首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Proliferation of vascular smooth muscle cells (VSMC) plays a major role as an initiating event of atherosclerosis. Although estrogen directly inhibits the proliferation of VSMC, the mechanism has not been firmly established. In addition, the effect of raloxifene on VSMC remains unknown. 17Beta-estradiol (E(2)) and raloxifene significantly inhibited the growth of VSMC under growth-stimulated conditions. Since mitogen-activated protein (MAP) kinases have been implicated in VSMC proliferation, the role of MAP kinases in both the E(2)- and raloxifene-induced growth inhibition of VSMC was studied. Both E(2) and raloxifene caused rapid, transient phosphorylation and activation of p38 that was not affected by actinomycin D and was blocked by ICI 182,780. In contrast with p38 phosphorylation, extracellular signal-regulated protein kinase (ERK) phosphorylation was significantly inhibited and c-Jun N-terminal kinase (JNK) phosphorylation was not changed by E(2). Because VSMC expressed both estrogen receptor (ER) alpha and ERbeta, it is not known which of them mediates the E(2)-induced phosphorylation of p38. Although E(2) did not affect the p38 phosphorylation in A10 smooth muscle cells, which express ERbeta but not ERalpha, transfection of ERalpha expression vector into A10 cells rendered them susceptible to induction of p38 phosphorylation by E(2). We then examined whether E(2) and raloxifene induce apoptosis through a p38 cascade. Both E(2) and raloxifene induced apoptosis under growth-stimulated conditions. The p38 inhibitor SB 203580 completely blocked the E(2)-induced apoptosis. Our findings suggest that both E(2)- and raloxifene-induced inhibition of VSMC growth is due to induction of apoptosis through a p38 cascade whose activation is mediated by ERalpha via a nongenomic mechanism.  相似文献   

2.
Low density lipoprotein (LDL) is a well-established risk factor for atherosclerosis, stimulating vascular smooth muscle cell (SMC) differentiation and proliferation, but the signal transduction pathways between LDL stimulation and cell proliferation are poorly understood. Because mitogen-activated protein kinases (MAPKs) play a crucial role in mediating cell growth, we studied the effect of LDL on the induction of MAPK phosphatase-1 (MKP-1) in human SMCs and found that LDL stimulated induction of MKP-1 mRNA and proteins in a time- and dose-dependent manner. Heparin, inhibiting LDL-receptor binding, did not influence LDL-stimulated MKP-1 mRNA expression, and human LDL also induced MKP-1 expression in rat SMCs and fibroblasts derived from LDL receptor-deficient mice, indicating an LDL receptor-independent process. Pretreatment of SMCs with pertussis toxin markedly inhibited LDL-induced MKP-1 expression. Depletion of protein kinase C (PKC) by phorbol 12-myristate 13 acetate or inhibition of PKC by calphostin C blocked MKP-1 induction, but the phospholipase C inhibitor U73122 had no effect. Pretreatment of SMCs with genistein or herbimycin A abrogated LDL-stimulated MKP-1 induction. The MAPK kinase inhibitor PD98059 abolished LDL-stimulated activation of extracellular signal-regulated protein kinases (ERKs) but not MKP-1 induction. Furthermore, constitutive expression of MKP-1 in vivo reduced LDL-induced expression of Elk-1-dependent reporter genes, and SMC lines overexpressing recombinant MKP-1 exhibited decreased ERK activities and retarded proliferation in response to LDL. Our findings demonstrate that LDL induces MKP-1 expression in SMCs via activation of PKC and tyrosine kinases, independent of LDL receptors and ERK-MAPKs, and that MKP-1 plays an important role in the regulation of LDL-initiated signal transductions leading to SMC proliferation.  相似文献   

3.
High levels of serum phosphate are associated with calcification of human smooth muscle cells (HSMCs). We investigated whether inhibition of protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) signals [p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK)] can reduce inorganic phosphate (Pi)-induced HSMC calcification. Inhibition of PKA or p38 MAPK by inhibitors or small interfering RNAs (siRNAs) reduced Ca levels and alkaline phosphatase activities in HSMCs treated with high Pi, but inhibition of ERK1/2 and JNK showed no significant changes. Moreover, there were no significant changes in cell viability on adding siRNAs and three inhibitors (PKA, p38, and MEK1/2), but JNK inhibitor slightly reduced cell viability. These results show that PKA and p38 MAPK are involved in the Pi-induced calcification of HSMCs, and may be good targets for reducing vascular calcification.  相似文献   

