首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fulda S  Strauss G  Meyer E  Debatin KM 《Blood》2000,95(1):301-308
Activation-induced cell death (AICD) in T cells is mediated by CD95 ligand (CD95L)/receptor interaction, which has also been implicated in apoptosis induction by some anticancer agents. In this article we show that both anti-CD3-triggering (AICD) and doxorubicin treatment led to the production of a functionally active CD95L in the CD3+/T-cell receptor-positive (TCR+) T leukemia cell line H9. CD95L-expressing H9 cells killed CD95-sensitive J16 or CEM target cells, but not CD95-resistant CEM or J16 cells overexpressing dominant negative FADD (J16/FADD-DN). By immunoprecipitation, CD95L was physically bound to CD95, suggesting that AICD and doxorubicin-induced apoptosis involve CD95L-mediated CD95 aggregation, thereby triggering the CD95 death pathway. CD95 aggregation was associated with the recruitment of FADD and caspase-8 to the CD95 receptor to form the CD95 death-inducing signaling complex (DISC), resulting in caspase-8 activation and cleavage of the effector caspase-3 and PARP. Blocking of the CD95L/receptor interaction by antagonistic antibodies to CD95 or to CD95L also blocked AICD and inhibited the early phase of doxorubicin-induced apoptosis, though cell death induced by doxorubicin eventually proceeded in a CD95-independent manner. These findings may explain some conflicting data on the role of death receptor systems in drug-induced apoptosis. Thus, in cells with an inducible CD95 receptor/ligand system, drug-induced apoptosis may be mediated by CD95L-initiated DISC formation and activation of downstream effector programs similar to AICD in T cells. (Blood. 2000;95:301-308)  相似文献   

2.
The activation of caspase-8, a crucial upstream mediator of death receptor signaling, was investigated in epirubicin- and Taxol-induced apoptosis of B-lymphoma cells. This study was performed because the CD95/Fas receptor-ligand interaction, recruitment of the Fas-associated death domain (FADD) adaptor protein, and subsequent activation of procaspase-8 have been implicated in the execution of drug-induced apoptosis in other cell types. Indeed, active caspase-8 was readily detected after treatment of mature and immature B-lymphoid cells with epirubicin or Taxol. However, neither constitutive nor drug-induced expression of the CD95/Fas ligand was detectable in B-lymphoma cells. Furthermore, overexpression of a dominant-negative FADD mutant (FADDdn) did not block caspase-8 processing and subsequent DNA fragmentation, indicating that drug-induced caspase-8 activation was mediated by a CD95/Fas-independent mechanism. Instead, caspase-8 cleavage was slightly preceded by activation of caspase-3, suggesting that drug-induced caspase-8 activation in B-lymphoma cells is a downstream event mediated by other caspases. This assumption was confirmed in 2 experimental systems-zDEVD-fmk, a cell-permeable inhibitor of caspase-3-like activity, blocked drug-induced caspase-8 cleavage, and depletion of caspase-3 from cell extracts impaired caspase-8 cleavage after in vitro activation with dATP and cytochrome c. Thus, these data indicate that drug-induced caspase-8 activation in B-lymphoma cells is independent of death receptor signaling and is mediated by postmitochondrial caspase-3 activation.  相似文献   

