首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundUniversal SARS-CoV-2 testing at hospital admission has been proposed to prevent nosocomial transmission.AimTo investigate SARS-CoV-2 positivity in patients tested with low clinical COVID-19 suspicion at hospital admission.MethodsWe characterised a retrospective cohort of patients admitted to Karolinska University Hospital tested for SARS-CoV-2 by PCR from March to September 2020, supplemented with an in-depth chart review (16 March–12 April). We compared positivity rates in patients with and without clinical COVID-19 suspicion with Spearman’s rank correlation coefficient. We used multivariable logistic regression to identify factors associated with test positivity.ResultsFrom March to September 2020, 66.9% (24,245/36,249) admitted patient episodes were tested; of those, 61.2% (14,830/24,245) showed no clinical COVID-19 suspicion, and the positivity rate was 3.2% (469/14,830). There was a strong correlation of SARS-CoV-2 positivity in patients with low vs high COVID-19 suspicion (rho = 0.92; p < 0.001).From 16 March to 12 April, the positivity rate was 3.9% (58/1,482) in individuals with low COVID-19 suspicion, and 3.1% (35/1,114) in asymptomatic patients. Rates were higher in women (5.0%; 45/893) vs men (2.0%; 12/589; p = 0.003), but not significantly different if pregnant women were excluded (3.7% (21/566) vs 2.2% (12/589); p = 0.09). Factors associated with SARS-CoV-2 positivity were testing of pregnant women before delivery (odds ratio (OR): 2.6; 95% confidence interval (CI): 1.3–5.4) and isolated symptoms in adults (OR: 3.3; 95% CI: 1.8–6.3).ConclusionsThis study shows a relatively high SARS-CoV-2 positivity rate in patients with low COVID-19 suspicion upon hospital admission. Universal SARS-CoV-2 testing of pregnant women before delivery should be considered.  相似文献   

2.
BackgroundDifferential SARS-CoV-2 exposure between vaccinated and unvaccinated individuals may confound vaccine effectiveness (VE) estimates.AimWe conducted a test-negative case–control study to determine VE against SARS-CoV-2 infection and the presence of confounding by SARS-CoV-2 exposure.MethodsWe included adults tested for SARS-CoV-2 at community facilities between 4 July and 8 December 2021 (circulation period of the Delta variant). The VE against SARS-CoV-2 infection after primary vaccination with an mRNA (Comirnaty or Spikevax) or vector-based vaccine (Vaxzevria or Janssen) was calculated using logistic regression adjusting for age, sex and calendar week (Model 1). We additionally adjusted for comorbidity and education level (Model 2) and SARS-CoV-2 exposure (number of close contacts, visiting busy locations, household size, face mask wearing, contact with SARS-CoV-2 case; Model 3). We stratified by age, vaccine type and time since vaccination.ResultsVE against infection (Model 3) was 64% (95% CI: 50–73), only slightly lower than in Models 1 (68%; 95% CI: 58–76) and 2 (67%; 95% CI: 56–75). Estimates stratified by age group, vaccine and time since vaccination remained similar: mRNA VE (Model 3) among people ≥ 50 years decreased significantly (p = 0.01) from 81% (95% CI: 66–91) at < 120 days to 61% (95% CI: 22–80) at ≥ 120 days after vaccination. It decreased from 83% to 59% in Model 1 and from 81% to 56% in Model 2.ConclusionSARS-CoV-2 exposure did not majorly confound the estimated COVID-19 VE against infection, suggesting that VE can be estimated accurately using routinely collected data without exposure information.  相似文献   

