首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetaminophen (APAP) is a common antipyretic and analgesic drug, but its overdose can induce acute liver failure with lack of effective therapies. Hesperetin, a dihydrogen flavonoid compound, has been revealed to exert multiple pharmacological activities. Here, we explored the protective effects and mechanism of hesperetin on APAP-induced hepatotoxicity. The results showed that pretreatment with hesperetin dose-dependently attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities, hepatic pathological damage and apoptosis. Moreover, hesperetin mitigated APAP-induced oxidative stress and inflammatory response in mice by inhibiting oxidative molecules but increasing antioxidative molecules production, reducing inflammatory cells infiltration and proinflammatory cytokines production, blocking Toll-like receptor (TLR)-4 signal activation. In vitro experiment indicated that hesperetin dose-dependently inhibited APAP-primed cytotoxicity, apoptosis, and reactive oxygen species (ROS) in murine AML12 hepatocytes. Notably, hesperetin up-regulated expression of heme oxygenase-1 (HO-1) mRNA and protein in the liver of mice and AML12 cells exposed to APAP. Furthermore, knockdown of HO-1 by adenovirus-mediated HO-1 siRNA reverted these beneficial effects of hesperetin on APAP-induced hepatocytotoxicity as well as ROS and inflammatory response in vivo and in vitro. These findings demonstrated that hesperetin exerted a protective prophylaxis on APAP-induced acute liver injury by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via up-regulating HO-1 expression.  相似文献   

2.
Acetaminophen (APAP) nephrotoxicity has been observed both in humans and research animals. Recent studies suggest a contributory role for glutathione (GSH)-derived conjugates of APAP in the development of nephrotoxicity. Inhibitors of either gamma-glutamyl transpeptidase (gamma-GT) or the probenecid-sensitive organic anion transporter ameliorate APAP-induced nephrotoxicity but not hepatotoxicity in mice and inhibition of gamma-GT similarly protected rats from APAP nephrotoxicity. Protection against APAP nephrotoxicity by disruption of these GSH conjugate transport and metabolism pathways suggests that GSH conjugates are involved. APAP-induced renal injury may involve the acetaminophen-glutathione (APAP-GSH) conjugate or a metabolite derived from APAP-GSH. Acetaminophen-cysteine (APAP-CYS) is a likely candidate for involvement in APAP nephrotoxicity because it is both a product of the gamma-GT pathway and a probable substrate for the organic anion transporter. The present experiments demonstrated that APAP-CYS treatment alone depleted renal but not hepatic glutathione (GSH) in a dose-responsive manner. This depletion of renal GSH may predispose the kidney to APAP nephrotoxicity by diminishing GSH-mediated detoxification mechanisms. Indeed, pretreatment of male CD-1 mice with APAP-CYS before challenge with a threshold toxic dose of APAP resulted in significant enhancement of APAP-induced nephrotoxicity. This was evidenced by histopathology and plasma blood urea nitrogen (BUN) levels at 24 h after APAP challenge. APAP alone was minimally nephrotoxic and APAP-CYS alone produced no detectable injury. By contrast, APAP-CYS pretreatment did not alter the liver injury induced by APAP challenge. These data are consistent with there being a selective, contributory role for APAP-GSH-derived metabolites in APAP-induced renal injury that may involve renal-selective GSH depletion.  相似文献   