3.
K Stahnke  S Fulda  C Friesen  G Strauss  K M Debatin 《Blood》2001,98(10):3066-3073
In addition to myelosuppression, anticancer drugs cause rapid and persistent depletion of lymphocytes, possibly by direct apoptosis induction in mature T and B cells. Induction of apoptosis regulators was analyzed in peripheral blood lymphocytes from pediatric patients undergoing first-cycle chemotherapy for solid tumors. In vivo chemotherapy induced a significant increase in lymphocyte apoptosis ex vivo. The activation of initiator caspase-8 and effector caspase-3 and the cleavage of caspase substrates was detected 12 to 48 hours after the onset of therapy. Caspase inhibition by Z-VAD-fmk did not reduce ex vivo lymphocyte apoptosis in all patients, indicating the additional involvement of caspase-independent cell death. No evidence for the involvement of activation-induced cell death was found in the acute phase of lymphocyte depletion as analyzed by activation marker expression and sensitivity for CD95 signaling. Lymphocyte apoptosis in vivo appeared to be predominantly mediated by the mitochondrial pathway because a marked decrease of mitochondrial membrane potential (DeltaPsi(M)) was detected after 24 to 72 hours of treatment, preceded by the increased expression of Bax. Interestingly, despite the use of DNA-damaging agents, p53 remained completely undetectable throughout treatment. In contrast, in vitro treatment with cytarabine and etoposide induced p53 protein, CD95 receptor expression, CD95 sensitivity, and CD95 receptor-ligand interaction in stimulated cycling lymphocytes, but no such induction was seen in resting cells. These data suggest that chemotherapy-induced lymphocyte depletion involves distinct mechanisms of apoptosis induction, such as direct mitochondrial and caspase-dependent pathways in resting cells and p53-dependent pathways in cycling lymphocytes.  相似文献   

4.
DESIGN: HIV Env interaction with the corresponding chemokine receptor dictates the molecular mechanism of death of both HIV-infected and uninfected primary CD4 T cells. CXCR4/T tropic HIV virus (X4) triggers CD4 T cell death through a caspase independent mechanism, whereas CCR5/M tropic HIV virus (R5) HIV triggers a caspase dependent death. In the present study, we have investigated the pathway whereby R5 Env-CR5 interactions lead to a caspase dependent cell death. METHODS: CD4 T cells were infected with X4 or R5 HIV strains, or were mock infected. After infection, cells were treated with caspase inhibitors or decoys of death receptor signaling pathways and cell viability was analyzed. The role of R5 HIV Env in induction of cell death of uninfected T cells was analyzed by co-culturing uninfected CD4 T cells with R5 Env expressing cells in the absence or presence of various inhibitors of death receptor signaling. RESULTS: Infection of CD4 T cells with R5, but not with X4 HIV strains results in the activation of caspase-8 and cell death that is reversed by a decoy of the Fas receptor. Isolated activation of CCR5 by membrane-bound, or soluble R5 Env causes a Fas- and caspase-8 dependent death also of uninfected CD4 T cells. Additional studies demonstrate that isolated CCR5 activation by R5 Env leads to both de novo expression of FasL and induction of susceptibility to Fas-mediated apoptosis in resting primary CD4 T cells. CONCLUSIONS: These results ascribe to CCR5 a novel role in activating the Fas pathway and caspase-8 as well as triggering FasL production when activated by R5 Env, ultimately causing CD4 T cell death.  相似文献   

5.
Geering B  Gurzeler U  Federzoni E  Kaufmann T  Simon HU 《Blood》2011,117(22):5953-5962
The most common form of neutrophil death is apoptosis. In the present study, we report surprising differences in the molecular mechanisms used for caspase activation between FAS/CD95-stimulated and TNF receptor 1 (TNFR1)-stimulated neutrophils. Whereas FAS-induced apoptosis was followed by caspase-8 activation and required Bid to initiate the mitochondrial amplification loop, TNF-α-induced apoptosis involved class IA PI3Ks, which were activated by MAPK p38. TNF-α-induced PI3K activation resulted in the generation of reactive oxygen species, which activated caspase-3, a mechanism that did not operate in neutrophils without active NADPH oxidase. We conclude that in neutrophils, proapoptotic pathways after TNFR1 stimulation are initiated by p38 and PI3K, but not by caspase-8, a finding that should be considered in anti-inflammatory drug-development strategies.  相似文献   