3.
BackgroundSerosurveys for SARS-CoV-2 aim to estimate the proportion of the population that has been infected.AimThis observational study assesses the seroprevalence of SARS-CoV-2 antibodies in Ontario, Canada during the first pandemic wave.MethodsUsing an orthogonal approach, we tested 8,902 residual specimens from the Public Health Ontario laboratory over three time periods during March–June 2020 and stratified results by age group, sex and region. We adjusted for antibody test sensitivity/specificity and compared with reported PCR-confirmed COVID-19 cases.ResultsAdjusted seroprevalence was 0.5% (95% confidence interval (CI): 0.1–1.5) from 27 March–30 April, 1.5% (95% CI: 0.7–2.2) from 26–31 May, and 1.1% (95% CI: 0.8–1.3) from 5–30 June 2020. Adjusted estimates were highest in individuals aged ≥ 60 years in March–April (1.3%; 95% CI: 0.2–4.6), in those aged 20–59 years in May (2.1%; 95% CI: 0.8–3.4) and in those aged ≥ 60 years in June (1.6%; 95% CI: 1.1–2.1). Regional seroprevalence varied, and was highest for Toronto in March–April (0.9%; 95% CI: 0.1–3.1), for Toronto in May (3.2%; 95% CI: 1.0–5.3) and for Toronto (1.5%; 95% CI: 0.9–2.1) and Central East in June (1.5%; 95% CI: 1.0–2.0). We estimate that COVID-19 cases detected by PCR in Ontario underestimated SARS-CoV-2 infections by a factor of 4.9.ConclusionsOur results indicate low population seroprevalence in Ontario, suggesting that public health measures were effective at limiting the spread of SARS-CoV-2 during the first pandemic wave.  相似文献   

4.
Healthcare workers (HCWs) are at increased risk of SARS-CoV-2 infection. The aim of the study was to estimate the SARS-CoV-2 seroprevalence among HCWs in Cochabamba, Bolivia and to determine the potential risk factors. In January 2021, a cross-sectional SARS-CoV-2 seroprevalence study was conducted in 783 volunteer clinical and non-clinical HCWs in tertiary care facilities. It was based on IgG detection using ELISA, chemiluminiscence, and seroneutralisation tests from dried blood spots. Analysis revealed a high seroprevalence (43.4%) of SARS-CoV-2 IgG antibodies. The combination of anosmia and ageusia (OR: 68.11; 95%-CI 24.83–186.80) was predictive of seropositivity. Belonging to the cleaning staff (OR: 1.94; 95%-CI 1.09–3.45), having more than two children in the same house (OR: 1.74; 95%-CI 1.12–2.71), and having been in contact with a close relative with COVID-19 (OR: 3.53; 95%-CI 2.24–5.58) were identified as risk factors for seropositivity in a multivariate analysis. A total of 47.5% of participants had received medication for COVID-19 treatment or prevention, and only ~50% of symptomatic subjects accessed PCR or antigenic testing. This study confirms a massive SARS-CoV-2 attack rate among HCWs in Cochabamba by the end of January 2021. The main risk factors identified are having a low-skilled job, living with children, and having been in contact with an infected relative in the household.  相似文献   

5.
BackgroundAs COVID-19 vaccine effectiveness against SARS-CoV-2 infection was lower for cases of the Omicron vs the Delta variant, understanding the effect of vaccination in reducing risk of hospitalisation and severe disease among COVID-19 cases is crucial.AimTo evaluate risk reduction of hospitalisation and severe disease in vaccinated COVID-19 cases during the Omicron BA.1-predominant period in Navarre, Spain.MethodsA case-to-case comparison included COVID-19 epidemiological surveillance data in adults ≥ 18 years from 3 January–20 March 2022. COVID-19 vaccination status was compared between hospitalised and non-hospitalised cases, and between severe (intensive care unit admission or death) and non-severe cases using logistic regression models.ResultsAmong 58,952 COVID-19 cases, 565 (1.0%) were hospitalised and 156 (0.3%) were severe. The risk of hospitalisation was reduced within the first 6 months after full COVID-19 vaccination (complete primary series) (adjusted odds ratio (aOR): 0.06; 95% CI: 0.04–0.09) and after 6 months (aOR: 0.16; 95% CI: 0.12–0.21; pcomparison < 0.001), as well as after a booster dose (aOR: 0.06: 95% CI: 0.04–0.07). Similarly, the risk of severe disease was reduced (aOR: 0.13, 0.18, and 0.06, respectively). Compared with cases fully vaccinated 6 months or more before a positive test, those who had received a booster dose had lower risk of hospitalisation (aOR: 0.38; 95% CI: 0.28–0.52) and severe disease (aOR: 0.38; 95% CI: 0.21–0.68).ConclusionsFull COVID-19 vaccination greatly reduced the risk of hospitalisation and severe outcomes in COVID-19 cases with the Omicron variant, and a booster dose improved this effect in people aged over 65 years.  相似文献   

