首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.  相似文献   

2.
Idiosyncratic drug toxicity (IDT) is a serious problem in drug development. Reactive metabolites are postulated to be one of the causes for IDT. Conjugated metabolites are generally non-reactive except for acyl glucuronides (AGs), which are sufficiently reactive to covalently bind to endogenous proteins. Thus, it has been suggested that AGs would contribute to IDT caused by carboxylic acid-containing drugs. Glucuronidation of a carboxylate residue is catalyzed by UDP-glucuronosyltransferase 1A and 2B isoforms. Unstable AGs undergo intramolecular rearrangements as well as non-enzymatic and enzymatic hydrolysis. The instability and reactivity toward proteins have been well studied for a large number of AGs. Moreover, the half-life of AGs in neutral buffer is becoming a common marker for the prediction of toxicity caused by carboxylic acid-containing drugs in the screening of new chemical entities; however, the underlying mechanisms of the toxicity are not elucidated. Recently, an immunostimulation assay has been proposed for the assessment of the toxicological potential of AGs, which may have a better predictability compared with half-life and peptide adduct assays. In addition to in vitro studies, studies in model animals indicate the in vivo toxicological potential of AGs and help understand the mechanisms of the AG toxicity.  相似文献   

3.
Fluorouracil is used for treatment of breast cancer even in pregnant women, except during fetal organogenesis. The purpose of this study was to clarify the transport mechanism of fluorouracil at the rat placental barrier. Maternal-to-fetal transfer of [3H]fluorouracil in rats at gestational day 19.5 was saturable and much higher than that of [14C]sucrose. The uptake of [3H]fluorouracil was also saturable in rat placental trophoblast TR-TBT 18d-1 cells, which express both equilibrative nucleoside transporter (ENT) 1 and ENT2. Nitrobenzylthioinosine (NBMPR) at 0.1 μM had no effect on [3H]fluorouracil uptake by TR-TBT 18d-1 cells, but 100 μM NBMPR almost completely inhibited the saturable component, suggesting involvement of ENT2, rather than ENT1 in the transport. Rat ENT2 cRNA-injected oocytes showed significantly increased [3H]fluorouracil uptake compared with water-injected oocytes, while rat ENT1 cRNA-injected oocytes did not show an increase of [3H]fluorouracil uptake. The Michaelis–Menten constant for rat ENT2-mediated uptake of [3H]fluorouracil was 4.21 mM. The expression profile of ENT2 mRNA in rat placenta during pregnancy was almost constant from 13.5 to 21.5 days of gestation. In conclusion, ENT2 appears to be the mediator of fluorouracil transport in rat placental trophoblast cells.  相似文献   

4.
Various boron-containing drugs have been approved for clinical use over the past two decades, and more are currently in clinical trials. The increasing interest in boron-containing compounds is due to their unique binding properties to biological targets; for example, boron substitution can be used to modulate biological activity, pharmacokinetic properties, and drug resistance. In this perspective, we aim to comprehensively review the current status of boron compounds in drug discovery, focusing especially on progress from 2015 to December 2020. We classify these compounds into groups showing anticancer, antibacterial, antiviral, antiparasitic and other activities, and discuss the biological targets associated with each activity, as well as potential future developments.  相似文献   

5.
CYP2B6 is a human microsomal cytochrome P450 enzyme with broad substrate selectivity. CYP2B6 is the only functional member of the human CYP2B gene subfamily, which differs from the situation in rodents, such as mouse, where multiple functional Cyp2b genes are expressed. Recent studies with Cyp2b knockout or knockdown mouse models have yielded insights into the in vivo roles of mouse CYP2B enzymes in drug disposition and xenobiotic toxicity. A CYP2B6-humanized mouse model (CYP2A13/2B6/2F1-transgenic/Cyp2abfgs-null), which expresses human CYP2B6 in the liver, and human CYP2A13 and CYP2F1 in the respiratory tract, but not any of the mouse Cyp2b genes, has also been established. In the CYP2B6-humanized mouse, the CYP2B6 transgene is expressed primarily in the liver, where it was found to be active toward prototype CYP2B6 substrate drugs. The regulatory elements of the CYP2B6 transgene appear to be compatible with mouse nuclear receptors that mediate CYP2B induction. Therefore, the CYP2B6-humanized mouse is a valuable animal model for studying the impact of CYP2B6 expression or induction on drug metabolism, drug efficacy, drug-drug interaction, and drug/xenobiotic toxicity. In this mini-review, we provide a brief background on CYP2B6 and the Cyp2b-knockout and CYP2B6-humanized mice, and discuss the potential applications and limitations of the current models.  相似文献   