3.
The protective effect of salidroside (SDS) isolated from Rhodiola sachalinensis A. BOR. (Crassulaceae), was investigated in acetaminophen (APAP)-induced hepatic toxicity mouse model in comparison to N-acetylcysteine (NAC). Drug-induced hepatotoxicity was induced by an intraperitoneal (i.p.) injection of 300 mg/kg (sub-lethal dose) of APAP. SDS was given orally to mice at a dose of 50 or 100 mg/kg 2 h before the APAP administration in parallel with NAC. Mice were sacrificed 12 h after the APAP injection to determine aspartate aminotransferase (AST), alanine aminotransferase (ALT), and tumor necrosis factor-alpha (TNF-alpha) levels in serum and glutathione (GSH) depletion, malondialdehyde (MDA) accumulation, and caspase-3 expression in liver tissues. SDS significantly protected APAP-induced hepatotoxicity for SDS improved mouse survival rates better than NAC against a lethal dose of APAP and significantly blocked not only APAP-induced increases of AST, ALT, and TNF-alpha but also APAP-induced GSH depletion and MDA accumulation. Histopathological and immunohistochemical analyses also demonstrated that SDS could reduce the appearance of necrosis regions as well as caspase-3 and hypoxia inducible factor-1alpha (HIF-1alpha) expression in liver tissue. Our results indicated that SDS protected liver tissue from the APAP-induced oxidative damage via preventing or alleviating intracellular GSH depletion and oxidation damage, which suggested that SDS would be a potential antidote against APAP-induced hepatotoxicity.  相似文献   

4.
The potential protective role of alpha-lipoic acid (alpha-LA) in acetaminophen (APAP)-induced hepatotoxicity and nephrotoxicity was investigated in rats. Pretreatment of rats with alpha-LA (100mg/kg) orally protected markedly against hepatotoxicity and nephrotoxicity induced by an acute oral toxic dose of APAP (2.5 g/kg) as assessed by biochemical measurements and by histopathological examination. None of alpha-LA pretreated animals died by the acute toxic dose of APAP. Concomitantly, APAP-induced profound elevation of nitric oxide (NO) production and oxidative stress, as evidenced by increasing of lipid peroxidation level, reducing of glutathione peroxidase (GSH-Px) activity and depleting of intracellular reduced glutathione (GSH) level in liver and kidney, were suppressed by pretreatment with alpha-LA. Similarly, daily treatment of rats with a smaller dose of alpha-LA (25mg/kg) concurrently with a smaller toxic dose of APAP (750 mg/kg) for 1 week protected against APAP-induced hepatotoxicity and nephrotoxicity. This treatment also completely prevented APAP-induced mortality and markedly inhibited APAP-induced NO overproduction and oxidative stress in hepatic and renal tissues. These results provide evidence that inhibition of NO overproduction and maintenance of intracellular antioxidant status may play a pivotal role in the protective effects of alpha-LA against APAP-induced hepatic and renal damage.  相似文献   

5.
This study investigated the possible protective effects and mechanism of rhein on Acetaminophen (APAP)-induced hepatotoxicity and nephrotoxicity in rats. Treatment of rats with APAP resulted in severe liver and kidney injuries, as demonstrated by drastic elevation of serum glutamate-pyruvate transaminase (GPT), glutamate-oxaloacetic transaminase (GOT), total bilirubin (TBIL), creatinine (CREA), urea nitrogen (UREA) levels and typical histopathological changes including necrosis, phlogocyte infiltration and fatty degeneration in liver, tubules epithelium swelling and severe vacuolar degeneration in kidney. APAP caused oxidative stress, as evidenced by increased reactive oxygen species (ROS) production, nitric oxide (NO) and malondiadehyde (MDA) levels, together with depleted glutathione (GSH) concentration in the liver and kidney of rats. However, rhein can attenuate APAP-induced hepatotoxicity and nephrotoxicity in a dose-dependent manner. Our results showed that GPT, GOT, UREA and CREA levels and ROS production were reduced dramatically, NO, MDA, GSH contents were restored remarkedly by rhein administration, as compared to the APAP alone treated rats. Moreover, the histopathological damage of liver and kidney were also significantly ameliorated by rhein treatment. These findings suggested that the protective effects of rhein against APAP-induced liver and kidney injuries might result from the amelioration of APAP-induced oxidative stress.  相似文献   