6.
BackgroundSince the onset of the COVID-19 pandemic, the disease has frequently been compared with seasonal influenza, but this comparison is based on little empirical data.AimThis study compares in-hospital outcomes for patients with community-acquired COVID-19 and patients with community-acquired influenza in Switzerland.MethodsThis retrospective multi-centre cohort study includes patients > 18 years admitted for COVID-19 or influenza A/B infection determined by RT-PCR. Primary and secondary outcomes were in-hospital mortality and intensive care unit (ICU) admission for patients with COVID-19 or influenza. We used Cox regression (cause-specific and Fine-Gray subdistribution hazard models) to account for time-dependency and competing events with inverse probability weighting to adjust for confounders.ResultsIn 2020, 2,843 patients with COVID-19 from 14 centres were included. Between 2018 and 2020, 1,381 patients with influenza from seven centres were included; 1,722 (61%) of the patients with COVID-19 and 666 (48%) of the patients with influenza were male (p < 0.001). The patients with COVID-19 were younger (median 67 years; interquartile range (IQR): 54–78) than the patients with influenza (median 74 years; IQR: 61–84) (p < 0.001). A larger percentage of patients with COVID-19 (12.8%) than patients with influenza (4.4%) died in hospital (p < 0.001). The final adjusted subdistribution hazard ratio for mortality was 3.01 (95% CI: 2.22–4.09; p < 0.001) for COVID-19 compared with influenza and 2.44 (95% CI: 2.00–3.00, p < 0.001) for ICU admission.ConclusionCommunity-acquired COVID-19 was associated with worse outcomes compared with community-acquired influenza, as the hazards of ICU admission and in-hospital death were about two-fold to three-fold higher.  相似文献   

7.
8.
BackgroundLittle is known about whether diabetes increases the risk of COVID-19 infection and whether measures of diabetes severity are related to COVID-19 outcomes.ObjectiveInvestigate diabetes severity measures as potential risk factors for COVID-19 infection and COVID-19 outcomes.Design, Participants, MeasuresIn integrated healthcare systems in Colorado, Oregon, and Washington, we identified a cohort of adults on February 29, 2020 (n = 1,086,918) and conducted follow-up through February 28, 2021. Electronic health data and death certificates were used to identify markers of diabetes severity, covariates, and outcomes. Outcomes were COVID-19 infection (positive nucleic acid antigen test, COVID-19 hospitalization, or COVID-19 death) and severe COVID-19 (invasive mechanical ventilation or COVID-19 death). Individuals with diabetes (n = 142,340) and categories of diabetes severity measures were compared with a referent group with no diabetes (n = 944,578), adjusting for demographic variables, neighborhood deprivation index, body mass index, and comorbidities.ResultsOf 30,935 patients with COVID-19 infection, 996 met the criteria for severe COVID-19. Type 1 (odds ratio [OR] 1.41, 95% CI 1.27–1.57) and type 2 diabetes (OR 1.27, 95% CI 1.23–1.31) were associated with increased risk of COVID-19 infection. Insulin treatment was associated with greater COVID-19 infection risk (OR 1.43, 95% CI 1.34–1.52) than treatment with non-insulin drugs (OR 1.26, 95% 1.20–1.33) or no treatment (OR 1.24; 1.18–1.29). The relationship between glycemic control and COVID-19 infection risk was dose-dependent: from an OR of 1.21 (95% CI 1.15–1.26) for hemoglobin A1c (HbA1c) < 7% to an OR of 1.62 (95% CI 1.51–1.75) for HbA1c ≥ 9%. Risk factors for severe COVID-19 were type 1 diabetes (OR 2.87; 95% CI 1.99–4.15), type 2 diabetes (OR 1.80; 95% CI 1.55–2.09), insulin treatment (OR 2.65; 95% CI 2.13–3.28), and HbA1c ≥ 9% (OR 2.61; 95% CI 1.94–3.52).ConclusionsDiabetes and greater diabetes severity were associated with increased risks of COVID-19 infection and worse COVID-19 outcomes. Supplementary InformationThe online version contains supplementary material available at 10.1007/s11606-023-08076-9.KEY WORDS: diabetes, insulin, hemoglobin A1c, COVID-19, epidemiology  相似文献   