6.
The acceptable daily intake (ADI) of commercially available steviol glycosides is currently 0–4 mg/kg body weight (bw)/day, based on application of a 100-fold uncertainty factor to a no-observed-adverse-effect-level value from a chronic rat study. Within the 100-fold uncertainty factor is a 10-fold uncertainty factor to account for inter-species differences in toxicokinetics (4-fold) and toxicodynamics (2.5-fold). Single dose pharmacokinetics of stevioside were studied in rats (40 and 1000 mg/kg bw) and in male human subjects (40 mg/kg bw) to generate a chemical-specific, inter-species toxicokinetic adjustment factor. Tmax values for steviol were at ∼8 and ∼20 h after administration in rats and humans, respectively. Peak concentrations of steviol were similar in rats and humans, while steviol glucuronide concentrations were significantly higher in humans. Glucuronidation in rats was not saturated over the dose range 40–1000 mg/kg bw. The AUC0-last for steviol was approximately 2.8-fold greater in humans compared to rats. Chemical-specific adjustment factors for extrapolating toxicokinetics from rat to human of 1 and 2.8 were established based on Cmax and AUC0-last data respectively. Because these factors are lower than the default value of 4.0, a higher ADI for steviol glycosides of between 6 and 16 mg/kg bw/d is justified.  相似文献   

7.
Tembotrione is a triketone herbicide, usually used for post-emergence weed control in corn. Currently, there is little or no published data on its genotoxicity to human cells either in vitro or in vivo. This study evaluated the impact of acute (4 and 24 h) exposure to low concentrations of tembotrione [corresponding to the acceptable daily intake (0.17 μg/mL), residential exposure level (0.002 μg/mL) and acceptable operator exposure level (0.0012 μg/mL)] on human hepatocellular carcinoma cell line HepG2, using biomarkers of oxidative stress, CCK-8 colorimetric assay for cell viability, alkaline comet assay, and cytokinesis-block micronucleus “cytome” assay. Tembotrione applied at concentrations likely to be encountered in occupational and residential exposures induced cytogenetic outcomes in non-target cells despite non-significant changes in the values of oxidative stress biomarkers. We assume that the observed effects were mainly the consequence of impaired metabolic pathways in HepG2 cells due to the inhibition of the enzyme 4-hydroxyphenyl-pyruvate-dioxygenase by tembotrione, which possibly caused a depletion of folate levels leading to excess formation of nuclear buds in the affected cells. Regardless of the fact that tembotrione was previously reported negative for mutations and chromosome aberrations in vitro, our findings call for more precaution in its use.  相似文献   

8.
Benzophenone-2 (BP2) is widely used as a UV screen in both industrial products and cosmetic formulations, where it is frequently found associated with fragrance compounds, such as isoeugenol and coumarin. BP2 is now recognized as an endocrine disruptor, but to date, no information has been reported on its fate in humans. The intrinsic clearance (Clint) and metabolic interactions of BP2 were explored using cryopreserved human hepatocytes in primary cultures. In vitro kinetic experiments were performed to estimate the Michaelis–Menten parameters. The substrate depletion method demonstrated that isoeugenol was cleared more rapidly than BP2 or coumarin (Clint = 259, 94.7 and 0.40 μl/min/106 cells respectively). This vitro model was also used to study the metabolic interactions between BP2 and isoeugenol and coumarin. Coumarin exerted no effects on either isoeugenol or BP2 metabolism, because of its independent metabolic pathway (CYP2A6). Isoeugenol appeared to be a potent competitive substrate inhibitor of BP2 metabolism, equivalent to the specific UGT1A1 substrate: estradiol. Despite the fact that inhibition of UGT by xenobiotics is not usually considered to be a major concern, the involvement of UGT1A1 in BP2 metabolism may have pharmacokinetic and pharmacological consequences, due to the its polymorphisms in humans and its pure estrogenic effect.  相似文献   

