首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alexander disease (AxD) is a neurodegenerative disorder with prominent white matter degeneration and the presence of Rosenthal fibers containing aggregates of glial fibrillary acidic protein (GFAP), and small stress proteins HSP27 and αB‐crystallin, and widespread reactive gliosis. AxD is caused by mutations in GFAP, the main astrocyte intermediate filament protein. We previously showed that intermediate filament protein synemin is upregulated in reactive astrocytes after neurotrauma. Here, we examined immunohistochemically the presence of synemin in reactive astrocytes and Rosenthal fibers in two patients with AxD. There was an abundance of GFAP‐positive Rosenthal fibers and widespread reactive gliosis in the white matter and subpial regions. Many of the GFAP‐positive reactive astrocytes were positive for synemin, and synemin was also present in Rosenthal fibers. We show that synemin is expressed in reactive astrocytes in AxD, and is also present in Rosenthal fibers. The potential role of synemin in AxD pathogenesis remains to be investigated.  相似文献   

2.
Glial fibrillary acidic protein (GFAP) is the principle intermediate filament (IF) protein in astrocytes. Mutations in the GFAP gene lead to Alexander disease (AxD), a rare, fatal neurological disorder characterized by the presence of abnormal astrocytes that contain GFAP protein aggregates, termed Rosenthal fibers (RFs), and the loss of myelin. All GFAP mutations cause the same histopathological defect, i.e. RFs, though little is known how the mutations affect protein accumulation as well as astrocyte function. In this study, we found that GFAP accumulation induces macroautophagy, a key clearance mechanism for prevention of aggregated proteins. This autophagic response is negatively regulated by mammalian target of rapamycin (mTOR). The activation of p38 MAPK by GFAP accumulation is in part responsible for the down-regulation of phosphorylated-mTOR and the subsequent activation of autophagy. Our study suggests that AxD mutant GFAP accumulation stimulates autophagy, in a manner regulated by p38 MAPK and mTOR signaling pathways. Autophagy, in turn, serves as a mechanism to reduce GFAP levels.  相似文献   

3.
Alexander disease (AxD) is a rare but fatal neurological disorder caused by mutations in the astrocyte-specific intermediate filament protein glial fibrillary acidic protein (GFAP). Histologically, AxD is characterized by cytoplasmic inclusion bodies called Rosenthal fibers (RFs), which contain GFAP, small heat shock proteins, and other undefined components. Here, we describe the expression of the cytoskeletal linker protein plectin in the AxD brain. RFs displayed positive immunostaining for plectin and GFAP, both of which were increased in the AxD brain. Co-localization, co-immunoprecipitation, and in vitro overlay analyses demonstrated direct interaction of plectin and GFAP. GFAP with the most common AxD mutation, R239C (RC GFAP), mainly formed abnormal aggregates in human primary astrocytes and murine plectin-deficient fibroblasts. Transient transfection of full-length plectin cDNA converted these aggregates to thin filaments, which exhibited diffuse cytoplasmic distribution. Compared to wild-type GFAP expression, RC GFAP expression lowered plectin levels in astrocytoma-derived stable transfectants and plectin-positive fibroblasts. A much higher proportion of total GFAP was found in the Triton X-insoluble fraction of plectin-deficient fibroblasts than in wild-type fibroblasts. Taken together, our results suggest that insufficient amounts of plectin, due to RC GFAP expression, promote GFAP aggregation and RF formation in AxD.  相似文献   

4.
Rosenthal fibers are homogeneous eosinophilic masses found in astrocytes that are composed of glial fibrillary acidic protein (GFAP) aggregates along with chaperone proteins and other unknown components. Rosenthal fiber formation is a pathological hallmark of Alexander disease and its detection is diagnostically significant. However, the lack of a specific fluorescent marker has greatly limited the histochemical characterization of Rosenthal fibers. Here, we report for the first time a fluorescent marker of Rosenthal fibers called Fluoro Jade. Fluoro Jade-positive masses were seen in samples of Alexander disease brain, pilocytic astrocytoma, and in brain tissue from a mouse model of Alexander disease. Fluoro Jade co-labeled tissue samples stained with GFAP immunofluorescence. Our results indicated that Fluoro Jade labeled Rosenthal fibers, and that Rosenthal fibers could be labeled with antibodies of interest in combination with Fluoro Jade staining.  相似文献   