6.
Acetaminophen (APAP) is a widely used antipyretic and analgesic drug, which is safe and effective at the therapeutic dose. Unfortunately, excessive dosage of APAP could cause severe liver injury due to lack of effective therapy. Successful therapeutic strategies are urgently requested in clinic. Glycyrrhetinic acid (GA), derived from a traditional medicine licorice, has been shown to exert anti-inflammatory and antioxidant actions. In this study, the effect and the underlying mechanism of GA on APAP-induced hepatotoxicity were explored. Our results showed that pretreatment with GA significantly reduced serum ALT and AST activities, alleviated hepatic pathological damages with hepatocellular apoptosis, down-regulated expression of CYP2E1 mRNA and protein, increased GSH levels, and reduced reactive oxygen species (ROS) productions in the liver of APAP-exposed mice. Furthermore, GA obviously inhibited APAP-induced HMGB1-TLR4 signal activation, as evaluated by reduced hepatic HMGB1 release, p-IRAK1, p-MAPK and p-IκB expression as well as the productions of TNF-α and IL-1β. In addition, GA attenuated hepatic neutrophils recruitment and macrophages infiltration caused by APAP. These findings reflected that GA could alleviate APAP-induced hepatotoxicity, the possible mechanism is associated with down-regulation of CYP2E1 expression and deactivation of HMGB1-TLR4 signal pathway.  相似文献   

7.
Drug-induced hepatotoxicity is a serious adverse effect with high morbidity and mortality rates but substantial individual to individual variation is observed in its severity. Here we sought to discover factors determining the susceptibility to acetaminophen (APAP)-induced hepatotoxicity by comparing the global gene expression profile (27,342 genes) in pre-dose blood before APAP administration between susceptible and resistant animals (N = 5) grouped based on the severity of hepatotoxicity. Forty-one genes were expressed differently (>1.5 fold change and p < 0.05) between susceptible and resistant groups. Among them, protein kinase (cAMP-dependent) inhibitor alpha, Pkia, a member of protein kinase A (PKA) inhibitor family, was found to be most significantly and highly expressed in susceptible animals (∼3.5 fold with p < 0.01). To investigate the effects of PKA inhibition on APAP-induced hepatotoxicity, we pre-treated H-89, a potent and selective inhibitor of PKA, prior to APAP administration in vivo. As a result, H-89 pretreatment significantly potentiated APAP-induced hepatotoxicity as determined by the increased serum alanine transaminase. These results were further corroborated by the exacerbation of APAP-induced glutathione depletion, suppression of antioxidant enzyme system, superoxide dismutase 1 and glutathione peroxidase 1, and peroxynitrite generation in the liver following H-89 pretreatment, reflecting that PKA may be involved in the protection against, or attenuation of APAP-induced hepatotoxicity, and Pkia can be employed to screen individuals susceptible to APAP-induced hepatotoxicity.  相似文献   

8.
The potential protective role of aminoguanidine (AG), gadolinium chloride (GdCl(3)) and oleanolic acid (OA) in acetaminophen (APAP)-induced hepatotoxicity and nephrotoxicity was investigated in rats. Pretreatment of rats with AG (50mg/kg) orally, GdCl(3) (10mg/kg) intramuscularly or OA (25mg/kg) intramuscularly protected markedly against hepatotoxicity and nephrotoxicity induced by an acute oral toxic dose of APAP (2.5g/kg) as assessed by biochemical measurements and by histopathological examination. None of AG-, GdCl(3)- or OA-pretreated animals died by the acute toxic dose of APAP. Concomitantly, pretreatment of rats with these agents suppressed the profound elevation of nitric oxide (NO) production and obvious reduction of intracellular reduced glutathione (GSH) levels in liver and kidney induced by the acute toxic dose of APAP. Similarly, daily treatment of rats with a smaller dose of AG (10mg/kg), GdCl(3) (3mg/kg) or OA (5mg/kg) concurrently with a smaller toxic dose of APAP (750mg/kg) for 1 week protected against APAP-induced hepatotoxicity and nephrotoxicity. This treatment also completely prevented APAP-induced mortality and markedly inhibited APAP-induced NO overproduction as well as hepatic and renal intracellular GSH levels reduction. These results provide evidence that inhibition of NO overproduction and consequently maintenance of intracellular GSH levels may play a pivotal role in the protective effects of AG, GdCl(3) and OA against APAP-induced hepatic and renal damages.  相似文献   