9.
The safety and nutritional properties of CV127 soybeans were evaluated in rat and broiler feeding studies. Some episodic differences were observed between rats fed CV127, Conquista, and the standard diet for the endpoints examined. None of these differences were considered treatment related, adverse, or biologically meaningful. In general, birds fed diets containing CV127, Conquista, or Monsoy 8001 showed no significant differences in growth and performance response variables. Chickens fed diets containing Coodetec 217 had lower body weight and weight gain for all developmental periods compared to CV127, but no significant differences were found in feed conversion for the two diets during any development period. The results of both feeding studies demonstrate that CV127 soybeans are as safe, wholesome, and nutritionally valuable as the other soybean meals tested, including those varieties for which histories of safe use have been established and well documented.  相似文献   

10.
Koji products have been considered as an effective fermented food consumed in East Asia with many health benefits. Particularly, rice koji with Aspergillus terreus (RAT) has been reported to be able to prevent hyperlipidemia and hepatic steatosis through regulating cholesterol synthesis. Despite its biological activities, there is a lack of comprehensive information to give an assurance of its safety. Therefore, the objective of this study was to perform a series of toxicological studies (repeated dose oral toxicity and genotoxicity) according to test guidelines published by the Organization for Economic Cooperation and Development. Along with acute toxicity study using rats and beagle dogs, a 13-week toxicity study revealed no clear RAT-related toxic changes, including body weight, mortality, hematology, serum biochemistry, organ weight, and histopathology after oral administration at doses of 500, 1000, and 2000 mg/kg BW. The no-observed-adverse-effect level of RAT was considered to be more than 2000 mg/kg BW/day in rats of both genders. In addition, potential genotoxicity was evaluated using a standard battery of tests (Ames test, chromosome aberration assay, and micronucleus assay) which revealed that RAT showed no genotoxicity. Accordingly, these results suggest that RAT is a safe and non-toxic functional food for human consumption at proper dose.  相似文献   

11.
PurposeExtensive acute and subacute toxicities studies are required to evaluate the toxicological profile of the novel cardiac perfusion imaging tracer 123I-CMICE-013 to support applications for clinical trials.MethodsSprague-Dawley rats and Gottingen minipigs received injections of non-radioactive 127I-CMICE-013 at two dosage levels of 1 and 5 μg/kg, and vehicle buffer as control. In the acute toxicity studies, each animal was injected on two occasions 24 h apart and then underwent a 14-day recovery period; in the subacute study, animals received daily injections for 14 days continuously. The health status and mortality of test animals were monitored daily and body weight, food consumption, physiological and biochemical parameters were measured at various time points during the study. Animals were euthanized at the end of the studies and dissected for pathologic examination of organs and tissues.ResultsThe acute and subacute administrations of injections of the non-radioactive CMICE-013 in rats and minipigs were well tolerated. Little to no dosing-related adverse effects were observed in animal body and organ weights, hematology, coagulation, clinical chemistry, urinalysis, ophthalmoscopy, electrocardiograms, heart rates, blood pressure, macroscopic and microscopic examination of the preserved animal tissues including the brain.ConclusionThe lack of adverse effects from acute and subacute dosing suggest that the CMICE-013 injection solution has a reasonable safety margin within the designed concentration range to be utilized in imaging applications. The dosage level of 5 μg/kg was considered the no adverse effect level for both rats and minipigs based on our acute and subacute studies.  相似文献   

12.
In the present study, a polyphenolic byproduct from olive mill wastewater (OMWW) was used for making piglet feed with antioxidant activity. For examining the antioxidant capacity of the feed, 30 piglets of 20 d old were divided into two groups receiving basal or experimental feed for 30 d. Blood and tissue samples were drawn at days 2, 20, 35 and 50 post-birth. The tissues collected were brain, heart, kidney, liver, lung, quadriceps muscle, pancreas, spleen and stomach. The antioxidant effects of the experimental feed were assessed by measuring oxidative stress biomarkers in blood and tissues. The oxidative stress markers were total antioxidant capacity (TAC), glutathione (GSH), catalase activity (CAT), protein carbonyls (CARB) and thiobarbituric acid reactive species (TBARS). The results showed that piglets fed with diet supplemented with OMWW polyphenols had significantly increased antioxidant mechanisms in blood and the majority of the tested tissues as shown by increases in TAC, CAT and GSH compared to control group. Moreover, piglets fed with the experimental feed exhibited decreased oxidative stress-induced damage to lipids and proteins as shown by decreases in TBARS and CARB respectively. This is the first study in which OMWW polyphenols were used for making pig feed with antioxidant activity.  相似文献   

