首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The demonstration of the essential role of fatty acid amide hydrolase (FAAH) in hydrolyzing endogenous bioactive fatty acid derivatives has launched the quest for the discovery of inhibitors for this enzyme. Along this line, a set of 58 imidazolidine-2,4-dione and 2-thioxoimidazolidin-4-one derivatives was evaluated as FAAH inhibitors. Among these compounds, 3-substituted 5,5'-diphenylimidazolidine-2,4-dione and 3-substituted 5,5'-diphenyl-2-thioxoimidazolidin-4-one derivatives were previously described as CB(1) cannabinoid receptor ligands. In the present study, we synthesized several derivatives exhibiting interesting FAAH inhibitory activity and devoid of affinity for the CB(1) and CB(2) cannabinoid receptors. For instance, 3-heptyl-5,5'-diphenylimidazolidine-2,4-dione (14) and 5,5'-diphenyl-3-tetradecyl-2-thioxo-imidazolidin-4-one (46) showed pI(50) values of 5.12 and 5.94, respectively. In conclusion, it appears that even though several 3-substituted 5,5'-diphenyl-2-thioxoimidazolidin-4-one and 3-substituted 5,5'-diphenylimidazolidine-2,4-dione derivatives have been previously shown to behave as CB(1) cannabinoid receptor ligands, appropriate substitutions of these templates can result in FAAH inhibitors devoid of affinity for the cannabinoid receptors.  相似文献   

2.
New 1-benzhydryl-3-phenylurea derivatives and their 1-benzhydryl-3-phenylthiourea isosteres were synthesized and evaluated for their human CB1 and CB2 cannabinoid receptor affinity. These compounds proved to be selective CB1 cannabinoid receptor ligands, acting as inverse agonists in a [35S]-GTPgammaS assay. The affinity of 3,5,5'-triphenylimidazolidine-2,4-dione and 3,5,5'-triphenyl-2-thioxoimidazolidin-4-one derivatives, possessing the 1-benzhydryl-3-phenylurea and 1-benzhydryl-3-phenylthiourea moiety, respectively, was also evaluated. In conclusion, the 1-benzhydryl-3-phenylurea scaffold seems to be a new interesting template of CB1 cannabinoid receptor inverse agonists.  相似文献   

3.
On the basis of docking studies carried out using the recently published cannabinoid receptor models,35 new 1,8-naphthyridin-4(1H)-on-3-carboxamide and quinolin-4(1H)-on-3-carboxamide derivatives were designed, synthesized, and tested for their affinities toward the cannabinoid CB1 and CB2 receptors. Compound 10, which presented p-fluorobenzyl and carboxycycloheptylamide substituents bound in the 1 and 3 positions of the 1,8-naphthyiridine-4-one nucleus, showed a high CB2 affinity with a Ki of 1.0 nM. The substitution of the naphthyridine-4-one nucleus with the quinoline-4-one system determined a general increase in CB2 affinity. In particular, the N-cyclohexyl-7-chloro-1-(2-morpholin-4-ylethyl)quinolin-4(1H)-on-3-carboxamide (40) possessed a remarkable affinity, with Ki of 3.3 nM, which was also accompanied by a high selectivity for the CB2 receptor (Ki(CB1)/Ki(CB2) ratio greater than 303). Moreover, the [35S]GTPgamma binding assay and functional studies on human basophils indicated that the 1,8-naphthyridin-4(1H)-on-3-carboxamide derivatives behaved as CB1 and CB2 receptor agonists.  相似文献   

4.
The pharmacology of 3-(2-ethylmorpholino)-5,5'-di(p-bromophenyl)-imidazolidinedione (DML20), 3-(1-hydroxypropyl)-5,5'-di(p-bromophenyl)-imidazolidinedione (DML21) and 3-heptyl-5,5'-di(p-bromophenyl)-imidazolidinedione (DML23) was extended by studying affinity and GTP binding modulation on cannabinoid receptor subtypes (CB1 and CB2) from rat tissues and human cannabinoid receptors expressed in Chinese Hamster Ovary cells. Competitive binding studies indicated that DML20, DML21 and DML23 are selective ligands for cannabinoid CB1 receptors. In rat cerebellum homogenates, DML20, DML21 and DML23 were unable to influence [35S]GTPgammaS binding but competitively inhibit HU 210-induced [35S]GTPgammaS binding (pKB of 6.11 +/- 0.14, 6.25 +/- 0.06 and 5.74 +/- 0.09, respectively), indicating that they act as cannabinoid CB1 receptor neutral antagonists. However, in CHO cells homogenates expressing selectively either human cannabinoid CB1 or CB2 receptors, they behaved as inverse agonists decreasing the [35S]GTPgammaS binding, with similar efficacy. In conclusion, these derivatives exhibit different activities (neutral antagonism and inverse agonism) in the different models of cannabinoid receptors studied.  相似文献   

