首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rusten  LS; Lyman  SD; Veiby  OP; Jacobsen  SE 《Blood》1996,87(4):1317-1325
The present studies investigated the effects of the recently cloned flt3 ligand (FL) on the in vitro growth and differentiation of primitive and committed subsets of human CD34+ bone marrow (BM) progenitor cells. FL alone was a weak growth stimulator of CD34+ BM cells, but synergistically and directly enhanced colony formation in combination with interleukin (IL) 3, granulocyte colony-stimulating factor (G-CSF), CSF-1, granulocyte macrophage (GM) CSF stem cell factor (SCF), and IL-6. FL and SCF were equally effective in stimulating colony formation in combination with IL-3. However, the tri-factor combination of FL + IL-3 + SCF stimulated 2.3-fold and 2.5-fold more colonies than FL + IL-3 and SCF + IL-3, respectively. These additional recruited progenitors appeared to be predominantly located in a primitive (CD71-) subset of the CD34+ progenitors, as 4.5-fold more colonies were formed by CD34+CD71- cells in response to FL + IL-3 + SCF than to FL + IL-3 or SCF + IL-3. Similar findings were observed in serum-containing and serum-deprived cultures. Whereas FL did not enhance burst-forming unit-erythroid (BFU-E) colony formation of CD34+ BM cells in the presence of serum, a low number of BFU-E colonies were formed in response to FL plus erythropoietin (Epo) under serum-deprived conditions. In addition, FL both in serum-containing and serum-deprived cultures stimulated colony formation of more committed myeloid progenitors in CD34+CD71+ BM cells. Thus, FL potently stimulates the growth of primitive and more committed human BM progenitor cells.  相似文献   

2.
We have investigated the biological activities of recombinant human interleukin-9 (IL-9) on enriched hematopoietic progenitors, alone or in combination with other cytokines, including Epo, G-CSF, IL-3, and GM-CSF, under serum-containing and serum-free cultures. IL-9 alone did not support colony formation. However, IL-9 plus Epo induced erythroid burst (BFU-E) formation derived from peripheral blood (PB) progenitors. Delayed addition experiments demonstrated that a part of bone marrow (BM) derived BFU-E, which seems to be immature, only responded to IL-9 and formed erythroid bursts. The burst-promoting activity (BPA) of IL-9 was confirmed using neutralizing aIL-3, aGM-CSF, and aIL-9 antisera and serum-free culture. IL-9 supported a part of BFU-E population that respond to IL-3, which was almost identical to the number of BFU-E supported by GM-CSF. IL-9 had no additive effect on erythroid and mixed colony formation supported by IL-3. In contrast, IL-9 showed an additive effect on erythroid burst formation supported by GM-CSF in serum-free culture. These data suggest that IL-9 and GM-CSF act on distinct IL-3-responsive BFU-E population. In addition, delayed addition experiment clearly demonstrated that IL-9 supports survival and the early stage of proliferation of BFU-E. These results led us to propose that IL-9 possibly acts as a BPA and selectively supports a subpopulation of early class of BFU-E that respond to IL-3.  相似文献   

3.
The ability of peripheral-blood hematopoietic progenitor cells from AIDS patients and normal controls to respond to erythropoietin (Epo) was assessed for burst-forming units-erythroid (BFU-E). BFU-E colony formation from AIDS patients' peripheral blood responded to a wide range of Epo concentrations (0.5-4 U) in a similar manner as erythroid progenitors obtained from normal peripheral blood. The optimum dose response of BFU-E to Epo was 2 U which resulted in generation of 71 +/- 4 BFU-E in AIDS patients (n = 10), as compared to 77 +/- 5 BFU-E in normal donors (n = 3). The optimum concentration range of hemin enhancement of erythroid progenitor BFU-E was 10-50 microM. In all instances, Epo was essential for BFU-E growth. Inclusion of hemin at a concentration of 10 microM in AIDS patients' peripheral-blood erythroid progenitor cells resulted in enhancement of BFU-E by 136-215%. Similarly, inclusion of hemin (10-100 microM) in normal bone marrow erythroid progenitor cell cultures resulted in enhancement of BFU-E. Inclusion of an equivalent amount of iron or tin protoporphyrin to progenitors cells from AIDS patients' peripheral blood had no effect on the number of colonies observed. On the other hand, inclusion of another heme analogue, zinc protoporphyrin, in AIDS or normal cultures resulted in a 50% suppression of BFU-E colony formation. These results demonstrate that peripheral-blood mononuclear cells from AIDS patients retain the capacity to generate erythroid precursors such as BFU-E in the presence of Epo, and that hemin has a specific enhancement effect on growth of BFU-E colony formation obtained from peripheral blood or bone marrow cells.  相似文献   