6.
A Khwaja  L Tatton 《Blood》1999,94(1):291-301
Neutrophils undergo constitutive apoptosis when aged ex vivo. Recent studies have indicated roles for Fas/CD95 and the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase system in this process. We have investigated the role of protein kinase C (PKC) in neutrophil death. We show that there is proteolysis and activation of the novel isoform PKCdelta in aged neutrophils and that this process is accelerated by the addition of an agonistic Fas antibody. PKCdelta proteolysis occurs before the onset of any detectable features of apoptosis and pharmacologic inhibition of this enzyme inhibits neutrophil apoptosis. PKCdelta cleavage and activation is dependent on caspase-8/FADD-like interleukin-1beta converting enzyme (FLICE)-mediated processing of caspase-3/CPP32. Neutrophil survival is prolonged by the addition of broad spectrum (BD.fmk) or caspase-8 targeted (zIETD.fmk) peptide caspase inhibitors. Inhibition of PKCdelta does not prevent apoptosis triggered by factor withdrawal in immature hematopoietic cells, including normal human CD34(+) progenitors indicating that within a given lineage, the mechanisms of apoptosis may be differentiation-stage-specific. Ex vivo aging of neutrophils leads to the increasing production of reactive oxygen species and this is attenuated in cells treated with either caspase or PKCdelta inhibitors. Proteolytically activated PKCdelta acts as a molecular link between the Fas/CD95 receptor and the NADPH-oxidase system and plays a central role in regulating the process of neutrophil apoptosis.  相似文献   

7.
The death receptor CD95 plays a pivotal role in immune surveillance and immune tolerance. Binding of CD95L to CD95 leads to recruitment of the adaptor protein Fas-associated death domain protein (FADD), which in turn aggregates caspase-8 and caspase-10. Efficient formation of the CD95/FADD/caspase complex, known as the death-inducing signaling complex (DISC), culminates in the induction of apoptosis. We show that cells exposed to CD95L undergo a reorganization of the plasma membrane in which the Ca(2+) release-activated Ca(2+) channel Orai1 and the endoplasmic reticulum-resident activator stromal interaction molecule 1 colocalize with CD95 into a micrometer-sized cluster in which the channel elicits a polarized entry of calcium. Orai1 knockdown and expression of a dominant negative construct (Orai1E106A) reveal that on CD95 engagement, the Orai1-driven localized Ca(2+) influx is fundamental to recruiting the Ca(2+)-dependent protein kinase C (PKC) β2 to the DISC. PKCβ2 in turn transiently holds the complex in an inactive status, preventing caspase activation and transmission of the apoptotic signal. This study identifies a biological role of Ca(2+) and the Orai1 channel that drives a transient negative feedback loop, introducing a lag phase in the early steps of the CD95 signal. We suggest that these localized events provide a time of decision to prevent accidental cell death.  相似文献   

8.
Cellular stress response and apoptosis in cancer therapy.   总被引:56,自引:6,他引:50       下载免费PDF全文
I Herr  K M Debatin 《Blood》2001,98(9):2603-2614
Anticancer treatment using cytotoxic drugs is considered to mediate cell death by activating key elements of the apoptosis program and the cellular stress response. While proteolytic enzymes (caspases) serve as main effectors of apoptosis, the mechanisms involved in activation of the caspase system are less clear. Two distinct pathways upstream of the caspase cascade have been identified. Death receptors, eg, CD95 (APO-1/Fas), trigger caspase-8, and mitochondria release apoptogenic factors (cytochrome c, Apaf-1, AIF), leading to the activation of caspase-9. The stressed endoplasmic reticulum (ER) contributes to apoptosis by the unfolded protein response pathway, which induces ER chaperones, and by the ER overload response pathway, which produces cytokines via nuclear factor-kappaB. Multiple other stress-inducible molecules, such as p53, JNK, AP-1, NF-kappaB, PKC/MAPK/ERK, and members of the sphingomyelin pathway have a profound influence on apoptosis. Understanding the complex interaction between different cellular programs provides insights into sensitivity or resistance of tumor cells and identifies molecular targets for rational therapeutic intervention strategies.  相似文献   