9.
BackgroundThe incidence of persistent clinical symptoms and risk factors in Post-Acute Sequelae of SARS-CoV-2 (PASC) in diverse US cohorts is unclear. While there are a disproportionate share of COVID-19 deaths in older patients, ethnic minorities, and socially disadvantaged populations in the USA, little information is available on the association of these factors and PASC.ObjectiveTo evaluate the association of demographic and clinical characteristics with development of PASC.DesignProspective observational cohort of hospitalized and high-risk outpatients, April 2020 to February 2021.ParticipantsOne thousand thirty-eight adults with laboratory-confirmed symptomatic COVID-19 infection.Main MeasuresDevelopment of PASC determined by patient report of persistent symptoms on questionnaires conducted 60 or 90 days after COVID-19 infection or hospital discharge. Demographic and clinical factors associated with PASC.Key ResultsOf 1,038 patients with longitudinal follow-up, 309 patients (29.8%) developed PASC. The most common persistent symptom was fatigue (31.4%) followed by shortness of breath (15.4%) in hospitalized patients and anosmia (15.9%) in outpatients. Hospitalization for COVID-19 (odds ratio [OR] 1.49, 95% [CI] 1.04–2.14), having diabetes (OR, 1.39; 95% CI 1.02–1.88), and higher BMI (OR, 1.02; 95% CI 1–1.04) were independently associated with PASC. Medicaid compared to commercial insurance (OR, 0.49; 95% CI 0.31–0.77) and having had an organ transplant (OR 0.44, 95% CI, 0.26–0.76) were inversely associated with PASC. Age, race/ethnicity, Social Vulnerability Index, and baseline functional status were not associated with developing PASC.ConclusionsThree in ten survivors with COVID-19 developed a subset of symptoms associated with PASC in our cohort. While ethnic minorities, older age, and social disadvantage are associated with worse acute COVID-19 infection and greater risk of death, our study found no association between these factors and PASC.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11606-022-07523-3.  相似文献   

10.
We assess the immunogenicity and efficacy of Spikevax and Comirnaty as fourth dose COVID-19 vaccines. Six months post-fourth-dose, IgG levels were higher than pre-fourth dose at 1.58-fold (95% CI: 1.27–1.97) in Spikevax and 1.16-fold (95% CI: 0.98–1.37) in Comirnaty vaccinees. Nearly 60% (159/274) of vaccinees contracted SARS-CoV-2. Infection hazard ratios (HRs) for Spikevax (0.82; 95% CI: 0.62–1.09) and Comirnaty (0.86; 95% CI: 0.65–1.13) vaccinees were similar, as were substantial-disease HRs, i.e. 0.28 (95% CI: 0.13–0.62) and 0.51 (95% CI: 0.27–0.96), respectively.  相似文献   

11.
IntroductionSARS-CoV-2, the virus that causes COVID-19, has spread rapidly worldwide. In January 2020, a surveillance system was implemented in France for early detection of cases and their contacts to help limit secondary transmissions.AimTo use contact-tracing data collected during the initial phase of the COVID-19 pandemic to better characterise SARS-CoV-2 transmission.MethodsWe analysed data collected during contact tracing and retrospective epidemiological investigations in France from 24 January to 30 March 2020. We assessed the secondary clinical attack rate and characterised the risk of a contact becoming a case. We described chains of transmission and estimated key parameters of spread.ResultsDuring the study period, 6,082 contacts of 735 confirmed cases were traced. The overall secondary clinical attack rate was 4.1% (95% confidence interval (CI): 3.6–4.6), increasing with age of index case and contact. Compared with co-workers/friends, family contacts were at higher risk of becoming cases (adjusted odds ratio (AOR): 2.1, 95% CI: 1.4–3.0) and nosocomial contacts were at lower risk (AOR: 0.3, 95% CI: 0.1–0.7). Of 328 infector/infectee pairs, 49% were family members. The distribution of secondary cases was highly over-dispersed: 80% of secondary cases were caused by 10% of cases. The mean serial interval was 5.1 days (interquartile range (IQR): 2–8 days) in contact tracing pairs, where late transmission events may be censored, and 6.8 (3–8) days in pairs investigated retrospectively.ConclusionThis study increases knowledge of SARS-CoV-2 transmission, including the importance of superspreading events during the onset of the pandemic.  相似文献   