5.
Obesity and metabolic syndrome, along with drug dependence (nicotine, alcohol, opiates), are two of the major therapeutic applications for CB(1) cannabinoid receptor antagonists and inverse agonists. In the present study, we report the synthesis and structure-affinity relationships of 1,5-diphenylimidazolidine-2,4-dione and 1,3,5-triphenylimidazolidine-2,4-dione derivatives. These new 1,3,5-triphenylimidazolidine-2,4-dione derivatives and their thio isosteres were obtained by an original pathway and exhibited interesting affinity and selectivity for the human CB(1) cannabinoid receptor. A [(35)S]-GTPgammaS binding assay revealed the inverse agonist properties of the compounds at the CB(1) cannabinoid receptor. Furthermore, molecular modeling studies were conducted in order to delineate the binding mode of this series of derivatives into the CB(1) cannabinoid receptor. 1,3-Bis(4-bromophenyl)-5-phenylimidazolidine-2,4-dione (25) and 1,3-bis(4-chlorophenyl)-5-phenylimidazolidine-2,4-dione (23) are the imidazolidine-2,4-dione derivatives possessing the highest affinity for the human CB(1) cannabinoid receptor reported to date.  相似文献   

6.
Recent data indicated that the CB(2) cannabinoid receptor constitutes an attractive drug target due to its potential functional role in several physiological and pathological processes. A set of 4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives, characterized by the presence of some important structural requirements exhibited by other classes of cannabinoid ligands, such as an aliphatic or aromatic carboxamide group in position 3, and an alkyl or benzyl group in position 1, was synthesized and assayed to measure their respective affinity for both human CB(1) and CB(2) cannabinoid receptors. The results indicate that these 3-carboxamido-quinolones derivatives exhibited a CB(2) receptor selectivity, particularly derivatives 28-30, and 32R. Moreover, in the [(35)S]-GTPgammaS binding assay, all the compounds behaved as CB(2) receptor agonists. Molecular modeling studies showed that compound 30 interacts with the CB(2) receptor through a combination of hydrogen bond and aromatic/hydrophobic interactions. In conclusion, 4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives constitute a new class of potent and selective CB(2) cannabinoid receptors agonists.  相似文献   

7.
The identification of the CB2 cannabinoid receptor has provided a novel target for the development of therapeutically useful cannabinergic molecules. We have synthesized benzo[ c]chromen-6-one analogs possessing high affinity and selectivity for this receptor. These novel compounds are structurally related to cannabinol (6,6,9-trimethyl-3-pentyl-6 H-benzo[ c]chromen-1-ol), a natural constituent of cannabis with modest CB2 selectivity. Key pharmacophoric features of the new selective agonists include a 3-(1',1'-dimethylheptyl) side chain and a 6-oxo group on the cannabinoid tricyclic structure that characterizes this class of compounds as "cannabilactones." Our results suggest that the six-membered lactone pharmacophore is critical for CB2 receptor selectivity. Optimal receptor subtype selectivity of 490-fold and subnanomolar affinity for the CB2 receptor is exhibited by a 9-hydroxyl analog 5 (AM1714), while the 9-methoxy analog 4b (AM1710) had a 54-fold CB2 selectivity. X-ray crystallography and molecular modeling show the cannabilactones to have a planar ring conformation. In vitro testing revealed that the novel compounds are CB2 agonists, while in vivo testing of cannabilactones 4b and 5 found them to possess potent peripheral analgesic activity.  相似文献   

