首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proper selection of the luting agent is fundamental to avoid failure due to lack of retention in post-retained crowns. The objective of this study was to investigate the tensile bond strength and failure mode of glass fiber posts luted with different cements. Glass fiber posts were luted in 40 mandibular premolars, divided into 4 groups (n = 10): Group 1--resin-modified glass ionomer RelyX Luting; Group 2--resin-modified glass ionomer Fuji Plus; Group 3--resin cement RelyX ARC; Group 4--resin cement Enforce. Specimens were assessed by tensile strength testing and light microscopy analysis for observation of failure mode. The tensile bond strength values of each group were compared by ANOVA and Tukey test. The significance level was set at 5%. The failure modes were described as percentages. The following tensile strength values were obtained: Group 1--247.6 N; Group 2--256.7 N; Group 3--502.1 N; Group 4--477.3 N. There was no statistically significant difference between Groups 1 and 2 or between Groups 3 and 4, yet the resin cements presented significantly higher tensile bond strength values than those presented by the glass ionomer cements. Group 1 displayed 70% of cohesive failures, whereas Groups 2, 3 and 4 exhibited 70% to 80% of adhesive failures at the dentin-cement interface. We concluded that resin cements and glass ionomer cements are able to provide clinically sufficient retention of glass fiber posts, and that glass ionomer cements may be especially indicated when the application of adhesive techniques is difficult.  相似文献   

2.
This investigation evaluated the stabilizing effect of glass fiber reinforced posts (FRP) luted with self-adhesive universal cement on the fracture resistance of excessively flared endodontically treated teeth (ETT). Values were compared to teeth with no ferrule, 2 mm ferrule and resin cement for luting with 2 mm ferrule. Thirty-two caries-free maxillary central incisors were randomly assigned to 4 groups (n=8) and endodontically treated. Two groups were flattened 2 mm above and 2 groups at the cemen-to-enamel junction (CEJ). The teeth received FRPs as follows: 1) post was cemented with self-adhesive cement (RelyX Unicem, 3M ESPE) (U), no ferrule (F) was prepared, root canal entrance was excessively flared with a remaining wall thickness of 0.5 - 0.75 mm (UNF/flared); 2) post was cemented with U, no F was prepared; 3) post was luted with U, F was prepared; 4) post was cemented with a resin cement (Panavia F, Kuraray, Japan), F was prepared. All specimens were built-up using a resin composite (Clearfil Core, Kuraray). All-ceramic crowns were adhesively luted (U). Specimens were exposed to thermo-mechanical loading and statically loaded until failure. The mean fracture load values [N](SD) were: UNF/flared=68 (126); UNF=315 (136); UF=488 (72); PF=860 (190). All groups exhibited statistically significant differences regarding maximum fracture load (p<0.05).  相似文献   

3.
Effect of surface treatment of titanium posts on the tensile bond strength.   总被引:1,自引:0,他引:1  
OBJECTIVES: Retention of composite resins to metal can be improved when metal surfaces are conditioned. The purpose of this investigation was to investigate the effect of two conditioning treatments on the tensile bond strength of four resin-based luting cements and zinc phosphate cement to titanium posts. METHODS: The effect on tensile bond strength of (1) air-particle abrasion (50 microm Al2O3) and (2) silica coating (30 microm SiO(x)) and silanization of tapered titanium posts prior to luting with any of the four resin composite luting cements (Compolute) Aplicap, Flexi-Flow cemTM, Panavia 21 EX, Twinlook) were evaluated. The posts luted with zinc phosphate cement (Tenet) were considered as the control group. Following endodontic preparation of 100 intact anterior human teeth with hand instruments, the post spaces were prepared using the opening drills of the corresponding size of the posts. All posts were cemented into the roots according to the manufacturer's instructions of each cement. The specimens were first stored in water at 37 degrees C for 24 h and then subjected to thermocycling (5000 cycles, 5-55 degrees C, 30 s). The tensile strength values were measured on a universal testing machine at a cross-head speed of 0.5 mm/min. Data were analyzed statistically using ANOVA and corrected with Scheffé-test due to the significance levels (P<0.05). RESULTS AND SIGNIFICANCE: The composite resin luting cements did not show significant differences (P<0.05) showing values between (352+/-76N-475+/-104N) when the posts were air-abraded. After silica coating and silanization, significantly higher (P<0.05) tensile strengths were obtained for Compolute Aplicap (600+/-123N) than those of the other luting cements (Flexi-Flow cemTM: 191+/-62N; Panavia 21 EX: 375+/-77; Twinlook: 430+/-78N). No significant differences (P>0.05) were found between the tensile strength of the posts luted with zinc phosphate (414+/-102N) and the resin composite cements. Silica coating and silanization revealed the highest tensile bond strength in posts luted with Compolute Aplicap but it was not effective for the other experimental groups. Zinc phosphate cement exhibited tensile bond strength as good as resin composite cements.  相似文献   