12.
BackgroundData regarding the long-term protection afforded by vaccination for the SARS-CoV-2 infection are essential for allocation of scarce vaccination resources worldwide.MethodsWe conducted a retrospective cohort study aimed at studying the kinetics of IgG antibodies against SARS-CoV-2 in COVID-19-naïve patients fully vaccinated with two doses of Comirnaty mRNA COVID-19 vaccine. Geometric mean concentrations (GMCs) of antibody levels were reported. Linear models were used to assess antibody levels after full vaccination and their decline over time.ResultsThe study included 4,740 patients and 5,719 serological tests. Unadjusted GMCs peaked 28–41 days after the first dose at 10,174 AU/mL (95% CI: 9,211–11,237) and gradually decreased but remained well above the positivity cut-off. After adjusting for baseline characteristics and repeated measurements, the antibodies half-life time was 34.1 days (95% CI: 33.1–35.2), and females aged 16–39 years with no comorbidities had antibody levels of 20,613 AU/mL (95% CI: 18,526–22,934) on day 28 post-first-dose. Antibody levels were lower among males (0.736 of the level measured in females; 95% CI: 0.672–0.806), people aged 40–59 (0.729; 95% CI: 0.649–0.818) and ≥ 60 years (0.452; 95% CI: 0.398–0.513), and patients having haematological (0.241; 95% CI: 0.190–0.306) or solid malignancies (0.757; 95% CI: 0.650–0.881), chronic kidney disease with glomerular filtration rate (GFR) ≥ 30 (0.434; 95% CI: 0.354–0.532) or with GFR < 30 mL/min (0.176; 95% CI: 0.109–0.287), and immunosuppression (0.273; 95% CI: 0.235–0.317). Body mass index, cardiovascular disease, congestive heart failure, chronic obstructive pulmonary disease, diabetes and inflammatory bowel diseases were not associated with antibody levels.ConclusionsVaccination with two doses resulted in persistently high levels of antibodies (≥ cut-off of 50 AU/mL) up to 137 days post-first-dose. Risk factors for lower antibody levels were identified.  相似文献   

13.
To assess the real-world impact of vaccines on COVID-19 related outcomes, we analysed data from over 7 million recipients of at least one COVID-19 vaccine dose in Italy. Taking 0–14 days post-first dose as reference, the SARS-CoV-2 infection risk subsequently decreased, reaching a reduction by 78% (incidence rate ratios (IRR): 0.22; 95% CI: 0.21–0.24) 43–49 days post-first dose. Similarly, hospitalisation and death risks decreased, with 89% (IRR: 0.11; 95% CI: 0.09–0.15) and 93% (IRR: 0.07; 95% CI: 0.04–0.11) reductions 36–42 days post-first dose. Our results support ongoing vaccination campaigns.  相似文献   