4.
Summary. Circulating haemopoietic progenitor cells from premature infants were assessed for their ability to respond to interleukin 3, granulocyte-macrophage colony stimulating factor and stem cell factor (SCF) in vitro. All three cytokines increased the number of colonies derived from burst forming units erythroid (BFU-E), colony forming units granulocyte-macrophage (CFU-GM) and multi-lineage progenitors (CFU-Mix) grown in the presence of erythropoietin (Epo). The size and haemoglobin content of BFU-E derived colonies also increased in the presence of the cytokines. Of those tested, SCF was found to be the most potent additive to Epo for the enhanced growth of BFU-E and CFU-Mix. In short-term liquid cultures without Epo, SCF alone induced globin synthesizing cells. Progenitors from premature infants were at least as responsive to all three cytokines as those from healthy adults. The use of SCF in combination with Epo in the prevention or treatment of anaemia in premature infants warrants further investigation.  相似文献   

5.
The replating capability of human multipotential (colony-forming unit-granulocyte-erythrocyte-macrophage-megakaryocyte [CFU-GEMM]) and erythroid (burst-forming unit-erythroid [BFU-E]) progenitors was assessed in vitro as a potential measure of self-renewal using purified, recombinant (r) human (hu) or murine (mu) mast cell growth factor (MGF), a ligand for the c-kit proto-oncogene receptor. Primary cultures of human umbilical cord blood or adult human bone marrow cells were initiated in methylcellulose with erythropoietin (Epo) alone or in combination with rhu interleukin-3 (IL-3) or MGF. Individual day 14 to 18 CFU-GEMM or BFU-E colonies were removed from primary cultures and reseeded into secondary methylcellulose cultures containing a combination of Epo, MGF, and rhu granulocyte-macrophage colony-stimulating factor (GM-CSF). The data showed a high replating efficiency of cord blood and bone marrow CFU-GEMM in response to Epo + MGF in terms of the percentage of colonies that could be replated and the number of secondary colonies formed per replated primary colony. The average number of hematopoietic colonies and clusters apparent from replated cultures of cord blood or bone marrow CFU-GEMM stimulated by Epo + MGF was greater than with Epo + rhuIL-3 or Epo alone. Replated cord blood CFU-GEMM gave rise to CFU-GEMM, BFU-E, and GM colony-forming units (CFU-GM) in secondary cultures. Replated bone marrow CFU-GEMM gave rise mainly to CFU-GM in secondary cultures. A more limited capacity for replating of cord blood and bone marrow BFU-E was observed. These studies show that CFU-GEMM responding to MGF have an enhanced replating potential, which may be promoted by MGF. These studies also support the concept that MGF acts on more primitive progenitors than IL-3.  相似文献   

6.
Summary. CD34+ cells were purified from midtrimester human fetal blood and adult bone marrow samples and seeded in serum-free fibrin-clot cultures in order to evaluate the number and the responsiveness to recombinant cytokines of pluripotent (CFU-GEMM), erythroid (BFU-E), megakaryocyte (BFU-meg and CFU-meg) and granulocyte/macrophage (CFU-GM) haemopoietic progenitor cells.
The number of the different haemopoietic progenitors/1 × 103 CD34+ cells, except CFU-meg, was significantly higher in fetal blood than in adult bone marrow in cultures stimulated by any combination of cytokines including interleukin-3 (IL-3), granulocyte/macrophage colony stimulating factor (GM-CSF) or stem cell factor (SCF) plus erythropoietin (Epo). Nevertheless, whereas adult BFU-E showed a maximal growth in the presence of Epo plus IL-3 or Epo plus SCF, fetal BFU-E showed an optimal growth in the presence of Epo alone, the sensitivity of fetal BFU-E to suboptimal concentrations of Epo being approximately 10–15-fold higher than that of adult BFU-E. Addition of optimal concentrations of IL-3, GM-CSF or SCF, alone or in various combinations, to Epocontaining cultures induced a significant increase in both the number and size of fetal CFU-GEMM, and CFU-GM, and a parallel decrease of fetal BFU-E. Finally, SCF potently syner-gized with IL-3 in increasing the growth of both classes of fetal megakaryocyte progenitors, BFU-meg and CFU-meg.  相似文献   