4.
This study evaluated the sealing ability and push-out bond strength of two luting cements cured with two different types of light curing units (LCU): light-emitting diode (LED) versus quartz tungsten halogen (QTH). Forty teeth were divided into four groups(n=10/group). Quartz fiber posts (D. T. Light-Post) were luted to coronal or apical section of root canals using two types of resin cements (Panavia F or RelyX) cured with either LED LCU (Elipar FreeLight II) or QTH LCU (Optilux 501). Highest push-out bond strength was exhibited by QTH-cured RelyX, which was not significantly different from LED-cured RelyX but was higher than QTHcured Panavia F. The push-out bond strength of Panavia F did not differ with LCU type (p>0.05), but exhibited lower values than both QTH- and LED-cured RelyX. Fluid filtration test revealed that sealing ability was not influenced by luting cement type, but was signifi cantly influenced by LCU type in favor of QTH light source: QTH-cured specimens displayed better seal than LED-cured ones (p<0.05).  相似文献   

5.
Conditioning the root canal is frequently advised to achieve high post-retention when resin composite luting cements are used. However, manufacturers' instructions for this purpose differ widely from one another. The aim of this study was to compare the tensile bond strengths of passive, tapered, titanium root posts that were luted with four different resin composite cements (Compolute Aplicap, Flexi-Flow cem, Panavia 21 EX, Twinlook) in the root canals at three conditions, namely (i) no conditioning, (ii) etching with 37% phosphoric acid, and (iii) etching + bonding agent application. Panavia 21 EX was further tested after using the primer for the post-surface according to the manufacturer's recommendations. The posts luted with zinc phosphate cement (Tenet) acted as the control group. Following endodontic preparation of 140 intact anterior teeth with hand instruments, the post-spaces were prepared using the opening drills of the corresponding size of the posts. The samples were first stored in water at 37 degrees C for 24 h and then thermocycled (5000 cycles, 5-55 degrees C, 30 s). The tensile strength values were measured with the universal testing machine at a crosshead speed of 0.5 mm min(-1). The data were analysed statistically using anova and corrected with Scheffé test due to the significance levels (P < 0.05). The tensile bond strengths of the titanium posts after luting with various cements and thermocycling were affected by the conditioning systems used for the root canals. Tensile bond strengths were the highest with Flexi-Flow (475 +/- 78 N) followed in descending order by Panavia 21 EX (442 +/- 97 N), Twinlook (430 +/- 78 N) and Compolute Aplicap (352 +/- 76 N) after conditioning the root canal. The use of primer on the post improved the tensile bond strength compared with the non-conditioned group for the Panavia 21 EX group (375 +/- 77 N) (P < 0.001). Tensile bond strengths obtained after luting the posts with zinc phosphate cement (414 +/- 102 N) were not significantly different (P < 0.05) than those of resin composite cements. Although the importance of conditioning the root canal was evident for Panavia 21 EX, it was not the case for the other luting cements tested.  相似文献   