14.
BackgroundNon-pharmaceutical interventions (NPIs) were implemented worldwide to control the spread of SARS-CoV-2.AimTo evaluate the impact of tiered NPIs and a nationwide lockdown on reduction of COVID-19 incidence during the second and third epidemic waves in Portugal.MethodsSurveillance data on laboratory-confirmed COVID-19 cases were used to conduct an interrupted time series analysis to estimate changes in daily incidence during a second wave tiered NPI period (9 November–18 December 2020), and a third wave lockdown period without (15–21 January 2021) and with school closure (22 January–10 February 2021).ResultsSignificant changes in trends were observed for the overall incidence rate; declining trends were observed for tiered NPIs (−1.9% per day; incidence rate ratio (IRR): 0.981; 95% confidence interval (CI): 0.973–0.989) and a lockdown period without (−3.4% per day; IRR: 0.966; 95% CI: 0.935–0.998) and with school closure (−10.3% per day, IRR: 0.897; 95% CI: 0.846–0.951). Absolute effects associated with tiered NPIs and a lockdown on a subsequent 14-day period yielded 137 cases and 437 cases per 100,000 population potentially averted, respectively.ConclusionOur results indicate that tiered NPIs implemented during the second wave caused a decline in COVID-19 incidence, although modest. Moreover, a third wave lockdown without school closure was effective in reducing COVID-19 incidence, but the addition of school closure provided the strongest effect. These findings emphasise the importance of early and assertive decision-making to control the pandemic.  相似文献   

15.
BackgroundUp-to-date seroprevalence estimates are critical to describe the SARS-CoV-2 immune landscape and to guide public health decisions.AimWe estimate seroprevalence of anti-SARS-CoV-2 antibodies 15 months into the COVID-19 pandemic and 6 months into the vaccination campaign.MethodsWe conducted a population-based cross-sectional serosurvey between 1 June and 7 July 2021, recruiting participants from age- and sex-stratified random samples of the general population. We tested participants for anti-SARS-CoV-2 antibodies targeting the spike (S) or nucleocapsid (N) proteins using the Roche Elecsys immunoassays. We estimated the anti-SARS-CoV-2 antibodies seroprevalence following vaccination and/or infection (anti-S antibodies), or infection only (anti-N antibodies).ResultsAmong 3,355 individuals (54.1% women; 20.8% aged < 18 years and 13.4% aged ≥ 65 years), 2,161 (64.4%) had anti-S antibodies and 906 (27.0%) had anti-N antibodies. The total seroprevalence was 66.1% (95% credible interval (CrI): 64.1–68.0). We estimated that 29.9% (95% Crl: 28.0–31.9) of the population developed antibodies after infection; the rest having developed antibodies via vaccination. Seroprevalence estimates differed markedly across age groups, being lowest among children aged 0–5 years (20.8%; 95% Crl: 15.5–26.7) and highest among older adults aged ≥ 75 years (93.1%; 95% Crl: 89.6–96.0). Seroprevalence of antibodies developed via infection and/or vaccination was higher among participants with higher educational level.ConclusionMost of the population has developed anti-SARS-CoV-2 antibodies, despite most teenagers and children remaining vulnerable to infection. As the SARS-CoV-2 Delta variant spreads and vaccination rates stagnate, efforts are needed to address vaccine hesitancy, particularly among younger individuals and to minimise spread among children.  相似文献   

16.
BackgroundWe carried out a case-control study that examined whether receipt of the inactivated influenza vaccine during the 2019–2020 season impacted on the risk of coronavirus disease 2019 (COVID-19), as there was a concern that the vaccine could be detrimental through viral interference.MethodsA total of 920 cases with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (diagnosed between March and October 2020) and 2,123 uninfected controls were recruited from those who were born in Québec between 1956 and 1976 and who had received diagnostic services at two hospitals (Montréal and Sherbrooke, Québec). After obtaining consent, a questionnaire was administered by phone. Data were analyzed by logistic regression.ResultsAmong healthcare workers, inactivated influenza vaccine received during the previous influenza season was not associated with increased COVID-19 risk (AOR: 0.99, 95% CI: 0.69–1.41). Among participants who were not healthcare workers, influenza vaccination was associated with lower odds of COVID-19 (AOR: 0.73, 95% CI 0.56–0.96).ConclusionWe found no evidence that seasonal influenza vaccine increased the risk of developing COVID-19.  相似文献   