9.
The destruction of CD4 T cells in human immunodeficiency virus (HIV) infection is associated with activation of apoptotic programs, partly mediated by death receptors. The role of CD95L/CD95 in depletion of patients' CD4 T cells is well documented, but the possible contribution of the tumor necrosis factor/tumor necrosis factor receptor (TNF/TNFR) pathway has not been examined. In this study, we found that both TNFR1 and TNFR2 induced marked apoptosis in peripheral T cells from HIV-infected persons, involving both CD4 and CD8 T cells. Longitudinal follow-up of HIV(+) patients suggests an association between the in vivo evolution of CD4 T-cell numbers and variations in susceptibility to TNFR-induced apoptosis. Analysis of molecular mechanisms involved showed that it was not related to altered ex vivo expression of TNFR1-associated death domain, receptor interacting protein, or TNFR-associated factor 2. Susceptibility to TNFR-mediated apoptosis was rather related to Bcl-2 expression, because patients' T cells expressing high levels of Bcl-2 were completely protected from TNFR1- and TNFR2-induced cell death, whereas T cells expressing normal levels of Bcl-2 were not protected in patients in contrast to controls. Early recruitment of caspase-8 and caspase-3 is needed to transduce the apoptotic signals, and expression of both caspases in their active form was detected in blood T cells from HIV(+) patients, whereas it was hardly detected in controls. Moreover, ligation of TNFRs induced increased activation of both caspases in patients' T cells. Together these data demonstrate that exacerbated TNFR-mediated cell death of T cells from HIV-infected individuals is associated with both alteration of Bcl-2 expression and activation of caspase-8 and caspase-3 and may contribute to the pathogenesis of acquired immunodeficiency syndrome.  相似文献   

10.
PURPOSE: Cantharidin, a natural toxin, is the active substance of mylabris and has antitumor effects in man. Norcantharidin, the demethylated analogue of cantharidin, has been used in the treatment of patients with primary hepatoma and those with leukopenia in China. The present study was designed to investigate whether norcantharidin exerts cytotoxic activity against colorectal cancer cells by inducing apoptosis and to examine the possible mechanism in the phenomenon. METHODS: Inhibition of proliferation of norcantharidin on Colo205, HT-29, and SW480 colorectal cancer cells was determined by the trypan blue dye exclusion test. Apoptosis of norcantharidin-treated cells was determined by morphological analysis, agarose gel DNA electrophoresis, and quantitated by flow cytometry after staining with propidium iodide. Cell cycle and the cell surface expression of the CD95/CD95 ligand were evaluated by flow cytometry. Caspase 8-like protease and protein phosphatase 1 and 2A activities were also analyzed. RESULTS: Treatment with norcantharidin of colorectal cancer cells not only inhibited cell proliferation, but also induced apoptosis. Norcantharidin induced apoptosis mainly in two phases: rapid apoptosis in S-phase cells and delayed apoptosis in G2/M arrested cells. Treatment with norcantharidin resulted in an upregulation of the CD95 receptor and CD95 ligand on the cell surface. Furthermore, stimulation with anti-CD95 monoclonal antibody (mAb) resulted in further induction of apoptosis after treatment with norcantharidin. In addition, the apoptosis-inducing effect of norcantharidin was almost completely inhibited by anti-CD95 ligand mAb. Norcantharidin-treated cells showed the activation of caspase 8. Both zVAD-FMK (a broad range caspase inhibitor) and IETD-FMK (a caspase-8 inhibitor) showed apparent inhibition of the apoptosis-inducing effect. Norcantharidin did not show an inhibitory effect on protein phosphatase. CONCLUSIONS: These results suggest that norcantharidin triggers apoptosis in colorectal cancer cell lines via the activation of the CD95 receptor/ligand system, and that this agent may be useful for developing new therapeutic regimens for the treatment of colorectal carcinoma.  相似文献   