13.
Food contact materials (FCM) are estimated to be the largest source of food contamination. Apart from plastics, the most commonly used FCM are made of printed paper and board. Unlike their plastic counterparts, these are not covered by a specific European regulation. Several contamination issues have raised concerns towards potential adverse health effects caused by exposure to substances migrating from printed paper and board FCM. In the current study, an inventory combining the substances which may be used in printed paper and board FCM, was created. More than 6000 unique compounds were identified, the majority (77%) considered non-evaluated in terms of potential toxicity. Based on a preliminary study of their physicochemical properties, it is estimated that most of the non-evaluated single substances have the potential to migrate into the food and become bioavailable after oral intake. Almost all are included in the FACET tool, indicating that their use in primary food packaging has been confirmed by industry. Importantly, 19 substances are also present in one of the lists with substances of concern compiled by the European Chemicals Agency (ECHA). To ensure consumer safety, the actual use of these substances in printed paper and board FCM should be investigated urgently.  相似文献   

14.
Genomic instability remains an enabling feature of cancer and promotes malignant transformation. Alterations of DNA damage response (DDR) pathways allow genomic instability, generate neoantigens, upregulate the expression of programmed death ligand 1 (PD-L1) and interact with signaling such as cyclic GMP–AMP synthase-stimulator of interferon genes (cGAS–STING) signaling. Here, we review the basic knowledge of DDR pathways, mechanisms of genomic instability induced by DDR alterations, impacts of DDR alterations on immune system, and the potential applications of DDR alterations as biomarkers and therapeutic targets in cancer immunotherapy.  相似文献   

15.
To investigate the potential carcinogenicity of cyadox, an antimicrobial agent, four groups of Sprague-Dawley rats (50 rats/sex/group) were fed diets containing cyadox (0, 200, 600 or 2000 mg/kg) for up to two years. There were significant decreases in body weight, feed intake and feed efficiency in both genders during most of the period in the 2000 mg/kg group. Significant decreases in serum ALT were observed in the 2000 mg/kg group at weeks 52, 78 and 104. For the control, 200, 600, and 2000 mg/kg groups, the tumor incidence in females was 33.3%, 37.2%, 40.0% and 19.0%, while it in males it was 18.9%, 2.6%, 17.1% and 13.6%, respectively. At histopathology, no increases in tumor incidence were attributed to treatment with cyadox. The mild swelling and fatty degeneration in hepatocytes, and mild swelling and tubular necrosis in the kidney were observed in 2000 mg/kg group. The no-observed-effect-level (NOEL) for carcinogenicity of cyadox fed to rats was 2000 mg/kg diet (132.18–156.28 mg/kg b.w./day). In conclusion, cyadox was not carcinogenic to rats with the liver and kidney as the target organs, and the side chain may be involved in toxicity and carcinogenicity mediated by QdNOs.  相似文献   

16.
There are only a few studies that have assessed the effect of bisphenol A (BPA) on human blood cells and no study has been conducted to analyze the impact of BPA analogs on human leucocytes. In this study, we have investigated the effect of BPA and its analogs like bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF) on apoptosis induction in human peripheral blood mononuclear cells (PBMCs). In order to clarify the mechanism of bisphenols-induced programmed cell death, changes in various signaling molecules of this process have been assessed. We observed an increase in cytosolic calcium ions (Ca2+) level and reduction of transmembrane mitochondrial potential (ΔΨm) in PBMCs incubated with all compounds examined, and particularly BPA and BPAF. All compounds studied changed PBMCs membrane permeability, activated caspase-8, -9, -3 and induced PARP-1 cleavage and chromatin condensation, which confirmed that they were capable of inducing apoptosis both via intrinsic and extrinsic pathway. Moreover, we have found that modus operandi of bisphenols studied was different. We noticed that BPAF and BPS caused mainly necrotic and apoptotic changes, respectively, whereas BPA induced comparable apoptotic and necrotic effects in the incubated cells.  相似文献   

17.
Nanotechnology is an evolving scientific field that has allowed the manufacturing of materials with novel physicochemical and biological properties, offering a wide spectrum of potential applications. Properties of nanoparticles that contribute to their usefulness include their markedly increased surface area in relation to mass, surface reactivity and insolubility, ability to agglomerate or change size in different media and enhanced endurance over conventional-scale substance. Here, we review nanoparticle classification and their emerging applications in several fields; from active food packaging to drug delivery and cancer research. Nanotechnology has exciting therapeutic applications, including novel drug delivery for the treatment of cancer. Additionally, we discuss that exposure to nanostructures incorporated to polymer composites, may result in potential human health risks. Therefore, the knowledge of processes, including absorption, distribution, metabolism and excretion, as well as careful toxicological assessment is critical in order to determine the effects of nanomaterials in humans and other biological systems. Expanding the knowledge of nanoparticle toxicity will facilitate designing of safer nanocomposites and their application in a beneficial manner.  相似文献   