6.
STATEMENT OF PROBLEM: The radicular portion of zirconia endodontic posts often need to be reshaped to achieve a definitive form and may be airborne-particle abraded to improve adhesion during luting. Therefore, the surface of the tetragonal zirconia ceramics may be transformed and damaged, influencing the mechanical properties of the material. PURPOSE: This study compared the fracture resistance of prefabricated zirconia posts with a new retentive post-head after different surface treatments. MATERIAL AND METHODS: Experimental zirconia posts of 2 different diameters, 1.3 mm and 1.5 mm, were produced from commercially available zirconia powder. A cylindro-conical outline form was used for the root portion of the system and a post-head with 3 retentive rings was designed. Sixty posts of each diameter were divided into 3 groups (n=20). Group 1 was ground with a coarse grit diamond bur; Group 2 was airborne-particle abraded with 110-microm fused alumina particles, and Group 3 was left as-received (controls). Posts were luted into the root-shaped artificial canals with the Clearfil adhesive system and Panavia 21 adhesive resin luting agent. The posts were loaded in a universal testing machine at an inclination of 45 degrees with the constant cross-head speed of 1 mm/min. The fracture load (N) necessary to cause post fracture was recorded, and the statistical significance of differences among groups was analyzed with 1-way ANOVA followed by the Fischer LSD test (alpha=.05). The variability was analyzed using Weibull statistics. RESULTS: Load to fracture values of all zirconia posts depended primarily on post diameter. Mean fracture loads (SD) in Newtons were 518.4 (+/-101.3), 993.6 (+/-224.1), and 622.7 (+/-110.3) for Groups 1 through 3, respectively, for thicker posts, and 385.9 (+/-110.3), 627.0 (+/-115.1), and 451.2 (+/-81.4) for Groups 1 through 3, respectively, for thinner posts. Airborne-particle-abraded posts exhibited significantly higher resistance to fracture (P<.05) than those in the other 2 groups for diameters 1.3 mm and 1.5 mm. Grinding reduced Weibull modulus compared with controls, and the values were 4.1 and 6.5 for thicker and thinner posts, respectively. CONCLUSION: Within the limitations of this study, the results suggest that grinding leads to a significant drop in load to fracture of zirconia posts, whereas airborne-particle abrasion increased the fracture load.  相似文献   

7.
This study examined the effects of using two different burs for dentin surface preparation on the microtensile bond strength (microTBS) of three resin luting cements. Flat, deep dentin surfaces from 45 extracted human third molars were divided into three groups (n = 15) according to bur type: (i) diamond bur and (ii) tungsten carbide bur. The controls were abraded with #600-grit SiC paper. Both burs operated in a high-speed handpiece under water-cooling. Composite blocks were luted onto the dentin using one of three cements: RelyX ARC (ARC, 3M ESPE), Panavia F2.0 (PF, Kuraray) and RelyX Unicem (UN, 3M ESPE) following the manufacturers' instructions. For ARC, the dentin surface was treated with 32% phosphoric acid. The bonded specimens were stored at 37 degrees C for 24 hours and sectioned into 0.9 x 0.9 mm beams for microTBS testing. The data were analyzed using the two-way ANOVA and Student-Newman-Keuls tests. Representative fractured beams from each group were prepared for fractographic analysis under SEM. Two-way ANOVA revealed that the effects of "dentin surface preparation" and "luting cement" were statistically significant (p < 0.001); however, the interaction of these two factors was not significant (p > 0.05). ARC showed no significant difference in microTBS among the three differently prepared dentin surfaces. The microTBS of PF and UN was significantly lower when bonding to dentin prepared with a diamond bur (p < 0.05), compared to the control. For Panavia F2.0, higher bond strengths were achieved on the dentin surface prepared with a tungsten carbide bur. Proper bur selection is essential to optimizing the dentin adhesion of self-etch resin luting cements.  相似文献   