8.
The human cannabinoid receptors, central cannabinoid receptor (CB1) and peripheral cannabinoid receptor (CB2), share only 44% amino acid identity overall, yet most ligands do not discriminate between receptor subtypes. Site-directed mutagenesis was employed as a means of mapping the ligand recognition site for the human CB2 cannabinoid receptor. A lysine residue in the third transmembrane domain of the CB2 receptor (K109), which is conserved between the CB1 and CB2 receptors, was mutated to alanine or arginine to determine the role of this charged amino acid in receptor function. The analogous mutation in the CB1 receptor (K192A) was found to be crucial for recognition of several cannabinoid compounds excluding (R)-(+)-[2, 3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1, 4-benzoxazin-6-yl](1-naphthalenyl)methanone (WIN 55,212-2). In contrast, in human embryonic kidney (HEK)-293 cells expressing the mutant or wild-type CB2 receptors, we found no significant differences in either the binding profile of several cannabinoid ligands nor in inhibition of cAMP accumulation. We identified a high-affinity site for (-)-3-[2-hydroxyl-4-(1, 1-dimethylheptyl)phenyl]-4-[3-hydroxyl propyl] cyclohexan-1-ol (CP-55,940) in the region of helices 3, 6, and 7, with S3.31(112), T3.35(116), and N7.49(295) in the K109A mutant using molecular modeling. The serine residue, unique to the CB2 receptor, was then mutated to glycine in the K109A mutant. This double mutant, K109AS112G, retains the ability to bind aminoalkylindoles but loses affinity for classical cannabinoids, as predicted by the molecular model. Distinct cellular localization of the mutant receptors observed with immunofluorescence also suggests differences in receptor function. In summary, we identified amino acid residues in the CB2 receptor that could lead to subtype specificity.  相似文献   

9.
A set of 29 3-alkyl 5-arylimidazolidinediones (hydantoins) with affinity for the human cannabinoid CB(1) receptor was studied for their lipophilicity and conformational properties in order to delineate a pharmacophore. These molecules constitute a new template for cannabinoid receptor recognition, since (a) their structure differs from that of classical cannabinoid ligands and (b) antagonism is the mechanism of action of at least three compounds (20, 21, and 23). Indeed, in the [(35)S]-GTP gamma S binding assay using rat cerebellum homogenates, they behave as antagonists without any inverse agonism component. Using a set of selected compounds, experimental lipophilicity was measured by RP-HPLC and calculated by a fragmental method (CLOGP) and a conformation-dependent method (CLIP based on the molecular lipophilicity potential). These approaches revealed two models which differentiate the binding mode of nonpolar and polar hydantoins and which could explain, at least for compounds 20, 21, and 23, the mechanism of action of this new family of cannabinoid ligands.  相似文献   

10.
The present work focuses on the study of the three-dimensional (3D) structural requirements for selective antagonist activity of arylpyrazole compounds at the cannabinoid CB1 and CB2 receptors. Initially, a combined high-resolution two-dimensional (2D) NMR and computer modeling approach was carried out to study the solution structure of the key pyrazole derivative N-(piperidin-1-yl)-5-phenyl-1-(n-pentyl)-4-methyl-1H-pyrazole-3-carboxamide (AM263). By using the NMR-determined molecular conformers as templates, the 3D quantitative structure-activity relationship (QSAR) studies were performed with the comparative molecular field analysis (CoMFA) approach on a set of arylpyrazole cannabinoid receptor antagonists. Molecular alignments suitable for deriving valuable pharmacophoric features for this series of compounds were determined. Such systematic 3D-QSAR/CoMFA analyses of 29 molecules and their receptor affinities gave guidance for understanding the binding affinities of arylpyrazoles at the CB1 and CB2 binding sites, respectively. Comparison of CoMFA steric and potential contour maps for affinity at the two cannabinoid receptor subtypes helps to differentiate structural requirements for each subtype and serves as a basis for the design of later-generation analogues.  相似文献   

11.
Here, we report the identification and optimization of 1-(4-(pyridin-2-yl)benzyl)imidazolidine-2,4-dione derivatives as a novel chemotype with selective cannabinoid CB2 receptor agonist activity. 1 is a potent and selective cannabinoid CB2 receptor agonist (hCB2 pEC(50) = 8.6). The compound was found to be metabolically unstable, which resulted in low oral bioavailability in rat (F(po) = 4%) and possessed off-target activity at the hERG ion channel (pK(i) = 5.5). Systematic modification of physicochemical properties, such as lipophilicity and basicity, was used to optimize the pharmacokinetic profile and hERG affinity of this novel class of cannabinoid CB2 receptor agonists. This led to the identification of 44 as a potent, selective, and orally bioavailable cannabinoid CB2 receptor agonist (hCB2 pEC(50) = 8.0; hERG pK(i) < 4; F(po) = 100%), which was active in a rat spinal nerve ligation model of neuropathic pain.  相似文献   