17.
Data on effectiveness of the BioNTech­/Pfizer COVID-19 vaccine in real-world settings are limited. In a study of 6,423 healthcare workers in Treviso Province, Italy, we estimated that, within the time intervals of 14–21 days from the first and at least 7 days from the second dose, vaccine effectiveness in preventing SARS-CoV-2 infection was 84% (95% confidence interval (CI): 40–96) and 95% (95% CI: 62–99), respectively. These results could support the ongoing vaccination campaigns by providing evidence for targeted communication.  相似文献   

18.
BackgroundCigarette smoking is a risk factor for severe COVID-19 disease. Understanding smokers’ responses to the pandemic will help assess its public health impact and inform future public health and provider messages to smokers.ObjectiveTo assess risk perceptions and change in tobacco use among current and former smokers during the COVID-19 pandemic.DesignCross-sectional survey conducted in May–July 2020 (55% response rate)Participants694 current and former daily smokers (mean age 53, 40% male, 78% white) who had been hospitalized pre-COVID-19 and enrolled into a smoking cessation clinical trial at hospitals in Massachusetts, Pennsylvania, and Tennessee.Main MeasuresPerceived risk of COVID-19 due to tobacco use; changes in tobacco consumption and interest in quitting tobacco use; self-reported quitting and relapse since January 2020.Key Results68% (95% CI, 65–72%) of respondents believed that smoking increases the risk of contracting COVID-19 or having a more severe case. In adjusted analyses, perceived risk was higher in Massachusetts where COVID-19 had already surged than in Pennsylvania and Tennessee which were pre-surge during survey administration (AOR 1.56, 95% CI, 1.07–2.28). Higher perceived COVID-19 risk was associated with increased interest in quitting smoking (AOR 1.72, 95% CI 1.01–2.92). During the pandemic, 32% (95% CI, 27–37%) of smokers increased, 37% (95% CI, 33–42%) decreased, and 31% (95% CI, 26–35%) did not change their cigarette consumption. Increased smoking was associated with higher perceived stress (AOR 1.49, 95% CI 1.16–1.91). Overall, 11% (95% CI, 8–14%) of respondents who smoked in January 2020 (pre-COVID-19) had quit smoking at survey (mean, 6 months later) while 28% (95% CI, 22–34%) of former smokers relapsed. Higher perceived COVID-19 risk was associated with higher odds of quitting and lower odds of relapse.ConclusionsMost smokers believed that smoking increased COVID-19 risk. Smokers’ responses to the pandemic varied, with increased smoking related to stress and increased quitting associated with perceived COVID-19 vulnerability.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11606-021-06913-3.KEY WORDS: cigarette smoking, electronic cigarettes, COVID-19, risk perceptions  相似文献   

19.
BackgroundThe first wave of the coronavirus disease (COVID-19) pandemic spread rapidly in Spain, one of Europe’s most affected countries. A national lockdown was implemented on 15 March 2020.AimTo describe reported cases and the impact of national lockdown, and to identify disease severity risk factors.MethodsNational surveillance data were used to describe PCR-confirmed cases as at 27 April 2020. We compared case characteristics by severity categories (hospitalisation, admission to intensive care unit (ICU), death) and identified severity risk factors using multivariable regression.ResultsThe epidemic peaked on 20 March. Of 218,652 COVID-19 cases, 45.4% were hospitalised, 4.6% were admitted to ICU and 11.9% died. Among those who died, 94.8% had at least one underlying disease. Healthcare workers (HCWs) represented 22.9% of cases. Males were more likely to have severe outcomes than females. Cardiovascular disease was a consistent risk factor. Patients with pneumonia had higher odds of hospitalisation (odds ratio (OR): 26.63; 95% confidence interval (CI): 25.03–28.33). The strongest predictor of death was age ≥ 80 years (OR: 28.4; 95% CI: 19.85–40.78). Among underlying diseases, chronic renal disease had highest odds of death (OR: 1.47; 95% CI: 1.29–1.68).ConclusionsCOVID-19 case numbers began declining 6 days after the national lockdown. The first wave of the COVID-19 pandemic in Spain had a severe impact on elderly people. Patients with cardiovascular or renal conditions were at higher risk for severe outcomes. A high proportion of cases were HCWs. Enhanced surveillance and control measures in these subgroups are crucial during future COVID-19 waves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号