4.
目的:观察动脉内膜损伤后血管平滑肌细胞(VSMC)表型转化和p38MAPK及丝裂原激活蛋白激酶磷酸酶-1(MKP-1)表达的动态变化。方法:分别用免疫组化、免疫印迹(Westernblot)和逆转录-聚合酶链反应方法检测假损伤组(S组)和损伤组损伤后不同时间点血管壁中增殖细胞核抗原(PCNA)、平滑肌α肌动蛋白(SMα-actin)、p38蛋白和MKP-1mRNA及蛋白表达的变化。结果:①S组中膜VSMC及内皮细胞PCNA为阴性表达;中膜于损伤后1~14d,新生内膜(NI)于5~14d阳性细胞率逐渐增加,28d后开始逐渐减少,NI阳性率高于中膜。②S组中膜SMα-actin表达为阳性,内皮为阴性;中膜阳性表达于损伤后1d开始减少,3d最为明显,5d后开始逐渐增加,NI阳性表达弱于中膜。③S组中膜p38呈阴性或弱阳性;损伤后1~35d呈持续高表达,NI阳性表达强于中膜。p38与PCNA表达变化呈正相关。④S组中膜MKP-1呈弱阳性或阳性表达;损伤后1d即开始下降,14~28d稍有回升,至35d仍未回到S组水平,NI阳性表达稍弱于中膜。MKP-1与PCNA表达变化呈负相关。结论:VSMC增殖能力与其表型转化密切相关,p38MAPK和MKP-1参与了损伤后VSMC表型转化的信号转导及其调节。  相似文献   

5.
6.
Roberson MS  Zhang T  Li HL  Mulvaney JM 《Endocrinology》1999,140(3):1310-1318
Previous studies have shown that interaction of GnRH with its serpentine, G protein-coupled receptor results in activation of the extracellular signal regulated protein kinase (ERK) and the Jun N-terminal protein kinase (JNK) pathways in pituitary gonadotropes. In the present study, we examined GnRH-stimulated activation of an additional member of the mitogen-activated protein kinase (MAPK) superfamily, p38 MAPK GnRH treatment of alphaT3-1 cells resulted in tyrosine phosphorylation of several intracellular proteins. Separation of phosphorylated proteins by ion exchange chromatography suggested that GnRH receptor stimulation can activate the p38 MAPK pathway. Immunoprecipitation studies using a phospho-tyrosine antibody resulted in increased amounts of immunoprecipitable p38 MAPK from alphaT3-1 cells treated with GnRH. Immunoblot analysis of whole cell lysates using a phospho-specific antibody directed against dual phosphorylated p38 kinase revealed that GnRH-induced phosphorylation of p38 kinase was dose and time dependent and was correlated with increased p38 kinase activity in vitro. Activation of p38 kinase was blocked by chronic phorbol ester treatment, which depletes protein kinase C isozymes alpha and epsilon. Overexpression of p38 MAPK and an activated form of MAPK kinase 6 resulted in activation of c-jun and c-fos reporter genes, but did not alter the expression of the glycoprotein hormone alpha-subunit reporter. Inhibition of p38 activity with SB203580 resulted in attenuation of GnRH-induced c-fos reporter gene expression, but was not sufficient to reduce GnRH-induced c-jun or glycoprotein hormone alpha-subunit promoter activity. These studies provide evidence that the GnRH signaling pathway in alphaT3-1 cells includes protein kinase C-dependent activation of the p38 MAPK pathway. GnRH integration of c-fos promoter activity may include regulation by p38 MAPK.  相似文献   