8.
目的观察Rely X ABC、Para Cem Universal DC和Rely X Unicem 3种临床常用的树脂黏结剂黏固纤维桩的效果。方法选择2006年6月至2008年6月于中国医科大学口腔医学院修复科采用纤维桩修复并完善根管治疗的42例前牙牙体缺损患者的99颗患牙,随机分为3组,每组33颗,分别用不同的黏结剂(Ⅰ组:Rely X ARC;Ⅱ组:ParaCem Universal DC;Ⅲ组:Rely X Unicem)黏固纤维桩。随访0.5~2年,观察修复效果。结果Rely X ARC、ParaCem Universal DC和Rely X Unicem 3种树脂黏结剂用于黏固纤维桩的成功率依次为93.9%、84.8%、97.0%。结论Rely X ARC和Rely X Unicem黏结剂用于临床黏固纤维桩均表现出良好的临床效果。  相似文献   

9.
The number of both luting agents and restorative materials available on the market has rapidly increased. This study compared various types of luting agents when used to bond different indirect, laboratory restorative materials to dentin. Cylinders were produced of six restorative materials (gold alloy, titanium, feldspathic porcelain, leucite-glass ceramic, zirconia, and an indirect resin composite). Following relevant pretreatment, the end surface of the cylinders were luted to ground, human dentin with eight different luting agents (DeTrey Zinc [zinc phosphate cement], Fuji I [conventional glass ionomer cement], Fuji Plus [resin-modified glass ionomer cement], Variolink II [conventional etch-and-rinse resin cement], Panavia F2.0 and Multilink [self-etch resin cements], RelyX Unicem Aplicap and Maxcem [self-adhesive resin cements]). After water storage at 37 °C for one week, the shear bond strength of the specimens was measured and the fracture mode was examined stereo-microscopically. Restorative material and luting agent both had a significant effect on bond strength and there was a significant interaction between the two variables. The zinc phosphate cement and the glass ionomer cements resulted in the lowest bond strengths, whereas the highest bond strengths were found with the two self-etch and one of the self-adhesive resin cements.  相似文献   

10.
This study evaluated the fracture resistance of crown-restored incisors with different post-and-core systems and luting cements. Fifty intact maxillary central incisors were randomly assigned to five groups of 10 teeth each. Group 1 was restored with fibre posts (Snowpost) luted with an adhesive composite resin cement (Panavia F). Group 2 was restored with titanium alloy posts (Parapost) luted with the resin cement, and Group 3 with titanium alloy posts and a glass-ionomer cement (Fuji I). Composite cores (Clearfil Photocore) were built up in groups 1, 2 and 3. Group 4 was restored with cast post-and-cores luted with the resin cement, and group 5 with the cast post-and-cores and the glass-ionomer-cement served as a control group. All teeth were restored with metal-ceramic crowns. After thermal stressing, the specimen was then secured in a universal testing machine. Fracture loads and modes were recorded. One-way ANOVA and a Tukey test were used to determine significant differences between the failure loads of groups. Chi-square test was conducted for evaluation of the fracture modes. The fracture loads of groups 1 and 2 were significantly higher than that of the control group (P<0.05). Group 1 had a significantly higher number of repairable fractures than the other four groups (P<0.001). Within the limitations of this study, the results suggest that fibre posts can be recommended as an alternative to cast and prefabricated metallic posts. Composite resin cement cannot significantly improve fracture resistance of metallic post and crown-restored incisors.  相似文献   