11.
Immune disorders caused by defects in the caspase cascade   总被引:1,自引:0,他引:1  
In the immune system, lymphocyte activation by antigen is followed by cell proliferation and induction of effector functions. Subsequently, physiologic cell-death signals are induced, resulting in removal of expanded effector-cell populations, to maintain homeostasis. Caspases are intracellular participants in both activation responses and cell death by apoptosis. Targets of caspases include inflammatory activators and also other members of the caspase family that mediate apoptosis. Caspase-8 and caspase-10 participate in the protease cascade following cell surface CD95 engagement by its ligand. Humans with defects in these caspases were initially evaluated for the autoimmune lymphoproliferative syndrome because of their spleen and lymph node enlargement. Although both caspase-8- and caspase-10-deficient individuals had impaired apoptosis, those with caspase-8 deficiency, who also had immunodeficiency, had additional defects in activation of lymphocytes and natural killer cells. These disorders help to define the importance and specificity of the caspase proteases in intracellular signaling pathways.  相似文献   

12.
T-cell apoptosis is a mechanism regulating T-cell homeostasis. Activation renders T cells susceptible to activation-induced cell death, a process mediated through CD95 ligand/CD95 (Apo-1/Fas) ligation. The aim of this study was to test whether antigen-presenting cells can inhibit CD95/Fas-triggered activation-induced cell death. Dendritic cells (DC), which are highly effective antigen-presenting cells, were generated in vitro from human peripheral blood monocytes by culture in granulocyte-macrophage colony-stimulating factor and interleukin 4. Subsequently, DC were cocultured with activated T cells and the effect of DC on CD95/Fas-mediated apoptosis was determined. Coculture with increasing amounts of DC prevented CD95/Fas-triggered apoptosis in a dose-dependent fashion by inhibiting activation of caspase 8 and caspase 3. This protective effect of the DC on T-cell death could be blocked by 50% by adding an anti-CD58 antibody, whereas further addition of anti-CD80 (B7.1) and anti-CD86 (B7.2) led to an even more pronounced effect. Our findings suggest that DC can protect T cells from activation-induced cell death, with CD58 ligation playing a key role.  相似文献   

13.
Activated phagocytes express considerable amounts of MRP8 and MRP14, 2 calcium-binding S100 proteins forming stable heterodimers that are specifically secreted at inflammatory sites in many diseases. We previously reported that treatment of human microvascular endothelial cells with purified MRP8/MRP14 leads to loss of endothelial cell contacts. In this study, we demonstrate that MRP8/MRP14 complexes furthermore trigger cell death of endothelial cells after the onset of cell detachment. Morphologic analysis of dying endothelial cells revealed characteristic features of both apoptosis and necrosis. Furthermore, MRP8/MRP14 induced apoptotic caspase-9 and caspase-3 activation, DNA fragmentation, and membrane phosphatidylserine exposure in target cells. These events were independent of death receptor signaling and in part controlled by a mitochondrial pathway. Consistently, overexpression of antiapoptotic Bcl-2 abrogated caspase activation and externalization of phosphatidylserine; however, MRP8/MRP14 still induced plasma membrane damage and even DNA fragmentation. Thus, our results demonstrate that MRP8/MRP14 triggers cell death via caspase-dependent as well as -independent mechanisms. Excessive release of cytotoxic MRP8/MRP14 by activated phagocytes might therefore present an important molecular pathomechanism contributing to endothelial damage during vasculitis and other inflammatory diseases.  相似文献   