18.
Genetic gain-of-function mutations of warm temperature-sensitive transient receptor potential vanilloid 3 (TRPV3) channel cause Olmsted syndrome characterized by severe itching and keratoderma, indicating that pharmacological inhibition of TRPV3 may hold promise for therapy of chronic pruritus and skin diseases. However, currently available TRPV3 tool inhibitors are either nonselective or less potent, thus impeding the validation of TRPV3 as therapeutic target. Using whole-cell patch-clamp and single-channel recordings, we report the identification of two natural dicaffeoylquinic acid isomers isochlorogenic acid A (IAA) and isochlorogenic acid B (IAB) that selectively inhibit TRPV3 currents with IC50 values of 2.7 ± 1.3 and 0.9 ± 0.3 μmol/L, respectively, and reduce the channel open probability to 3.7 ± 1.2% and 3.2 ± 1.1% from 26.9 ± 5.5%, respectively. In vivo evaluation confirms that both IAA and IAB significantly reverse the ear swelling of dermatitis and chronic pruritus. Furthermore, the isomer IAB is able to rescue the keratinocyte death induced by TRPV3 agonist carvacrol. Molecular docking combined with site-directed mutations reveals two residues T636 and F666 critical for the binding of the two isomers. Taken together, our identification of isochlorogenic acids A and B that act as specific TRPV3 channel inhibitors and gating modifiers not only provides an essential pharmacological tool for further investigation of the channel pharmacology and pathology, but also holds developmental potential for treatment of dermatitis and chronic pruritus.  相似文献   

19.
The discovery of gut sweet taste receptors has led to speculations that non-nutritive sweeteners, including sucralose, may affect glucose control. A double-blind, parallel, randomized clinical trial, reported here and previously submitted to regulatory agencies, helps to clarify the role of sucralose in this regard. This was primarily an out-patient study, with 4-week screening, 12-week test, and 4-week follow-up phases. Normoglycemic male volunteers (47) consumed ∼333.3 mg encapsulated sucralose or placebo 3x/day at mealtimes. HbA1c, fasting glucose, insulin, and C-peptide were measured weekly. OGTTs were conducted in-clinic overnight, following overnight fasting twice during screening phase, twice during test phase, and once at follow-up. Throughout the study, glucose, insulin, C-peptide and HbA1c levels were within normal range. No statistically significant differences between sucralose and placebo groups in change from baseline for fasting glucose, insulin, C-peptide and HbA1c, no clinically meaningful differences in time to peak levels or return towards basal levels in OGTTs, and no treatment group differences in mean glucose, insulin, or C-peptide AUC change from baseline were observed. The results of other relevant clinical trials and studies of gastrointestinal sweet taste receptors are compared to these findings. The collective evidence supports that sucralose has no effect on glycemic control.  相似文献   

20.
To develop oral antibody therapy against rotavirus infection, we previously produced a recombinant fragment of llama heavy-chain antibody to rotavirus (ARP1) in rice seeds (MucoRice-ARP1). We intend to use a purification-free rice powder for clinical application but needed to check whether MucoRice-ARP1 had increased levels of known allergen proteins. For this purpose, we used two-dimensional fluorescence difference gel electrophoresis to compare the allergen protein levels in MucoRice-ARP1 and wild-type rice. We detected no notable differences, except in the levels of α-amylase/trypsin inhibitor–like family proteins. Because by this approach we could not completely separate ARP1 from the proteins of this family, we confirmed the absence of changes in the levels of these allergens by using shotgun mass spectrometry as well as immunoblot. By using immunoelectron microscopy, we also showed that RAG2, a member of the α-amylase/trypsin inhibitor–like protein family, was relocated from protein bodies II to the plasma membrane or cell wall in MucoRice-ARP1 seed. The relocation did not affect the level of RAG2. We demonstrated that most of the known rice allergens were not considerably upregulated by the genetic modification in MucoRice-ARP1. Our data suggest that MucoRice-ARP1 is a potentially safe oral antibody for clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号