11.
OBJECTIVES: Effect of a dentin adhesive system containing antibacterial monomer-MDPB (Clearfil Protect Bond) on the shear bond strength of all-ceramic-IPS Empress 2 restorations luted with three different dual-polymerizing systems (Variolink 2, RelyX ARC and Panavia F 2.0) to dentin was investigated. METHODS: One hundred and eight all-ceramic discs (2 x 3mm; IPS Empress 2) were fabricated and ultrasonically cleaned. The buccal surfaces of 108 non-carious extracted human premolars were flattened to expose dentin and subsequently polished with 600-grit wet silicon carbide paper. Three dual-polymerizing luting systems had test groups and control groups consisting of 18 samples each. For the test groups Clearfil Protect Bond was applied to the exposed dentin surfaces. Control groups received the original bonding procedures of each adhesive system. After the all-ceramic samples were luted to the teeth, thermocycling was performed 5000 times. Shear bond strengths were tested using Shimadzu Universal Testing Machine until failure. Analysis of fractured dentin surfaces were performed using Optical Microscope at x10 and x1000 magnifications and the images were analyzed with Image Analyzer. Data was analyzed with one-way ANOVA and Bonferroni test at a significance level of p<0.05. RESULTS: Mean shear bond strength data of the groups in MPa were; Variolink: 20.45+/-4.75, Variolink+Clearfil Protect Bond:29.32+/-2.37, RelyX ARC:18.82+/-3.19, RelyX ARC+Clearfil Protect Bond:25.58+/-4.05, Panavia F 2.0:17.11+/-2.98, Panavia F 2.0+Clearfil Protect Bond:24.40+/-7.46. Application of the antibacterial adhesive increased the shear bond strengths of all three dual-polymerizing systems to dentin (p=0.00). The surface analysis showed that most of the specimens showed the adhesive failure mode between the dentin and the composite luting agent interface. CONCLUSION: The antibacterial adhesive system Clearfil Protect Bond can be safely used to prevent the potential risk of complications resulting from bacterial activity regardless of affecting the bond strength of IPS Empress 2 restorations luted with the dual-polimerizing systems used in this study.  相似文献   

12.
The aim of this study was to evaluate the influence of eugenol-containing endodontic sealers and luting strategy on the pull-out bond strength of glass fiber posts to dentin. Sixty-four bovine incisors were randomly assigned into two groups of 32 specimens each for obturation procedure with gutta-percha only, or with Pulp Canal Sealer EWT Subsequently, the roots were prepared for the fiber post Reforpost and all specimens of each endodontic sealing procedure were allocated to four groups (n = 8), according to the strategies for post cementation: A) Single Bond 2 and RelyX ARC; B) All Bond 2 and C&B cement; C) All Bond 2 and RelyX ARC; D) Single Bond 2 and C&B Cement. The posts were cemented immediately after the endodontic treatment. The pull-out test was performed at a cross-head speed of 0.5 mm/min in a universal testing machine (EMIC). Data (Kgf) were submitted to a two-way ANOVA and Tukey test (p < or = 0.05). The eugenol-based sealer did not influence the pull-out bond strength of fiber posts regardless of the luting strategy. RelyX ARC showed higher bond strength than C&B Cement when used with Single Bond 2 adhesive system, when the eugenol-based sealer was present. All Bond 2, when associated to all cements studied, promoted similar bond strength, regardless of the eugenol-containing endodontic sealer In conclusion, eugenol-containing sealer did not influence the pull-out bond strength values of the resin luting systems for glass fiber post cementation. The bond system and resin cement association from the same manufacturer had similar bond strength values for dentin.  相似文献   