14.
O Cuvillier  E Mayhew  A S Janoff  S Spiegel 《Blood》1999,94(10):3583-3592
ELL-12, a liposome formulation of the ether-lipid 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (ET-18-OCH(3)), is a nonmyelosuppressive antiproliferative agent that is more effective and less toxic than the ether lipid itself in tumor model systems. We found that ELL-12 induced apoptosis in Jurkat, H9, and U-937 cells that was preceded by activation of executioner caspases. In addition, ELL-12 triggered release of cytochrome c from mitochondria to the cytoplasm before caspase-9 activation. Apoptosis, activation of caspases, and cytochrome c release were blocked by Bcl-x(L) overexpression in Jurkat T cells, suggesting a critical role for mitochondria in ELL-12-triggered cell death. Furthermore, ELL-12 had no effect on expression of CD95 ligand, and inhibition of the Fas signaling pathway with antagonistic anti-CD95 antibody did not affect apoptosis induced by ELL-12. Hence, ELL-12 could be a promising adjunct for the treatment of tumors in addition to myelosuppressive chemotherapeutic drugs and/or those that use the CD95-ligand/receptor system to trigger apoptosis.  相似文献   

15.
We have previously shown that nitric oxide (NO) stimulates apoptosis in different human neoplastic lymphoid cell lines through activation of caspases not only via CD95/CD95L interaction, but also independently of such death receptors. Here we investigated mitochondria-dependent mechanisms of NO-induced apoptosis in Jurkat leukemic cells. NO donor glycerol trinitrate (at the concentration, which induces apoptotic cell death) caused (1) a significant decrease in the concentration of cardiolipin, a major mitochondrial lipid; (2) a downregulation in respiratory chain complex activities; (3) a release of the mitochondrial protein cytochrome c into the cytosol; and (4) an activation of caspase-9 and caspase-3. These changes were accompanied by an increase in the number of cells with low mitochondrial transmembrane potential and with a high level of reactive oxygen species production. Higher resistance of the CD95-resistant Jurkat subclone (APO-R) cells to NO-mediated apoptosis correlated with the absence of cytochrome c release and with less alterations in other mitochondrial parameters. An inhibitor of lipid peroxidation, trolox, significantly suppressed NO-mediated apoptosis in APO-S Jurkat cells, whereas bongkrekic acid (BA), which blocks mitochondrial permeability transition, provided only a moderate antiapoptotic effect. Transfection of Jurkat cells with bcl-2 led to a complete block of apoptosis due to the prevention of changes in mitochondrial functions. We suggest that the mitochondrial damage (in particular, cardiolipin degradation and cytochrome c release) induced by NO in human leukemia cells plays a crucial role in the subsequent activation of caspase and apoptosis.  相似文献   

16.
Baumler  CB; Bohler  T; Herr  I; Benner  A; Krammer  PH; Debatin  KM 《Blood》1996,88(5):1741-1746
Increased apoptosis of CD4+ T cells is considered to be involved in CD4+ T-cell depletion in human immunodeficiency virus type-1 (HIV-1)- infected individuals progressing toward acquired immunodeficiency syndrome (AIDS). We have recently shown that CD95 (APO-1/Fas) expression is strongly increased in T cells of HIV-1-infected children. In this report we provide further evidence for a deregulated CD95 system in AIDS. CD95 expression in HIV-1+ children is not restricted to previously activated CD45RO+ T cells but is also increased on freshly isolated naive CD45RA+ T cells. In addition, specific CD95-mediated apoptosis is enhanced in both CD4+ and CD8+ T cells. Furthermore, levels of CD95 ligand mRNA are profoundly increased. Specific T-cell receptor/CD3-triggered apoptosis in HIV-1+ children is more enhanced in CD8+ than in CD4+ T cells. Accelerated activation induced cell death of T cells could partially be inhibited by blocking anti-CD95 antibody fragments. These data suggest an involvement of the CD95 receptor/ligand system in T-cell depletion and apoptosis in AIDS and may open new avenues of rational intervention strategies.  相似文献   