7.
Mizuguchi  T; Kosaka  M; Saito  S 《Blood》1993,81(11):2891-2897
We examined the effects of activin A on the proliferation and differentiation of immature hematopoietic progenitors prepared from peripheral blood (PB) using methylcellulose and liquid-suspension culture. In a kinetic analysis, colony formation by PB granulocyte- macrophage colony-forming unit (CFU-GM) was delayed in a dose-dependent manner by the addition of activin A only when stimulated with interleukin-3 (IL-3), but not when stimulated with granulocyte colony- stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), or stem cell factor (SCF) plus G-CSF. DNA-synthesizing CFU-GM was increased by IL-3, but this effect was abolished by activin A. In contrast, PB erythroid burst-forming unit (BFU-E) was accelerated by the addition of activin A only when exposed to IL-3 plus erythropoietin (Epo), but not when exposed to Epo or Epo plus SCF. DNA- synthesizing BFU-E was increased by IL-3 and activin A, alone and additively in combination. In a mixed culture of myeloid and erythroid progenitors, activin A increased the numbers of BFU-E and CFU-Mix colonies at concentrations of 1 and 10 ng/mL and decreased the number of CFU-GM colonies in a dose-dependent manner. However, in a liquid- suspension culture of erythroid progenitors, activin A decreased total cell count and the percentage of hemoglobin-containing cells only when cells were exposed to IL-3 plus Epo. These results indicate that activin A suppresses the proliferation of IL-3-responsive CFU-GM progenitors and stimulates the proliferation and differentiation of IL- 3-responsive BFU-E progenitors, and suggest that activin A acts as a commitment factor of immature hematopoietic progenitors for erythroid differentiation.  相似文献   

8.
The cDNA encoding human interleukin (IL)-9 has recently been cloned and the recombinant molecule found to enhance erythroid colony formation in vitro by bone marrow, peripheral blood, and cord blood cells. In our present report, recombinant human (rhu) IL-9 was evaluated, alone and in combination with other cytokines, for its effect on colony formation by erythroid progenitor (erythroid burst-forming units, BFU-E) and precursor (erythroid colony-forming units, CFU-E) cells in low density (LD), nonadherent LD density T-lymphocyte-depleted (NALT-), and immunofluorescence-sorted CD34+++DR+ and CD34+++DR+CD33- cells from normal human bone marrow. When highly enriched CD34+++DR+ and CD34+++DR+CD33- cells were plated at 200 and 100 cells/ml in the presence of 5% (vol/vol) 5637-cell-conditioned medium and erythropoietin (Epo) under serum-containing conditions, 46 and 51 day-14 BFU-E were observed, respectively. The enhancing effect of rhuIL-9 was similar to that of 5637 CM on colony formation by Epo-dependent BFU-E and CFU-E in these enriched sorted CD34+++DR+ and CD34+++DR+CD33- cells under serum-containing and serum-depleted culture conditions. No significant synergistic or additive effect of rhuIL-9 was noted when used in conjunction with rhu interleukin 3 (rhuIL-3), rhu interleukin 6 (rhuIL-6), and/or rhu granulocyte-macrophage colony-stimulating factor (rhuGM-CSF) under the same culture conditions. The cloning enhancing effect elicited by human IL-9 is Epo dependent, although IL-9 alone sustains the survival of erythroid progenitor cells in vitro, as assessed by delayed additions of Epo to the cultures. The ability of human IL-9 to stimulate BFU-E and CFU-E colony formation using low numbers of highly enriched progenitor cells in serum-depleted conditions demonstrates the direct effect of IL-9 on erythroid progenitors and implicates its potential role in the enhancement of erythropoiesis.  相似文献   