12.
We document in vitro and in vivo effects of a novel, selective cannabinoid CB(1) receptor inverse agonist, Imidazole 24b (5-(4-chlorophenyl)-N-cyclohexyl-4-(2,4-dichlorophenyl)-1-methyl-imidazole-2-carboxamide). The in vitro binding affinity of Imidazole 24b for recombinant human and rat CB(1) receptor is 4 and 10 nM, respectively. Imidazole 24b binds to human cannabinoid CB(2) receptor with an affinity of 297 nM; in vitro, it is a receptor inverse agonist at both cannabinoid CB(1) and CB(2) receptors as it causes a further increase of forskolin-induced cAMP increase. Oral administration of Imidazole 24b blocked CP-55940-induced hypothermia, demonstrating cannabinoid CB(1) receptor antagonist efficacy in vivo. Using ex vivo autoradiography, Imidazole 24b resulted in dose-dependent increases in brain cannabinoid CB(1) receptor occupancy (RO) at 2h post-dosing in rats, indicating that approximately 50% receptor occupancy is sufficient for attenuation of receptor agonist-induced hypothermia. Imidazole 24b administered to C57Bl/6 mice and to dietary-induced obese (DIO) Sprague-Dawley rats attenuated overnight food intake with a minimal effective dose of 10 mg/kg, p.o. Administration had no effect in cannabinoid CB(1) receptor-deficient mice. DIO rats were dosed orally with vehicle, Imidazole 24b (1, 3 or 10 mg/kg), or dexfenfluramine (3 mg/kg) for 2 weeks. At 3 mg/kg, Imidazole 24b reduced cumulative food intake, leading to a non-significant decrease in weight gain. Imidazole 24b at 10 mg/kg and dexfenfluramine treatment inhibited food intake and attenuated weight gain. These findings suggest that selective cannabinoid CB(1) receptor inverse agonists such as Imidazole 24b have potential for the treatment of obesity.  相似文献   

13.
Activation of cannabinoid CB1 receptors induces glucose intolerance in rats   总被引:10,自引:0,他引:10  
Recent reports have described the presence of cannabinoid CB1 receptors in pancreatic islets. Here we show that administration of the endogenous cannabinoid anandamide or the selective cannabinoid CB1 receptor agonist Arachidonyl-2'-chloroethylamide (ACEA) results in glucose intolerance after a glucose load. This effect is reversed by the selective cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). These results suggest that targeting cannabinoid CB1 receptors may serve as new therapeutic alternatives for metabolic disorders such as diabetes.  相似文献   

14.
Aminoalkylindoles (AAIs), although structurally dissimilar from the classical cannabinoids, are known to be capable of binding to cannabinoid receptors and of evoking cannabinomimetic responses. With the aim of investigating the structure–activity relationships (SAR) for the binding of non-classical agonists to CB1 and CB2 cannabinoid receptors, we designed and synthesized a series of indole derivatives. The compounds were tested for their analgesic action by formalin test and compared to WIN 55212-2, an AAI acting to the cannabinoid receptors. In receptor binding assay, compound 5 showed affinity for the CB1 receptor comparable to WIN 55212-2.  相似文献   