7.
Omega-3 fatty acids (n-3 FAs) have been shown to exert a blood pressure-lowering effect in hypertension, possibly in part by influencing vascular structure. We previously demonstrated that n-3 FAs induce vascular smooth muscle cell (VSMC) apoptosis, which could exert an effect on the structure of blood vessels. In the present study, we investigated signaling pathways through which n-3 FAs mediate apoptosis in VSMCs. Cultured mesenteric VSMCs from Sprague-Dawley rats were stimulated with docosahexaenoic acid (DHA), a representative n-3 FAs. Morphological changes in apoptosis and DNA fragmentation were examined with phase-contrast microscopy and fluorescence microscopy with Hoechst 33342 staining. To clarify possible pathways of apoptosis, we evaluated the expression of phosphorylated p38 mitogen-activated protein kinases, bax, bcl-2, cytochrome c, and peroxisome proliferator-activated receptor-alpha (PPAR-alpha) with Western blot analysis. DHA treatment induced cell shrinkage, cell membrane blebbing, and apoptotic bodies in VSMCs. DHA time-dependently activated p38 mitogen-activated protein kinases, bax, PPAR-alpha, and cytochrome c, with maximal effects obtained after 5 and 30 minutes and 1 and 3 hours, respectively. SB-203580 and SB-202190, selective p38 inhibitors, reduced DHA-elicited apoptosis and expression of PPAR-alpha but had no effect on the expression of bax or cytochrome c. The present results indicate that DHA induces apoptosis in VSMCs through >/=2 distinct mechanisms: (1) a p38-dependent pathway that regulates PPAR-alpha and (2) a p38-independent pathway via dissipation of mitochondrial membrane potential and cytochrome c release. The death-signaling pathway stimulated by DHA may involve an integration of these multiple pathways. By triggering VSMC apoptosis, DHA may play a pathophysiological role in vascular remodeling in cardiovascular disease.  相似文献   

8.
OBJECTIVE: The present study was designed to determine the effects of insulin on cytosolic angiotensin II production and proliferation in cultured rat vascular smooth muscle cells. DESIGN AND METHODS: Vascular smooth muscle cells were incubated with insulin for 48 h. Cytosolic angiotensin I and II were determined by radioimmunoassays of purified cell homogenates. Angiotensin II was also detected by immunohistochemistry of intact cells. Cell proliferation was determined by pulse labeling with radiolabeled thymidine. Angiotensinogen mRNA expression was determined by slot-blot analysis. RESULTS: Insulin significantly increased cytosolic angiotensin II concentration in vascular smooth muscle cells. Lisinopril, omapatrilat and irbesartan inhibited this increase of angiotensin II, but had no effect on angiotensin I levels. Immunohistochemical staining confirmed the presence of angiotensin II in control and insulin-treated vascular smooth muscle cells. Insulin increased cell proliferation, and addition of lisinopril, omapatrilat or irbesartan inhibited this effect. Insulin also increased expression of angiotensinogen mRNA in cultured vascular smooth muscle cells, but PD98059, a mitogen-activated protein kinase inhibitor, prevented the rise in angiotensinogen expression. CONCLUSION: These results support the concept that insulin stimulates angiotensin II production in cultured vascular smooth muscle cells through a mitogen-activated, protein kinase-dependent pathway that might be a factor in the progression of atherosclerosis. Agents that block the renin-angiotensin system have direct protective effects, reducing vascular angiotensin II and growth of vascular smooth muscle cells and are thus of cardiovascular benefit.  相似文献   

9.
10.
The aim of this experiment was to examine the regulation of p38 mitogen-activated protein (MAP) kinase by platelet-derived growth factor (PDGF)-BB and its biological effects on rat cultured vascular smooth muscle cells (VSMCs). VSMCs were obtained from aortae of male Wistar rats by the media explant technique. After being stimulated by PDGF-BB with or without the p38 MAP kinase-specific inhibitor, SB-203580, the cells were solubilized, and the levels of phosphorylated p38 MAP kinase were examined by immunoblot analysis. The amounts of DNA synthesis and content were measured by using [3H]-thymidine and Hoechst-33258 dye, respectively. The detection of apoptotic cells was evaluated by the TUNEL method. PDGF-BB could phosphorylate p38 MAP kinase dose-dependently, and the phosphorylation was specifically inhibited by SB-203580 in a dose-dependent manner. However, PDGF-BB did not affect the protein level of p38 MAP kinase. Both [3H]-thymidine incorporation and total cellular DNA content were increased by PDGF-BB, and these elevations were prevented by SB-203580. In contrast, PDGF-BB-stimulated VSMCs did not show apoptotic change in spite of the presence or absence of SB-203580. These results established that PDGF-BB activated p38 MAP kinase and subsequently regulated cell growth in VSMCs, providing a molecular mechanism by which p38 MAP kinase can cause the development of cardiovascular diseases, including atherosclerosis.  相似文献   