9.
Erythroid colonies from five patients with an early erythroblastic leukemia were obtained in "serum-free" cultures in the presence or absence of recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) and homogeneous native erythropoietin (Epo). Erythroid colonies with abnormal morphology and karyotype could be grown in different culture conditions. Their erythroid nature was ascertained by the presence of carbonic anhydrase I and glycophorin A. Leukemic erythroid progenitors strongly differed from normal progenitors in that spontaneous colonies were always obtained, sometimes with an extremely high plating efficiency (up to 5.7%). Colonies were found to be autonomous from exogenous hematopoietic growth factors because they were still obtained with a high plating efficiency at an average of one cell per culture in the absence of any added growth factor. No evidence for an autocrine secretion of Epo or GM-CSF emerged because Epo or GM- CSF could not be detected by biologic or radioimmunologic assays from the culture supernatant or cellular extracts of the leukemic cells and that Epo or GM-CSF antibodies did not block autonomous growth. In all cases, however, hematopoietic growth factors increased the plating efficiency of the abnormal erythroid progenitors. In the two "de novo" leukemias, leukemic erythroid progenitors responded primarily to Epo, whereas in the three other patients' (chronic myeloid leukemia) blast crisis they responded maximally to GM-CSF plus Epo. Recombinant erythroid-potentiating activity had no effect in any of these cases. These results suggest that the leukemic erythroid clonogenic cells arise from expansion of erythroid progenitors at different levels of differentiation (ie, CFU-E or BFU-E, depending upon the disease) and that autonomous growth is not related to a secretion of Epo or GM-CSF.  相似文献   

10.
Forty adult subjects were studied with the aim of establishing positive diagnostic criteria in primary proliferative polycythaemia (polycythaemia vera, PPP). These comprised 14 patients with PPP, eight secondary polycythaemia (SP), five idiopathic erythrocytosis, and 13 normal subjects, classified under standard criteria following comprehensive investigation for causes of SP. Erythroid colony formation from peripheral blood in a serum-free system was assayed with the addition of recombinant human erythropoietin (Epo), interleukin 3 (IL3), or alpha-interferon (alpha-IFN). The differential sensitivity of primitive and mature progenitors (BFU-E) was assessed by counting the number of clusters ('sub-colonies') comprising each erythroid burst. 'Endogenous' erythroid colonies were found in both PPP (56%) and controls (17%). In Epo containing cultures, the mean number of clusters per burst was lower in PPP than controls, and the percentage of small (less than or equal to 8 clusters) bursts was higher. In PPP primitive BFU-E demonstrated greater dependence on IL3 than controls, and mature BFU-E greater inhibition by alpha-IFN. These findings suggest an abnormal response to several growth factors, rather than dysfunction of a single growth factor receptor. Regression analysis of these data defined a discriminant of high diagnostic sensitivity and specificity. This discriminant accurately predicted diagnosis in a further nine polycythaemic patients.  相似文献   

11.
We have previously shown that early human CD34high hematopoietic progenitors are maintained quiescent in part through autocrine transforming growth factor-beta 1 (TGF-beta 1). We also demonstrated that, in the presence of interleukin-3, interleukin-6, granulocyte colony-stimulating factor, and erythropoietin, TGF-beta 1 antisense oligonucleotides or anti-TGF-beta serum have an additive effect with KIT ligand (Steel factor [SF]), which suggests that they control different pathways of regulation in these conditions. This finding also suggests that autocrine TGF-beta 1 might suppress c-kit expression in primitive human hematopoietic progenitors. We have now distinguished two subpopulations of CD34high cells. One subpopulation expresses a c- kit mRNA that can be downmodulated by exogenous TGF-beta 1 within 6 hours. Another subpopulation of early CD34high cells expresses a low or undetectable level of c-kit mRNA, but its expression can be upmodulated within 6 hours by anti-TGF-beta. These effects disappear 48 hours after induction and cannot be maintained longer than 72 hours, even if TGF- beta 1 or anti-TGF-beta serum are added every day. Similar kinetics, although delayed, are observed with KIT protein expression. On the contrary, no specific effect of TGF-beta 1 was observed on c-fms, GAPDH, and transferrin receptor gene expression in these early progenitors. These results clarify the complex interaction between TGF- beta 1 and SF in normal early hematopoietic progenitors. SF does not switch off the TGF-beta 1 inhibitory pathway. Autocrine TGF-beta 1 appears to maintain these cells in a quiescent state, suppressing cell division by downmodulating the receptor of SF, a key cytokine costimulator of early progenitors.  相似文献   