15.
The stimulation of spinal cannabinoid type 2 (CB(2)) receptors is a suitable strategy for the alleviation of experimental pain symptoms. Several reports have described the up-regulation of spinal cannabinoid CB(2) receptors in neuropathic settings together with the analgesic effects derived from their activation. Besides, we have recently reported in two murine bone cancer models that the intrathecal administration of cannabinoid CB(2) receptor agonists completely abolishes hyperalgesia and allodynia, whereas spinal cannabinoid CB(2) receptor expression remains unaltered. The present experiments were designed to measure the expression of spinal cannabinoid CB(2) receptors as well as the analgesic efficacy derived from their stimulation in mice chronically inflamed by the intraplantar injection of complete Freund's adjuvant 1 week before. Both spinal cannabinoid CB(2) receptors mRNA measured by real-time PCR and cannabinoid CB(2) receptor protein levels measured by western blot remained unaltered in inflamed mice. Besides, the intrathecal (i.t.) administration of the cannabinoid CB(2) receptor agonists AM1241, (R,S)-3-(2-Iodo-5-nitrobenzoyl)-1-(1-methyl-2-piperidinylmethyl)-1H-indole, (0.03-1 μg) and JWH 133, (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran, (3-30 μg) dose-dependently blocked inflammatory thermal hyperalgesia and mechanical allodynia. The analgesic effects induced by both agonists were counteracted by the coadministration of the selective cannabinoid CB(2) receptor antagonist SR144528, 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-1H-pyrazole-3-carboxamide, (5 μg) but not by the cannabinoid CB(1) receptor antagonist AM251, N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide, (10 μg). The effects induced by AM1241 were also inhibited by the coadministration of the opioid receptor antagonist, naloxone (1 μg). These results demonstrate that effective analgesia can be achieved in chronic inflammatory settings through the stimulation of spinal cannabinoid CB(2) receptors even if this receptor population is not up-regulated.  相似文献   

16.
Two subtypes of the mammalian cannabinoid receptor have been identified and successfully cloned since 1990. The CB(1) receptor is primarily located in the central nervous system and the CB(2) receptor is almost exclusively expressed in cells of the immune system. The CB(1) and CB(2) receptors are both G-protein coupled receptors and are involved in the inhibition of adenylate cyclase. The CB(2) receptor is of particular importance due to its involvement in signal transduction in the immune system, making it a potential target for therapeutic immune intervention. A number of these selective ligands are derivatives of traditional dibenzopyran based cannabinoids. These include the very recently synthesized (2'R)-1-methoxy-3-(2'-methylbutyl)- Delta (8)-THC (JWH-359) which has a 224 fold selectivity for the CB(2) receptor, readily comparable to the well known 1-deoxy-3-(1',1'-dimethylbutyl)- Delta (8)-THC (JWH-133) which has 200 fold selectivity for the CB(2) receptor. Several 9-hydroxyhexahydrocannabinols have also been synthesized and are found to be selective high affinity ligands for the CB(2) receptor. These are 1-deoxy-9beta-hydroxy-dimethylhexylhexahydrocannabinol (JWH-361, K(i) = 2.7 nM) and 1-deoxy-9beta-hydroxy-dimethylpentylhexahydrocannabinol (JWH-300, K(i) = 5.3 nM). CB(2) selective cannabi-mimetic indoles include 1-(2,3-dichlorobenzoyl)-2-methyl-3-(2-[1-morpholine]ethyl)-5-methoxyindole (L768242), (R)-3-(2-Iodo-5-nitrobenzoyl)-1-(1-methyl-2-piperidinylmethyl)-1H-indole (AM1241) and 1-propyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), which exhibit significant selectivity for the CB(2) receptor coupled with weak affinity for the CB(1) receptor. Bristol-Meyer Squibb has produced a phenylalanine derived cannabimimetic indole which possesses high CB(2) affinity (K(i) = 8 nM) and very low affinity for the CB(1) receptor (K(i) = 4000 nM). This review will discuss the current advances and recent results in the structure-activity relationships (SAR) of selective ligands for the cannabinoid CB(2) receptor.  相似文献   

17.
Delta9-Tetrahydrocannabinol (Delta9-THC) and (-)-cannabidiol are major constituents of the Cannabis sativa plant with different pharmacological profiles: (-)-Delta9-tetrahydrocannabinol, but not (-)-cannabidiol, activates cannabinoid CB1 and CB2 receptors and induces psychoactive and peripheral effects. We have tested a series of (+)-cannabidiol derivatives, namely, (+)-cannabidiol-DMH (DMH-1,1-dimethylheptyl-), (+)-7-OH-cannabidiol-DMH, (+)-7-OH- cannabidiol, (+)-7-COOH- cannabidiol and (+)-7-COOH-cannabidiol-DMH, for central and peripheral (intestinal, antiinflammatory and peripheral pain) effects in mice. Although all (+)-cannabidiols bind to cannabinoid CB1 and CB2 receptors, only (+)-7-OH-cannabidiol-DMH was centrally active, while all (+)-cannabidiol analogues completely arrested defecation. The effects of (+)-cannabidiol-DMH and (+)-7-OH-cannabidiol-DMH were partially antagonized by the cannabinoid CB1 receptor antagonist N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716), but not by the cannabinoid CB2 receptor antagonist N-[-(1S)-endo-1,3,3-trimethil bicyclo [2.2.1] heptan-2-yl-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), and had no effect on CB1(-/-) receptor knockout mice. (+)-Cannabidiol-DMH inhibited the peripheral pain response and arachidonic-acid-induced inflammation of the ear. We conclude that centrally inactive (+)-cannabidiol analogues should be further developed as antidiarrheal, antiinflammatory and analgesic drugs for gastrointestinal and other peripheral conditions.  相似文献   