5.
Alexander disease is a leukodystrophy characterized by the presence of numerous Rosenthal fibers, inclusion bodies in astrocytes. A major component of Rosenthal fibers is alpha B-crystallin, some of which is ubiquitinated. In this report, we show that Alexander central nervous system (CNS) tissues contain elevated messenger RNA and protein levels of both alpha B-crystallin and the related small heat shock protein, hsp27, and that Rosenthal fibers contain hsp27. The alpha B-crystallin and hsp27 polypeptide isoform patterns of Alexander disease CNS are also distinct from those of control samples, suggesting that postranslational modifications may be involved in Rosenthal fiber formation. We advance the hypothesis that Rosenthal fibers may be regarded as stress protein inclusions formed in astrocytes as part of a chronic stress response to an as yet unknown stimulus in the CNS of Alexander patients.  相似文献   

6.
Increased expression of glial fibrillary acidic protein (GFAP) is a hallmark of gliosis, the astrocytic hypertrophy that occurs during a wide variety of diseases of the central nervous system. To determine whether this increase in GFAP expression per se alters astrocyte function, we generated transgenic mice that carry copies of the human GFAP gene driven by its own promoter. Astrocytes of these mice are hypertrophic, up-regulate small heat-shock proteins, and contain inclusion bodies identical histologically and antigenically to the Rosenthal fibers of Alexander's disease. Mice in the highest expressing lines die by the second postnatal week. The results support the notion that Alexander's disease is a disorder of astrocytes, and provide an animal model for studying the causes and consequences of inclusion body disease.  相似文献   

7.
Alexander disease is a neurological genetic disorder characterized by progressive white-matter degeneration, with astrocytes containing cytoplasmic aggregates, called Rosenthal fibers, including the intermediate filament glial fibrillary acidic protein (GFAP). The age of onset of the disease defines three different forms, infantile, juvenile and adult, all due to heterozygous GFAP mutations and characterized by a progressive less severe phenotype from infantile to adult forms. In an Italian family with a recurrent mild adult onset of Alexander disease, we have identified two GFAP mutations, coupled on a same allele, leading to p.[R330G; E332K]. Functional studies on this complex allele revealed less severe aggregation patterns compared to those observed with p.R239C GFAP mutant, associated with a severe Alexander disease phenotype. Moreover, in addition to confirming the involvement of the ubiquitin-proteasome system in cleaning cells from aggregates and a dominant effect of the novel mutant protein, in cells expressing the mild p.[R330G; E332K] mutant we have observed that indirect alphaB-crystallin overexpression, induced by high extracellular potassium concentration, could completely rescue the correct filament organization while, under the same experimental conditions, in cells expressing the severe p.R239C mutant only a partial rescue effect could be achieved.  相似文献   

8.
Deng XH  Bertini G  Xu YZ  Yan Z  Bentivoglio M 《Neuroscience》2006,141(2):645-661
Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement does not develop gradually since youth, but appears characterized by relatively late onset.  相似文献   