11.
The nongenomic effects of aldosterone have been implicated in the pathogenesis of various cardiovascular diseases. Aldosterone-induced nongenomic effects are attributable in part to the activation of extracellular signal-regulated kinase 1/2 (ERK1/2), a classical mitogen-activated protein (MAP) kinase. Big MAP kinase 1 (BMK1), a newly identified MAP kinase, has been shown to be involved in cell proliferation, differentiation, and survival. We examined whether aldosterone stimulates BMK1-mediated proliferation of cultured rat aortic smooth muscle cells (RASMCs). Mineralocorticoid receptor (MR) expression and localization were evaluated by Western blotting analysis and fluorolabeling methods. ERK1/2 and BMK1 activities were measured by Western blotting analysis with the respective phosphospecific antibodies. Cell proliferation was determined by Alamar Blue colorimetric assay. Aldosterone (0.1 to 100 nmol/L) dose-dependently activated BMK1 in RASMCs, with a peak at 30 minutes. To clarify whether aldosterone-induced BMK1 activation is an MR-mediated phenomenon, we examined the effect of eplerenone, a selective MR antagonist, on aldosterone-induced BMK1 activation. Eplerenone (0.1 to 10 micromol/L) dose-dependently inhibited aldosterone-induced BMK1 activation in RASMCs. Aldosterone also stimulated RASMC proliferation, which was inhibited by eplerenone. Aldosterone-mediated phenomena were concluded to be attributable to a nongenomic effect because cycloheximide failed to inhibit aldosterone-induced BMK1 activation. Transfection of dominant-negative MAP kinase/ERK kinase 5 (MEK5), which is an upstream regulator of BMK1, partially inhibited aldosterone-induced RASMC proliferation, which was almost completely inhibited by MEK inhibitor PD98059. In addition to the classical steroid activity, rapid nongenomic effects induced by aldosterone may represent an alternative etiology for vascular diseases such as hypertension.  相似文献   

12.
目的研究血管平滑肌细胞中凝血酶及凝血因子xa对新型的氧化型低密度脂蛋白的清道夫受体,即植物凝集素样氧化型低密度脂蛋白受体-1(LOX-1)表达的影响。方法培养的牛主动脉平滑肌细胞,予凝血酶及凝血因子xa刺激后,用鼠抗LOX-1单克隆抗体,对细胞裂解液和浓缩的培养基进行Western blot分析,观察LOX-1表达的变化。结果在凝血酶2.0U/ml及凝血因子Xa 50 nmol/L时,可观察到细胞膜结合型LOX-1表达明显增加。凝血酶3.0U/ml和凝血因子Xa100nmol/L刺激14h后,细胞培养基中可溶型LOX-1表达明显升高。对平滑肌细胞给予1.0U/ml凝血酶及100nmol/L凝血因子xa刺激,4h后LOX-1表达开始增加,12h后达高峰。AGl478是表皮生长因子受体相关酪氨酸激酶抑制剂。用指定浓度AGl478预刺激后,再予凝血酶和凝血因子xa,然后对细胞裂解液进行Western blot分析。AGl478可显著抑制凝血酶及凝血因子xa导致的LOX-1表达增加。结论凝血酶及凝血因子Xa可诱导LOX-1表达增加,此作用由表皮生长因子受体介导。  相似文献   