13.
STATEMENT OF PROBLEM: Surface treatment is an essential step in bonding a ceramic to resin. Alumina ceramics are particularly difficult to prepare for adequate bonding to composite resin cements. PURPOSE: The purpose of this study was to evaluate the bond strength between a densely sintered alumina ceramic and bovine dentin with 2 adhesive resin cements and a resin-modified glass ionomer cement using an extrusion shear strength test. MATERIAL AND METHODS: Alumina cones (n=30), 4 mm in height, 3 mm in diameter at the small end, and with an 8-degree taper, were fabricated. Without any treatment, the cones were cemented in a standardized cavity in 2.5-mm-thick bovine dentin discs using 1 of 3 cement systems: Panavia F, RelyX ARC, or RelyX Luting. The cements were manipulated following the manufacturers' instructions. After 24 hours of storage at 37 degrees C, an extrusion shear test was performed in a universal testing machine at 0.5 mm/min until bonding failure. The data were analyzed using 1-way ANOVA and Tukey HSD test (alpha=.05). All fractured specimens were examined at x25 magnification and classified by fracture mode. Representative specimens were selected for SEM observation. RESULTS: The highest strength values were obtained with Panavia F, and they were significantly higher (P<.05) than each of the other 2 cements, which were not significantly different from each other. Panavia F resulted in predominantly mixed failure and RelyX ARC and RelyX Vitremer showed primarily adhesive failure. CONCLUSIONS: An MDP-containing adhesive system (Panavia F) provides better extrusion bond strength to a high-density alumina ceramic than a Bis-GMA resin luting agent system (RelyX ARC) or a resin-modified glass ionomer cement system (RelyX Luting).  相似文献   

14.
OBJECTIVE: The aim of this study was to investigate the degree of monomer conversion of four dual-cure luting resins irradiated through various restorative materials or dentin. MATERIAL AND METHODS: RelyX ARC (3M-ESPE), RelyX Unicem (3M-ESPE), Variolink 2 (Ivoclar,Vivadent), and Panavia F 2.0 (Kuraray) were mixed in accordance with the manufacturer's instructions. They were placed under the disks (thickness 1.5 mm) representing a metal restoration, a composite restoration (Sinfony D A3), a fiber-reinforced composite (EverStick 0.5 mm + 1.0 mm Sinfony D A3) restoration, and dentin. Five specimens (thickness 0.6 mm) in each group were irradiated through the disks for 40 s (Optilux-501, 800 mW/cm(2)). Light polymerization of the dual-cure luting resin without the covering disk was used as control. The degree of monomer conversion (DC%) was determined by Fourier transform infrared spectroscopy (FT-IR)/ATR spectrometry from the bottom of the resin. The infrared spectra were recorded at every 5.2 s for 15 min beginning from the mixing of the resin. RESULTS: ANOVA revealed significant differences in DC% between the luting resins tested (p<0.001) and the different restorations (p<0.001). RelyX ARC showed the highest degree of conversion 15 min after the start of polymerization, whereas Panavia F 2.0 and RelyX Unicem showed the lowest. CONCLUSIONS: The degree of conversion of dual-cured luting resins differed significantly. Furthermore, the restorative material significantly influenced the DC% of the dual-cure luting resin underneath.  相似文献   

15.
PURPOSE: To evaluate the bond strengths of six different luting cements to fiber-reinforced composite (FRC) posts after various pre-treatment procedures. METHODS: 180 FRC posts were divided into three groups (n=60) and received the following surface treatments. Group 1: untreated control; Group 2: silane treatment; Group 3: CoJet treatment. The posts of each group were fixed with six different luting cements. Push-out tests were performed to determine the bond strengths between the cements and the fiber posts. RESULTS: The observed bond strengths (MPa) of the different resin cements to the posts were significantly affected by the type of cement (P< 0.001), but not by the pre-treatment chosen (P> 0.05; 2-way-ANOVA). Without consideration of the pre-treatment procedures, Clearfil showed the highest bond strengths, followed by Panavia F and RelyX, whereas Multilink, Variolink and PermaFlo showed significantly lower bond strength values (P< 0.05; Tukey's B).  相似文献   

16.
Microtensile bond strength between adhesive cements and root canal dentin.   总被引:11,自引:0,他引:11  
OBJECTIVES: The hypotheses tested were that the bond strength of adhesive cements to root canal dentin (1) would be reduced as a function of configuration factor, polymerization process and type of luting material and (2) would be lowered near the apex of the tooth. METHODS: Human canines and premolars were prepared for post cementation using Single Bond/Rely X ARC, ED Primer/Panavia F, C and B Metabond, and Fuji Plus. The specimens were divided into two groups. For intact roots, the posts were luted using standard clinical procedures. For flat roots, the posts were applied directly into flat ground canals. All roots were sectioned into 0.6 mm thick slices, trimmed mesio-distally and stressed to failure at 1 mm/min. The muTBS of each slab was calculated as the force at failure divided by the bonded cross-sectional surface area. The results were compared using a one-way ANOVA and Tukey multiple comparison intervals (alpha=0.05). Least squares linear regression analysis was used to assess the effect of dentin location on bond strength. RESULTS: All cements showed significantly (p相似文献   