9.
10.
杨恩慧  乔梁  林俊堂  闫欣 《解剖学报》2017,48(3):260-265
目的通过观察C1型尼曼-匹克症小鼠不同脊髓节段星形胶质细胞和小胶质细胞的活性变化,探讨Npc1基因突变对脊髓发育的影响。方法 Npc1~(+/-)小鼠交配繁殖产生Npc~(1-/-)(n=3)和Npc1~(+/+)小鼠(n=3),PCR检测新生小鼠的基因型;选取35日龄的Npc1~(-/-)和Npc1~(+/+)小鼠,采用免疫荧光方法观察对比脊髓不同节段(颈、胸、腰、骶)星形胶质细胞和小胶质细胞的活性变化。采用免疫双染色检测胶质细胞中炎性因子的表达情况,采用免疫印迹方法检测白细胞介素-1β(IL-1β)、SMI31和磷酸化的tau蛋白表达情况。结果在35日龄Npc1~(-/-)小鼠脊髓的各个节段,其背角和腹角的星形胶质细胞和小胶质细胞的活性均明显增强(P0.05),并伴随细胞炎性因子IL-1β表达量的显著增加;同时,脊髓神经丝蛋白和骨架蛋白tau蛋白发生超磷酸化。结论 Npc1基因突变引起脊髓神经胶质细胞发生病理性变化,可能是脊髓神经元病理性损伤的重要原因。  相似文献   

11.
Mutations in the coding region of the WFS1 gene cause Wolfram syndrome, a rare multisystem neurodegenerative disorder of autosomal recessive inheritance. In clinical studies a relation between mutations in the Wfs1 gene and increased susceptibility for mood disorders has been established. According to our previous studies, mice lacking Wfs1 gene displayed increased anxiety in stressful environment. As the GABA-ergic system plays a significant role in the regulation of anxiety, we analyzed the expression of GABA-related genes in the forebrain structures of wild-type and Wfs1-deficient mice. Experimentally naïve Wfs1-deficient animals displayed a significant down-regulation of α1 (Gabra1) and α2 (Gabra2) subunits of GABAA receptors in the temporal lobe and frontal cortex. Exposure of wild-type mice to the elevated plus-maze decreased levels of Gabra1 and Gabra2 genes in the temporal lobe. A similar tendency was also established in the frontal cortex of wild-type animals exposed to behavioral test. In Wfs1-deficient mice the elevated plus-maze exposure did not induce further changes in the expression of Gabra1 and Gabra2 genes. By contrast, the expression of Gad1 and Gad2 genes, enzymes responsible for the synthesis of GABA, was not significantly affected by the exposure of mice to the elevated plus-maze or by the invalidation of Wfs1 gene. Altogether, the present study demonstrates that increased anxiety of Wfs1-deficient mice is probably linked to reduced expression of Gabra1 and Gabra2 genes in the frontal cortex and temporal lobe.  相似文献   

12.
13.
14.
ABSTRACT: BACKGROUND: Inheritance of the human epsilon4 allele of the apolipoprotein (apo) E gene (APOE) significantly increases the risk of developing Alzheimer's disease (AD), in addition to adversely influencing clinical outcomes of other neurologic diseases. While apoE isoforms differentially interact with amyloid beta (Abeta), a pleiotropic neurotoxin key to AD etiology, more recent work has focused on immune regulation in AD pathogenesis and on the mechanisms of innate immunomodulatory effects associated with inheritance of different APOE alleles. APOE genotype modulates expression of proximal genes including APOC1, which encodes a small apolipoprotein that is associated with Abeta plaques. Here we tested the hypothesis that APOE-genotype dependent innate immunomodulation may be mediated in part by apoC-I. METHODS: ApoC-I concentration in cerebrospinal fluid from control subjects of differing APOE genotypes was quantified by ELISA. Real-time PCR and ELISA were used to analyze apoC-I mRNA and protein expression, respectively, in liver, serum, cerebral cortex, and cultured primary astrocytes derived from mice with targeted replacement of murine APOE for human APOE epsilon3 or epsilon4. ApoC-I direct modulation of innate immune activity was investigated in cultured murine primary microglia and astrocytes, as well as human differentiated macrophages, using specific toll-like receptor agonists LPS and PIC as well as Abeta. RESULTS: ApoC-I levels varied with APOE genotype in humans and in APOE targeted replacement mice, with epsilon4 carriers showing significantly less apoC-I in both species. ApoC-I potently reduced pro-inflammatory cytokine secretion from primary murine microglia and astrocytes, and human macrophages, stimulated with LPS, PIC, or Abeta. CONCLUSIONS: ApoC-I is immunosuppressive. Our results illuminate a novel potential mechanism for APOE genotype risk for AD; one in which patients with an epsilon4 allele have decreased expression of apoC-I resulting in increased innate immune activity.  相似文献   

