived from the primary human trabecular meshwork cells, was verified by RT-PCR and western blot analysis. The effects of DEX on the cellular proliferation of TM5 cells were measured by a BrdU incorporation assay. Western blot analysis were used to examine the effects of DEX on the Ras/MEK/ERK signaling pathway. The total Ras, MEK1/2 and ERK1/2 protein levels as well as the levels of activated (phosphorylated) form were both significantly increased by the DEX treatment for 5 days. Both MEK1/2 and ERK1/2 were significantly activated by phosphorylation after 10 minutes. The dependence of this increased cell proliferation on GR activation by DEX and the sustained activation of ERK was examined using RU486 (a GR inhibitor) and U0126 (a MEK inhibitor). Both RU486 and U0126 prevented the induction of cell proliferation by the DEX treatment in the TM5 cells. In conclusion this study demonstrated that GR is expressed in TM5 cells. Secondly, DEX treatment for 5 days stimulates cell proliferation in TM5 cells, and that this increased proliferation effect is mediated by the Ras/MEK/ERK pathway.  相似文献   

18.
BACKGROUND Enhanced proliferation and survival of eutopic endometrial cells from patients with endometriosis compared with healthy women is associated with abnormal activation of extra-cellular signal-regulated kinases 1 and 2 (ERK1/2). Given the role of Ras/Raf/mitogen-activated protein kinase (MAPK) and RhoA/ROCKII signalling pathways in the regulation of cell proliferation and migration, we analysed their possible roles in endometriosis. METHODS Primary eutopic endometrial stromal cells of patients with endometriosis (Eu-hESC, n= 16) and endometriosis-free controls (Co-hESC, n= 14) were harvested and subjected to proliferation and migration assays as well as kinase activity assays and immunoblot analysis of proteins from the Ras/Raf/MAPK and RhoA/ROCKII signalling pathways. Effects of ROCKII (Y-27632) and MAPK (U0126) inhibitors or siRNA knockdown of ROCKII, Raf-1 and B-Raf were analysed. RESULTS The proliferation rate of Eu-hESC was 54% higher than Co-hESC. Eu-hESC also displayed a 75% higher migration rate than Co-hESC. Eu-hESC displayed higher levels of ERK phosphorylation (83%) and p27 expression (61%) and lower levels of Raf-1 protein (47%) compared with controls. In addition to an inhibitory effect on cell proliferation, ROCKII knockdown led to significant down-regulation of cyclinD1 and p27 but did not affect ERK phosphorylation. Down-regulation of Raf-1 by siRNA was dispensable for cell proliferation control but led to an increase in ROCKII activity and a decrease in cell migration. B-Raf was shown to act as a regulator of hESC proliferation by modulating cellular ERK1/2 activity and cyclinD1 levels. Eu-hESC displayed 2.4-fold higher B-Raf activity compared with Co-hESC and therefore exhibit abnormally activated Ras/Raf/MAPK signalling. CONCLUSIONS We show that the same molecular mechanisms operate in Co- and Eu-hESC. The differences in cell proliferation and migration between both cell types are likely due to increased activation of Ras/Raf/MAPK and RhoA/ROCKII signalling pathways in cells from endometriosis patients.  相似文献   

19.
20.
BackgroundBreast cancer is the most frequent carcinoma in females, which could be classified to 4 subtypes and the current treatment is still far from satisfactory. In this study, we explored the effects of autophagy inhibition on certain subtypes of breast cancer and the molecular mechanism underlying the different response for breast cancer subtypes initially.MethodsAutophagy inhibitor hydroxychloroquine (HCQ) was used to identify the sensitivity of breast cancer subtypes to autophagy inhibition in the present study. Cell proliferation and cell invasion were assessed by Cell Counting Kit-8 assay (CCK-8) and transwell assay, respectively. Immunofluorescence staining and western blotting were applied to evaluate cell autophagy. In addition, levels of Ras/Raf/ERK signaling pathway were evaluated by western blotting.ResultsOur results showed that HCQ treatment suppressed breast cancer cell proliferation and migration in especially SUM-190 cells, which was most sensitive. Furthermore, HCQ inhibited cell autophagy in breast cancer cells by regulating levels of p62, LC3-I and LC3-II. Moreover, the expression of Ras was significant lower than other breast cancer cells. HCQ treatment markedly inhibited the activation of Ras/Raf/ERK signaling in SUM190 cells.ConclusionTo conclude, basal-like breast cancer represented by SUM-190 cells may be most sensitive to HCQ induced autophagy inhibition and the mechanism might be relative to Ras/Raf/ERK signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号