17.
YH Son  CH Han  S Kim 《Journal of dentistry》2012,40(10):866-872

Objectives

The purpose of this study was to evaluate the influence of internal-gap width and cement type on the retentive force of zirconia copings.

Methods

A CAD/CAM system was used to mill 48 identical abutments on extracted human molars and fabricate 48 zirconia copings. The internal-gap width for cement was set to 40 μm or 160 μm (n = 24 each). Three cement types (Panavia F, RelyX Unicem, and RelyX Luting) were used with each internal-gap width (n = 8/cement type). The intaglio surfaces of the copings were airborne-particle abraded, and each coping was cemented onto the corresponding abutment using the indicated luting agent. After 10,000 cycles of thermocycling, the retentive force was evaluated by pullout tests. Kruskal–Wallis and Wilcoxon Rank Sum tests were used for data analysis (α = 0.05).

Results

In the 40-μm gap groups, Panavia F had the highest mean retentive force compared to RelyX Unicem and RelyX Luting (P < 0.000). In 160-μm gap groups, RelyX Unicem had the highest mean retentive force compared to Panavia F and RelyX Luting (P < 0.000).

Conclusions

With the increase in internal gap width, a resin cement with self-etching agents as a co-initiator for autopolymerization resulted in significantly decreased retentive force, whereas a resin-modified glass ionomer cement or a self-adhesive resin cement did not. Use of resin cements rather than resin-modified glass ionomer cements improved the retentive force of zirconia copings regardless of the amount of internal gap width.  相似文献   

18.
PURPOSE: The first purpose of this study was to compare the retentive values of zinc phosphate and Panavia F resin cements when used for luting cast dowel and cores. The second purpose was to determine whether the use of a lubricant when making the resin pattern for a custom dowel and core would have an effect on the final retention of dowels cemented with either zinc phosphate or Panavia F cements. METHODS AND MATERIALS: Sixty-three caries-free extracted single-rooted human teeth were randomly divided into three groups of 21. Root canal preparations were standardized for all 63 teeth. Clinical protocols for fabricating and cementing dowel and core restorations were examined, comparing zinc phosphate and Panavia F resin cements. Direct dowel patterns were fabricated using the Para Post system and cast in a noble metal alloy. Group I dowel spaces were lubricated with GC lubricant prior to dowel pattern fabrication and cleaned with Cavidry solvent before cementing the cast dowel and core with zinc phosphate cement. Group II dowel spaces were rinsed with water only prior to dowel pattern fabrication. The dowels and cores in this group were cemented with Panavia F resin cement. Group III dowel spaces were lubricated with GC lubricant prior to dowel pattern fabrication; the dowel spaces were cleaned with Cavidry solvent before the cast dowel and cores were cemented with Panavia F cement. The tensile force necessary to remove the cast dowel and cores was determined using a universal testing machine. Results were statistically analyzed using one-way ANOVA and Tukey's HSD test. RESULTS: The dowels and cores in Group I had significantly higher retentive values than either of the two Panavia F groups (p< or = 0.001). No difference in retentive values (p > 0.05) was found between dowels luted with either of the lubricating agents in the Panavia F groups. CONCLUSIONS: Zinc phosphate cement had higher retentive values when cementing cast dowel and cores than Panavia F. The type of lubricant used for the resin dowel fabrication (water or GC lubricant that was removed with a solvent) had no effect on the retention of cast dowels cemented with Panavia F.  相似文献   