9.
Acute liver failure (ALF), an often fatal condition characterized by massive hepatocyte necrosis, is frequently caused by drug poisoning, particularly with acetaminophen (N-acetyl-p-aminophenol/APAP). Hepatocyte necrosis is consecutive to glutathione (GSH) depletion and mitochondrial damage caused by reactive oxygen species (ROS) overproduction. Magnolol, one major phenolic constituent of Magnolia officinalis, have been known to exhibit potent antioxidative activity. In this study, the anti-hepatotoxic activity of magnolol on APAP-induced toxicity in the Sprague-Dawley rat liver was examined. After evaluating the changes of several biochemical parameters in serum, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) were elevated by APAP (500 mg/kg) intraperitoneal administration (8 and 24 h) and reduced by treatment with magnolol (0.5 h after APAP administration; 0.01, 0.1, and 1 μg/kg). Histological changes around the hepatic central vein, lipid peroxidation (thiobarbituric acid-reactive substance/TBARS), and GSH depletion in liver tissue induced by APAP were also recovered by magnolol treatment. The data show that oxidative stress followed by lipid peroxidation may play a very important role in the pathogenesis of APAP-induced hepatic injury; treatment with lipid-soluble antioxidant, magnolol, exerts anti-hepatotoxic activity. Our study points out the potential interest of magnolol in the treatment of toxic ALF. Yen-Yi Ho and Ming-Tsung Lai contributed equally to this work.  相似文献   

10.
11.
12.
The analgesic and antipyretic drug acetaminophen (APAP) is bioactivated to the reactive intermediate N-acetyl-p-benzoquinoneimine, which is scavenged by glutathione (GSH). APAP overdose can deplete GSH leading to the accumulation of APAP-protein adducts and centrilobular necrosis in the liver. N-acetylcysteine (NAC), a cysteine prodrug and GSH precursor, is often given as a treatment for APAP overdose. The rate-limiting step in GSH biosynthesis is catalyzed by glutamate cysteine ligase (GCL) a heterodimer composed of catalytic and modifier (GCLM) subunits. Previous studies have indicated that GCL activity is likely to be an important determinant of APAP toxicity. In this study, we investigated APAP toxicity, and NAC or GSH ethyl ester (GSHee)-mediated rescue in mice with normal or compromised GCLM expression. Gclm wild-type, heterozygous, and null mice were administered APAP (500 mg/kg) alone, or immediately following NAC (800 mg/kg) or GSHee (168 mg/kg), and assessed for hepatotoxicity 6 h later. APAP caused GSH depletion in all mice. Gclm null and heterozygous mice exhibited more extensive hepatic damage compared to wild-type mice as assessed by serum alanine aminotransferase activity and histopathology. Additionally, male Gclm wild-type mice demonstrated greater APAP-induced hepatotoxicity than female wild-type mice. Cotreatment with either NAC or GSHee mitigated the effects of APAP in Gclm wild-type and heterozygous mice, but not in Gclm null mice. Collectively, these data reassert the importance of GSH in protection against APAP-induced hepatotoxicity, and indicate critical roles for GCL activity and gender in APAP-induced liver damage in mice.  相似文献   