15.
Neuroinflammation is an early event and important contributor to the pathobiology of neurodegenerative diseases. Neuroglia, especially microglia, are a major central nervous system population that can modulate neuroinflammation. To determine potential key molecules in this process, we employed microarray analysis in the substantia nigra (SN) following medial forebrain bundle (MFB) transection and analyzed the temporal expression profiles of candidate genes implicated in neuroglial activation and functional maturation. The DNA microarray analyzed, 8913 probes. Sixty nine genes were up-regulated and 11 genes were down-regulated at least twofold compared to normal control. Of the 80 genes, 23 were related to cell metabolism, 3 related to apoptosis, 27 related to immunity. Among them, 4 genes (Galectin 3, Heat shock protein 27, Lipocalin 2, Tissue inhibitory metalloproteinase 1) seemed to be related to the neuroglial function. The candidate genes were subjected to quantitative real-time PCR, Western blotting, and immunohistochemical approaches. Expression changes similar to the microarray were evident. In a double immunofluorescence assay, Galectin 3 almost completely co-localized with OX6-positive activated microglia, and Heat shock protein 27 mainly co-localized with glial fibrillary acidic protein (GFAP) positive astrocytes. Lipocalin 2, except for a few matches of GFAP positive astrocytes, did not co-localized with any of neuroglial markers. This is the first study to evaluate gene expression changes in the SN following MFB transection, which has been used as a parkinsonian animal model. Several candidate genes with potential roles in neuroglial activation and functional maturation were identified. The molecular significance of the candidate genes in neuroglial activation and neuroinflammation remains unclear.  相似文献   

16.
Tuberous Sclerosis Complex (TSC) is an autosomal dominant, multi-system disorder, typically involving severe neurological symptoms, such as epilepsy, cognitive deficits and autism. Two genes, TSC1 and TSC2, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Although there is a substantial overlap in the clinical phenotype produced by TSC1 and TSC2 mutations, accumulating evidence indicates that TSC2 mutations cause more severe neurological manifestations than TSC1 mutations. In this study, the neurological phenotype of a novel mouse model involving conditional inactivation of the Tsc2 gene in glial-fibrillary acidic protein (GFAP)-positive cells (Tsc2(GFAP1)CKO mice) was characterized and compared with previously generated Tsc1(GFAP1)CKO mice. Similar to Tsc1(GFAP1)CKO mice, Tsc2(GFAP1)CKO mice exhibited epilepsy, premature death, progressive megencephaly, diffuse glial proliferation, dispersion of hippocampal pyramidal cells and decreased astrocyte glutamate transporter expression. However, Tsc2(GFAP1)CKO mice had an earlier onset and higher frequency of seizures, as well as significantly more severe histological abnormalities, compared with Tsc1(GFAP1)CKO mice. The differences between Tsc1(GFAP1)CKO and Tsc2(GFAP1)CKO mice were correlated with higher levels of mammalian target of rapamycin (mTOR) activation in Tsc2(GFAP1)CKO mice and were reversed by the mTOR inhibitor, rapamycin. These findings provide novel evidence in mouse models that Tsc2 mutations intrinsically cause a more severe neurological phenotype than Tsc1 mutations and suggest that the difference in phenotype may be related to the degree to which Tsc1 and Tsc2 inactivation causes abnormal mTOR activation.  相似文献   