19.
This study evaluated the effect of two different types of provisional luting agents (RelyX Temp E, eugenol-based; RelyX Temp NE, eugenol-free) on the shear bond strengths between human dentin and two different resin-based luting systems (RelyXARC-Single Bond and Duo Link-One Step) after cementation with two different techniques (dual bonding and conventional technique). One hundred human molars were trimmed parallel to the original long axis, to expose flat dentin surfaces, and were divided into three groups. After related surface treatments for each specimen, the resin-based luting agent was applied in a silicone cylindrical mold (3.5 x 4 mm), placed on the bonding-agent-treated dentin surfaces and polymerized. In the control group (n = 20), the specimens were further divided into two groups (n = 10), and two different resin-based luting systems were immediately applied following the manufacturer's protocols: RelyX ARC-Single Bond (Group I C) and Duo Link-One Step (Group II C). In the provisionalization group (n = 40), the specimens were further divided into four subgroups of 10 specimens each (Group I N, I E and Group II N, II E). In Groups I N and II N, eugenol-free (RelyX NE), and in groups I E and II E, eugenol-based (RelyX E) provisional luting agents (PLA), were applied on the dentin surface. The dentin surfaces were cleaned with a flour-free pumice, and the resin-based luting systems RelyX ARC (Group I N and E) and Duo Link (Group II N and E) were applied. In the Dual bonding groups (n = 40), the specimens were divided into four subgroups of 10 specimens each (Group I ND, ED and Group II ND, ED). The specimens were treated with Single Bond (Groups I ND and ED) or One Step (Groups II ND and ED). After the dentin bonding agent treatment, RelyX Temp NE was applied to Groups I ND and II ND, and RelyX Temp E was applied to Groups I ED and II ED. The dentin surfaces were then cleaned as described in the provisionalization group, and the resin-based luting systems were applied: RelyX ARC-Single Bond (Group I ND and ED) and Duo Link-One Step (Group II ND and ED). After 1,000 thermal cycles between 5 degrees C and 55 degrees C, shear bond testing was conducted at a crosshead speed of 0.5 mm/minutes. One-way ANOVA, followed by a post hoc Tukey test (alpha = 0.05) was done. The dentin-resin-based luting system interfaces were evaluated under a scanning electron microscope. There was a significant reduction in the mean shear bond strength values of groups subjected to the provisionalization compared to the control and dual bonding technique groups (p < 0.05). The composition of provisional luting did not create a significant difference with regard to reducing shear bond strength values (p > 0.05). With regard to resin based luting systems, the shear bond strength values of the double-bond technique groups were not significantly different from the controls (p > 0.05).  相似文献   

20.
The retention of zirconia-based ceramic posts (CosmoPost system) luted with glass ionomer and resin cements was evaluated. Thirty-two extracted, caries-free, unrestored teeth were selected and stored in chlorhexidine and water solution. The teeth were endodontically treated and randomly assigned to two groups (n=16). Each tooth was decoronated and prepared to a depth of 10.0 mm from root surface to receive a 1.4 mm diameter zirconium dioxide post. Each group had posts cemented with either glass ionomer cement (Fuji I) or resin cement (Variolink II). The post/teeth specimens were embedded in resin blocks and subjected to tensile testing. The tensile force required to dislodge the cemented posts in a tensile testing machine was recorded. The mean stress values of both groups were analyzed for statistical differences using ANOVA and Student's t-test. Significance level was set at 5%. Mean peak forces at failure (N) and standard deviation for the tested cements were the following: Fuji I = 121.8 (+/-17.4) and Variolink II = 228.1 (+/-36.8). Posts luted with the resin cement presented statistically significant higher tensile bond strength than those retained with glass ionomer (p<0.05). It may be concluded that zirconia posts cemented with resin-based cement (Variolink II) failed at statistically significant higher values compared to those cemented with glass ionomer cement (Fuji I). Regardless of the cement type, the posts failed adhesively at the cement/post interface when subjected to a tensile force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号