13.
An overdose of acetaminophen (APAP) causes liver injury both in experimental animals and humans. N-acetylcysteine (NAC) is clinically used as an antidote for APAP intoxication, and it is thought to act by providing cysteine as a precursor of glutathione, which traps a reactive metabolite of APAP. Other hepatoprotective mechanisms of NAC have also been suggested. Here, we examined the effects of thiol compounds with different abilities to restore hepatic glutathione, on hepatotoxicity of APAP and furosemide in mice. Overnight-fasted male CD-1 mice were given APAP or furosemide intraperitoneally. NAC, cysteine, glutathione, or glutathione-monoethyl ester was administered concomitantly with APAP or furosemide. All thiol compounds used in this study effectively protected mice against APAP-induced liver injury. Only glutathione-monoethyl ester completely prevented APAP-induced early hepatic glutathione depletion. Cysteine also significantly restored hepatic glutathione levels. NAC partially restored glutathione levels. Exogenous glutathione had no effect on hepatic glutathione loss. NAC and glutathione highly stimulated the hepatic expression of cytokines, particularly interleukin-6, which might be involved in the alleviation of APAP hepatotoxicity. Furosemide-induced liver injury, which does not accompany hepatic glutathione depletion, was also attenuated by NAC and exogenous glutathione, supporting their protective mechanisms other than replenishment of glutathione. In conclusion, exogenous thiols could alleviate drug-induced liver injury. NAC and glutathione might exert their effects, at least partially, via mechanisms that are independent of increasing hepatic glutathione, but probably act through cytokine-mediated and anti-inflammatory mechanisms.  相似文献   

14.
The root of Aralia continentalis Kitagawa has been used in traditional Korean medicine to relieve pain and to treat inflammation. The purpose of this study was to investigate the protective effects of the extract of A. continentalis roots (AC) against hepatotoxicity induced by carbon tetrachloride (CCl4) and the mechanism of its hepatoprotective effect. In mice, pretreatment with AC prior to the administration of CCl4 significantly prevented the increased serum enzymatic activity of ALT and AST as well as the formation of hepatic malondialdehyde. Histopathological evaluation of the livers also revealed that AC reduced the incidence of liver lesions induced by CCl4. In addition, pretreatment with AC significantly prevented both the depletion of reduced glutathione (GSH) content and the decrease in glutathione-S-transferase (GST) activity in the liver of CCl4-intoxicated mice. Hepatic GSH levels and GST activity were increased by treatment with AC alone. Heme oxygenase-1 (HO-1) is known to be induced by oxidative stress and to confer protection against oxidative tissue injuries. Interestingly, AC markedly upregulated hepatic HO-1 expression in CCl4-treated mice, which might provide anti-oxidative activity in the liver. These results indicate that AC plays a critical protective role in CCl4-induced acute liver injury by promoting anti-oxidative protein expression.  相似文献   

15.
X Zhao  X Cong  L Zheng  L Xu  L Yin  J Peng 《Toxicology letters》2012,214(1):69-80
The aim of the study was to investigate the protective effect of dioscin against APAP-induced hepatotoxicity. In the in vitro tests, HepG2 cells were given APAP pretreatment with or without dioscin. In the in vivo experiments, mice were orally administrated dioscin for five days and then given APAP. Some biochemical and morphology parameters were assayed and the possible mechanism was investigated. Dioscin improved AST release, mitochondrial dysfunction, apoptosis and necrosis of HepG2 cells induced by APAP. Following administration of dioscin, APAP-induced hepatotoxicity in mice was significantly attenuated. Furthermore, the liver cell apoptosis and necrosis, and hepatic mitochondrial edema were also prevented. Fifteen differentially expressed proteins were found by using proteomics, and six of them, Suox, Krt18, Rgn, Prdx1, MDH and PNP were validated. These proteins may be involved in the hepatoprotective effect of dioscin and might cooperate with the levels of Ca(2+) in mitochondria, decreased expression of ATP2A2, and decreased mitochondrial cardiolipin. In addition, dioscin inhibited APAP-induced activation and expression of CYP2E1, up-regulated the expression of Bcl-2 and Bid, and inhibited the expression of Bax, Bak and p53. Dioscin showed a remarkable protective effect against APAP-induced hepatotoxicity by adjusting mitochondrial function. These results indicated that dioscin has the capability on the treatment of liver injury.  相似文献   