18.
Previous studies have shown beneficial effects of the cannabinoid CB(1)/CB(2) receptor agonist (R)-4,5-dihydro-2-methyl-4-(4-morpholinylmethyl)-1-(1-naphthalenylcarbonyl)-6H-pyrrolo [3,2,1-ij]quinolin-6-one mesylate (WIN 55,212-2) in dt(sz) mutant hamsters, a model of idiopathic paroxysmal dystonia (dyskinesia). To examine the pathophysiological significance of the cannabinergic system in the dystonic syndrome, the effect of the cannabinoid CB(1) receptor antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR 141716A) on severity of dystonia was investigated in dt(sz) mutants which exhibit episodes of dystonic and choreoathetotic disturbances in response to mild stress. SR 141716A (5 and 10 mg/kg i.p.) failed to exert any effects on the severity of dystonia. While the antidystonic efficacy of WIN 55,212-2 (5 mg/kg i.p.) was confirmed, cannabidiol (which has low affinity to cannabinoid receptors) tended to delay the progression of dystonia only at a high dose (150 mg/kg i.p.). The antidystonic and cataleptic effects of WIN 55,212-2 (5 mg/kg i.p.) were completely antagonized by pretreatment with SR 141716A at doses of 2.5 mg/kg (catalepsy) and 10 mg/kg (antidystonic efficacy). These data indicate that the antidystonic efficacy of WIN 55,212-2 is selectively mediated via CB(1) receptors. The lack of prodystonic effects of SR 141716A together with only moderate antidystonic effects of WIN 55,212-2 suggests that reduced activation of cannabinoid CB(1) receptors by endocannabinoids is not critically involved in the dystonic syndrome. In view of previous pathophysiological findings in mutant hamsters, the antidystonic efficacy of WIN 55,212-2 can be explained by modulation of different neurotransmitter systems within the basal ganglia.  相似文献   

19.
Previous experiments with the mouse vas deferens have shown that cannabidiol produces surmountable antagonism of cannabinoid CB(1) receptor agonists at concentrations well below those at which it binds to cannabinoid CB(1) receptors and antagonizes alpha(1)-adrenoceptor agonists insurmountably. It also enhances electrically evoked contractions of this tissue. We have now found that subtle changes in the structure of cannabidiol markedly influence its ability to produce each of these effects, suggesting the presence of specific pharmacological targets for this non-psychoactive cannabinoid. Our experiments were performed with cannabidiol, 6"-azidohex-2"-yne-cannabidiol, abnormal-cannabidiol and 2'-monomethoxy- and 2',6'-dimethoxy-cannabidiol. Of these, 6"-azidohex-2"-yne-cannabidiol was as potent as cannabidiol in producing surmountable antagonism of (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (R-(+)-WIN55212) in vasa deferentia. However, it produced this antagonism with a potency that matched its cannabinoid CB(1) receptor affinity, suggesting that, unlike cannabidiol, it is a competitive cannabinoid CB(1) receptor antagonist. Moreover, since it did not enhance the amplitude of electrically evoked contractions, it may be a neutral cannabinoid CB(1) receptor antagonist.  相似文献   

20.
New analogues (2a-p) of the previously reported CB(2) ligands 6-methyl- and 6-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamides (1a,b) have been synthesized and evaluated for cannabinoid receptor affinity. One example, 1-(2',4'-dichlorophenyl)-6-methyl-N-cyclohexyilamine-1,4-dihydroindeno[1,2-c] pyrazole-3-carboxamide (2a) was shown to have single digit nanomolar affinity for cannabinoid CB(2) receptors. Furthermore, compounds 2a and 2b, as well as lead structures 1a,b, were also shown to be agonist in an in vitro model based on human promyelocytic leukemia HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号