17.
Reactive astrocytes and microglia in Alzheimer's disease surround amyloid plaques and secrete proinflammatory cytokines that affect neuronal function. Relationship between cytokine signaling and amyloid-beta peptide (Abeta) accumulation is poorly understood. Thus, we generated a novel Swedish beta-amyloid precursor protein mutant (APP) transgenic mouse in which the interferon (IFN)-gamma receptor type I was knocked out (APP/GRKO). IFN-gamma signaling loss in the APP/GRKO mice reduced gliosis and amyloid plaques at 14 months of age. Aggregated Abeta induced IFN-gamma production from co-culture of astrocytes and microglia, and IFN-gamma elicited tumor necrosis factor (TNF)-alpha secretion in wild type (WT) but not GRKO microglia co-cultured with astrocytes. Both IFN-gamma and TNF-alpha enhanced Abeta production from APP-expressing astrocytes and cortical neurons. TNF-alpha directly stimulated beta-site APP-cleaving enzyme (BACE1) expression and enhanced beta-processing of APP in astrocytes. The numbers of reactive astrocytes expressing BACE1 were increased in APP compared with APP/GRKO mice in both cortex and hippocampus. IFN-gamma and TNF-alpha activation of WT microglia suppressed Abeta degradation, whereas GRKO microglia had no changes. These results support the idea that glial IFN-gamma and TNF-alpha enhance Abeta deposition through BACE1 expression and suppression of Abeta clearance. Taken together, these observations suggest that proinflammatory cytokines are directly linked to Alzheimer's disease pathogenesis.  相似文献   

18.
19.
Glaucoma is a common disease seen in the eye clinic, but its associated pathological processes, especially the role of glial cells in glaucomatous retinae, are still under debate. The aim of the present work was to study the responses of astrocytes, Müller cells and microglia in retinae of rats with experimental glaucoma. Glaucoma was induced in adult male Wistar rats by cauterizing limbal-derived veins and the changes in glial fibrillary acidic protein (GFAP), OX42, OX18, OX6 and EDI expression were studied by immunohistochemical staining. Neuronal cell viability was studied by immunostaining with the neuronal nuclei (NeuN) antibody. In the experimental glaucomatous eyes, a significant drop in the number of NeuN-positive neurons was observed from 7 days postoperation and beyond in both the ganglion cell layer and inner nuclear layer. The expression of GFAP and OX42 was increased during the first 2 months after operation and reduced in rats at 3 and 4 months. OX6 and OX18 immunoreactivity was induced in some microglia of both glaucomatous and sham-operated control eyes. Possible mechanisms of the reaction of astrocytes, Müller cells and microglia in neuronal degeneration following glaucoma are discussed.  相似文献   

20.
The influence of cellular origin on glioma pathogenesis remains elusive. We previously showed that mutations inactivating Rb and Pten and activating Kras transform astrocytes and induce tumorigenesis throughout the adult mouse brain. However, it remained unclear whether astrocyte subpopulations were susceptible to these mutations. We therefore used genetic lineage tracing and fate mapping in adult conditional, inducible genetically engineered mice to monitor transformation of glial fibrillary acidic protein (GFAP) and glutamate aspartate transporter (GLAST) astrocytes and immunofluorescence to monitor cellular composition of the tumor microenvironment over time. Because considerable regional heterogeneity exists among astrocytes, we also examined the influence of brain region on tumor growth. GFAP astrocyte transformation induced uniformly rapid, regionally independent tumor growth, but transformation of GLAST astrocytes induced slowly growing tumors with significant regional bias. Transformed GLAST astrocytes had reduced proliferative response in culture and in vivo and malignant progression was delayed in these tumors. Recruited glial cells, including proliferating astrocytes, oligodendrocyte progenitors and microglia, were the majority of GLAST, but not GFAP astrocyte‐derived tumors and their abundance dynamically changed over time. These results suggest that intrinsic astrocyte heterogeneity, and perhaps regional brain microenvironment, significantly contributes to glioma pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号