13.
14.
15.
We previously reported that oxidized low-density lipoprotein (Ox-LDL)-induced expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) via PKC, leading to activation of phosphatidylinositol-3 kinase (PI-3K), was important for macrophage proliferation [J Biol Chem 275 (2000) 5810]. The aim of the present study was to elucidate the role of extracellular-signal regulated kinase 1/2 (ERK1/2) and of p38 MAPK in Ox-LDL-induced macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages assessed by [3H]thymidine incorporation and cell counting assays was significantly inhibited by MEK1/2 inhibitors, PD98059 or U0126, and p38 MAPK inhibitors, SB203580 or SB202190, respectively. Ox-LDL-induced GM-CSF production was inhibited by MEK1/2 inhibitors but not by p38 MAPK inhibitors in mRNA and protein levels, whereas recombinant GM-CSF-induced macrophage proliferation was inhibited by p38 MAPK inhibitors but enhanced by MEK1/2 inhibitors. Recombinant GM-CSF-induced PI-3K activation and Akt phosphorylation were significantly inhibited by SB203580 but enhanced by PD98059. Our results suggest that ERK1/2 is involved in Ox-LDL-induced macrophage proliferation in the signaling pathway before GM-CSF production, whereas p38 MAPK is involved after GM-CSF release. Thus, the importance of MAPKs in Ox-LDL-induced macrophage proliferation was confirmed and the control of MAPK cascade could be targeted as a potential treatment of atherosclerosis.  相似文献   

16.
Hsieh CC  Yen MH  Liu HW  Lau YT 《Atherosclerosis》2000,151(2):481-491
Oxidized low-density lipoprotein (oxLDL) plays a key role in the development of atherogenesis, partly by causing injury to vascular cells. However, different preparations of LDL, methods of oxidation, and/or active components often produce cellular effects of various degrees. To explore the quantitative relationship between dose and level of oxidation of the oxLDL utilized, we employed combinations of different levels of oxidation and concentrations of oxLDL to induce cell death in cultured vascular smooth muscle cells (VSMC). We also examined the effect of lysophosphatidylcholine (lysoPC), a putative active component of oxLDL, on VSMCs by determining, in parallel with a cytotoxicity test (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay), DNA fragmentation ([3H]thymidine release), and flow cytometric analyses. We found that oxLDL caused cytotoxicity in an oxidative level- and dose-dependent manner, lysoPC also caused dose-dependent cytotoxicity with or without serum. Fragmentation of DNA was observed in both oxLDL- and lysoPC-treated VSMCs. Furthermore, lysoPC-induced DNA ladder was also demonstrated by gel electrophoresis at a concentration of 25 micromol/l or higher. Flow cytometric analysis yielded similar results for oxLDL- and lysoPC-treated VSMC; namely, an accumulation in the fraction of cells in G(0)/G(1) phase with a reciprocal change in S-phase fraction. Membrane phosphatidylserine exposure, detected by annexin V staining, provided additional evidence that lysoPC induced significant apoptosis in VSMC. Taken together, the degree of oxLDL-induced cytotoxicity/apoptosis of VSMC depended on combined effects of oxLDL concentration and oxidative level. Moreover, lysoPC also elicited a dose-dependent apoptosis in addition to cytotoxicity.  相似文献   

17.
Human aortic medial smooth muscle cells (SMC) and umbilical vein endothelial cells (EC) in culture were exposed to various concentrations of plasma low density (LDL) and high density (HDL) lipoproteins prepared from normolipemic donors in order to assess their effects on cell growth. So that the effects of each lipoprotein could be evaluated separately and in combination, lipoproteins were added to culture medium containing lipoprotein deficient serum (LPDS, d greater than 1.25 g/ml at a protein concentration of 4.5 mg/ml of medium). The addition of LDL at cholesterol concentrations of 160 microgram/ml of culture medium, resulted in significant reductions in both the number of SMC and EC cells per dish within 3 days of exposure (P less than 0.001, SMC; P less than 0.01, EC), when compared with LPDS controls and the starting cell numbers. This cytotoxic phenomenon was dose-related, and only at LDL cholesterol concentrations equal to or below 50 microgram/ml were no marked changes observed. In contrast, HDL at all concentrations tested produced no such deleterious effects. Autoradiographic assessment of DNA synthesis confirmed these findings. After 48 h of continuous exposure to tritiated thymidine, labeling indexes reached much lower plateaus in the LDL-treated groups.  相似文献   

18.
Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号