16.
BackgroundAcetaminophen (APAP) is a conventional drug widely used in the clinic because of its antipyretic-analgesic effects. However, accidental or intentional APAP overdoses induce liver injury and even acute liver failure (ALF). Astaxanthin (ASX) is the strongest antioxidant in nature that shows preventive and therapeutic properties, such as ocular protection, anti-tumor, anti-diabetes, anti-inflammatory, and immunomodulatory effects. The aim of present study was to determine whether ASX pretreatment provides protection against APAP-induced liver failure.MethodsMale C57BL/6 mice were randomly divided into 7 groups, including control, oil, ASX (30 mg/kg or 60 mg/kg), APAP and APAP + ASX (30 mg/kg or 60 mg/kg) groups. Saline, olive oil and ASX were administered for 14 days. The APAP and APAP + ASX groups were given a peritoneal injection of 700 mg/kg or 300 mg/kg APAP to determine the 5-day survival rate and for further observation, respectively. Blood and liver samples were collected to detect alanine transaminase (ALT), aspartate transaminase (AST), inflammation, oxidative stress and antioxidant systems, and to observe histopathologic changes and key proteins in the mitogen-activated protein kinase (MAPK) family.ResultsASX pretreatment before APAP increased the 5-day survival rate in a dose-dependent manner and reduced the ALT, AST, hepatic necrosis, reactive oxygen species (ROS) generation, lipid peroxidation (LPO), oxidative stress and pro-inflammatory factors. ASX protected against APAP toxicity by inhibiting the depletion of glutathione (GSH) and superoxide dismutase (SOD). Administration of ASX did not change the expression of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and P38. However, phosphorylation of JNK, ERK and P38 was reduced, consistent with the level of tumor necrosis factor alpha (TNF-α) and TNF receptor-associated factor 2 (TRAF2).ConclusionASX provided protection for the liver against APAP hepatotoxicity by alleviating hepatocyte necrosis, blocking ROS generation, inhibiting oxidative stress, and reducing apoptosis by inhibiting the TNF-α-mediated JNK signal pathway and by phosphorylation of ERK and P38, which made sense in preventing and treating liver damage.  相似文献   

17.
ContextAcetaminophen (APAP) overdose is the leading cause of drug-induced liver injury. Bianliang ziyu, a variety of Chrysanthemum morifolium Ramat. (Asteraceae), has potential hepatoprotective effect. However, the mechanism is not clear yet.ObjectiveTo investigate the hepatoprotective activity and mechanism of Bianliang ziyu flower ethanol extract (BZE) on APAP-induced rats based on network pharmacology.Materials and methodsPotential pathways of BZE were predicted by network pharmacology. Male Sprague-Dawley rats were pre-treated with BZE (110, 220 and 440 mg/kg, i.g.) for eight days, and then APAP (800 mg/kg, i.g.) was used to induce liver injury. After 24 h, serum and liver were collected for biochemical detection and western blot measurement.ResultsNetwork pharmacology indicated that liver-protective effect of BZE was associated with its antioxidant and anti-apoptotic efficacy. APAP-induced liver pathological change was alleviated, and elevated serum AST and ALT were reduced by BZE (440 mg/kg) (from 66.45 to 22.64 U/L and from 59.59 to 17.49 U/L, respectively). BZE (440 mg/kg) reduced the ROS to 65.50%, and upregulated SOD and GSH by 212.92% and 175.38%, respectively. In addition, BZE (440 mg/kg) increased levels of p-AMPK, p-GSK3β, HO-1 and NQO1, ranging from 1.66- to 10.29-fold compared to APAP group, and promoted nuclear translocation of Nrf2. BZE also inhibited apoptosis induced by APAP through the PI3K–Akt pathway and restored the ability of mitochondrial biogenesis.Discussion and conclusionsOur study demonstrated that BZE protected rats from APAP-induced liver injury through antioxidant and anti-apoptotic pathways, suggesting BZE could be further developed as a potential liver-protecting agent.  相似文献   