17.
Aging is associated with a decrease in naïve (TN) and central memory (TCM), and an accumulation of effector memory (TEM and TEMRA) T cell subsets. Previously, we have demonstrated an increased sensitivity of TN and TCM CD4+ and CD8+ T cells in aging to TNF-α-induced apoptosis. In this investigation, we examined whether similar differential sensitivity is applicable to CD95-mediated apoptosis. We show that TN and TCM CD4+ and CD8+ T cells from aged subjects are significantly more sensitive to CD95-mediated apoptosis. Increased apoptosis is associated with increased activation of caspase-8 and caspase-3. Both caspase-8 and caspase-3 inhibitors blocked CD95-mediated apoptosis and activation of caspase-8 and caspase-3 in TN and TCM CD4+ and CD8+ T cells. No significant difference was observed in apoptosis or in activation of caspase-8 and caspase-3 in TEM and TEMRA CD4+ and CD8+ T cells between young and aged subjects; both populations were relatively and comparably resistant to CD95-mediated apoptosis and caspase activation. No correlation was observed between the sensitivity/resistance of any of the subsets of CD4+ or CD8+T cells to CD95-mediated apoptosis and the expression of CD95. Our data suggest that increased CD95-mediated apoptosis of TN and TCM CD8+ and CD4+ T cells may play a role in their decline in human aging.  相似文献   

18.
Engagement of the plasma membrane receptor Fas can induce apoptosis of leukemic cells. Signaling through Fas requires the formation of a death-inducing signaling complex (DISC) that involves the cytoplasmic domain of Fas, the adaptor molecule FADD/MORT-1, and procaspase-8. The present study investigated whether another caspase, known as procaspase-2L, played a role in Fas-mediated cell death. A series of human leukemic variant cells was derived by stable transfection with a CASP2L antisense construct (CASP2L/AS). Specific down-regulation of procaspase-2L decreased the sensitivity of these cells to apoptosis induced by an agonistic anti-Fas antibody (Ab, clone CH11), as determined by studying DNA fragmentation, chromatin condensation, and externalization of phosphatidylserine on the plasma membrane. In leukemic cells transfected with an empty vector, anti-Fas Ab treatment activated caspase-8, decreased the expression of the BH3 domain-only protein Bid, triggered the release of cytochrome c from the mitochondria to the cytosol, and activated caspase-3. All these events could not be observed when CASP2L/AS cells were similarly treated with anti-Fas Abs. CASP2L/AS transfection did not inhibit the formation of the DISC and no direct interaction between procaspase-2L and either Fas or FADD or procaspase-8 was identified. Down-regulation of procaspase-2L inhibited anti-Fas Ab-mediated cleavage of c-FLIP (FLICE-inhibitory protein), a protein that interferes with the formation of a functional DISC. These results suggest that the long isoform of caspase-2 plays a role in the Fas-mediated pathway to cell death by contributing to caspase-8 activation at the DISC level.  相似文献   

19.
Regulation of CD95 (Fas/APO-1)-induced apoptosis in human chondrocytes   总被引:4,自引:0,他引:4  
  相似文献   

20.
Multiple mechanisms exist by which tumour cells can escape CD95-mediated apoptosis. Previous studies by our laboratory have shown that primary B cells from non-Hodgkin's Lymphoma (B-NHL) were resistant to CD95-induced cell death. In the current study, we have analysed the mechanisms underlying CD95 resistance in primary human lymphoma B cells. We report that FADD (FAS-associated death domain protein) and caspase-8 were constitutively expressed in lymphoma B cells and that the CD95 pathway was blocked upstream to caspase-8 activation. However, caspase-8 was processed and functional after treatment with staurosporine (STS). We found that the expression levels of FLICE (FADD-like interleukin-1 beta-converting enzyme)-Inhibitory Protein (c-FLIP) and Bcl-2-related proteins were heterogeneous in B-NHL cells and were not related to CD95 resistance. Finally, we report the absence of a CD95-induced signalling complex [death-inducing signalling complex (DISC)] in lymphoma B cells, with no FADD and caspase-8 recruitment to CD95 receptor. In contrast, DISC formation was observed in CD95-resistant non-tumoural (NT) B cells. Therefore, we propose that the absence of DISC formation in primary lymphoma B cells may contribute to protect these cells from CD95-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号