18.
Song Z  McClain CJ  Chen T 《Pharmacology》2004,71(4):199-208
An overdose of acetaminophen (APAP) is the most frequent cause of fulminant liver failure in the United States. Increasing evidence demonstrates that oxidative stress plays an important etiologic role in APAP-induced liver injury. S-Adenosylmethionine (SAMe) is a key intermediate in the hepatic trans-sulfuration pathway and serves as a precursor for glutathione (GSH) as well as the methyl donor in most transmethylation reactions. In the present study, we investigated effects of SAMe on liver injury induced by APAP administration in male C57BL/6 mice. Two related studies were performed. In the first experiment, SAMe (1g/kg BW) was injected intraperitoneally 4 h before APAP (600 mg/kg BW) administration. In the second experiment, SAMe was injected intraperitoneally 1 h after APAP administration. Our results showed that APAP administration induced changes typical of confluent centrilobular necrosis by histological examination and a marked elevation in serum alanine aminotransferase (ALT) activity. APAP administration induced significant decreases in both hepatic and blood SAMe concentrations. In addition, APAP decreased intracellular (both cytosolic and mitochondrial) GSH concentrations along with increased lipid peroxidation in conjunction with mitochondrial dysfunction as documented by Ca2+-induced mitochondrial permeability transition. SAMe treatment (both before and after APAP) significantly attenuated the liver injury. Exogenous SAMe prevented the decrease in liver and blood SAMe concentrations. Moreover, SAMe treatment attenuated both cytosolic and mitochondrial GSH depletion as well as mitochondrial dysfunction. We conclude that SAMe at least in part protects the liver from APAP-induced injury by preventing intracellular GSH depletion and mitochondrial dysfunction.  相似文献   

19.
Acetaminophen (APAP) overdose causes serious hepatocyte injury, and new markers are needed to predict APAP-induced hepatic injury. Glutathione S-transferase A1 (GSTA1) plays a significant role in the metabolism of APAP. Primary mouse hepatocytes were isolated by a two-step perfusion in situ. An APAP-induced hepatocyte injury model was used to characterize GSTA1 in APAP treated cells and determine whether GSTA1 could be a prognostic marker in vitro. A significant increase (p?p?p?相似文献   

20.
Overdoses of acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) cause severe liver injury, yet there is no common or high throughput in vitro human APAP model. This study examined the characteristics and usefulness of HepG2 cells grown in a nano culture plate (NCP) system, a three-dimensional culture method, as an in vitro human model for APAP-induced hepatotoxicity. The NCP-cultured HepG2 cells showed higher expression of mRNA and protein levels of cytochrome P450 2E1, which metabolizes APAP to a toxic metabolite, APAP-cysteine adduct formation, and higher sensitivity against APAP-induced cell injury compared with conventionally cultured cells. We demonstrated that treatment of APAP in NCP-cultured HepG2 cells shows key mechanistic features of APAP-induced hepatotoxicity, such as decreases in intracellular glutathione and mitochondrial membrane potential, activation of JNK, and cellular injury; and pharmacological agents, such as Cyclosporine A (a mitochondrial permeability transition inhibitor) and SP600125 (a JNK inhibitor), prevented cell injury induced by APAP exposure. In addition, the antidote of APAP-induced hepatotoxicity, N-acetylcysteine, could attenuate cellular injury induced by APAP in NCP-cultured HepG2 cells. We suggest that cellular injury induced by APAP treatment using an NCP-HepG2 system is a useful human model to study mechanisms and screen drug candidates of APAP-induced hepatotoxicity. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.13135FP]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号