12.
Purified recombinant (r) macrophage inflammatory proteins (MIPs) 1 alpha, 1 beta, and 2 were assessed for effects on murine (mu) and human (hu) marrow colony-forming unit-granulocyte-macrophage (CFU-GM) and burst-forming unit-erythroid (BFU-E) colonies. Recombinant MIP-1 alpha, -1 beta, and -2 enhanced muCFU-GM colonies above that stimulated with 10 to 100 U natural mu macrophage-colony-stimulating factor (M-CSF) or rmuGM-CSF, with enhancement seen on huCFU-GM colony formation stimulated with suboptimal rhuM-CSF or rhuGM-CSF; effects were neutralized by respective MIP-specific antibodies. Macrophage inflammatory proteins had no effects on mu or huBFU-E colonies stimulated with erythropoietin (Epo). However, natural MIP-1 and rMIP-1 alpha, but not rMIP-1 beta or -2, suppressed muCFU-GM stimulated with pokeweed mitogen spleen-conditioned medium (PWMSCM), huCFU-GM stimulated with optimal rhuGM-CSF plus rhu interleukin-3 (IL-3), muBFU- E and multipotential progenitors (CFU-GEMM) stimulated with Epo plus PWMSCM, and huBFU-E and CFU-GEMM stimulated with Epo plus rhuIL-3 or rhuGM-CSF. The suppressive effects of natural MIP-1 and rMIP-1 alpha were also apparent on a population of BFU-E, CFU-GEMM, and CFU-GM present in cell-sorted fractions of human bone marrow (CD34 HLA-DR+) highly enriched for progenitors with cloning efficiencies of 42% to 75%. These results, along with our previous studies, suggest that MIP-1 alpha, -1 beta, and -2 may have direct myelopoietic enhancing activity for mature progenitors, while MIP-1 alpha may have direct suppressing activity for more immature progenitors.  相似文献   

13.
Eastment  CE; Ruscetti  FW 《Blood》1982,60(4):999-1006
In long-term hamster bone marrow cultures, proliferation and differentiation of hemopoietic stem cells occurs for several months without need for hydrocortisone or adherent stromal elements, which are requirements for bone marrow growth in all other species studied. Only the most primitive erythroid progenitors (BFU-E) are produced in the cultures. Following treatment of the cells with erythropoietin, these progenitor cells undergo differentiation into mature hemoglobinized red blood cells. Concomitant addition of erythropoietin (Epo) and prostaglandin-E1 (PGE1) results in the production of large numbers of maturing red blood cells. In cultures stimulated with Epo and PGE1, as many as 70% of the cells are benzidine-positive, while Epo alone stimulated as many as 45% of the cells to become erythroid. Epo and PGE1 do not have any apparent deleterious effect on the continuous hemopoiesis occurring in these cultures. Under identical conditions, syngeneic adherent cell cultures do not produce any erythroid elements. The development of mature red blood cells from primitive erythroid precursors occurs in the presence of Epo alone and without any apparent need for adherent stromal elements. These cultures provide a useful in vitro model for dissecting the positive and negative signals that regulate erythropoiesis.  相似文献   

14.
In spite of their ability to support myelopoiesis for several months, human long-term marrow cultures (LTMC) are unable to sustain the production of mature erythroid cells for greater than 4 weeks. Because this preference correlates with the presence of myeloid growth factors and possible absence of erythroid factors in LTMC, we studied the effects of the erythroid growth and differentiation factor erythropoietin (Epo) on both erythropoiesis and myelopoiesis in human LTMC. Either natural or recombinant Epo was added weekly to LTMC for 10 weeks, and total cell number, numbers of hemopoietic progenitors (mixed lineage colony-forming units, CFU-MIX; erythroid burst-forming units, BFU-E; erythroid CFU, CFU-E; granulocyte-macrophage CFU (CFU-GM); granulocyte CFU, CFU-G; and macrophage CFU, CFU-M), erythroblasts (early and late), granulocytes, and macrophages were quantitated separately in the adherent and nonadherent layers of the cultures. In the absence of Epo, mature erythroid cells disappeared within the first 3-4 weeks, whereas in cultures supplemented with Epo, erythropoiesis was supported for up to 8 weeks. Results indicate that erythroid maturation is blocked at the BFU-E stage and that exogenous Epo may act on a mature subpopulation of BFU-E located in the nonadherent fraction of the cultures, promoting its maturation into CFU-E, which in turn develop into erythroblasts. However, despite Epo supplementation, erythropoiesis was not restored to in vivo proportions, suggesting that additional factors or conditions necessary for erythropoiesis are lacking in LTMC. Interestingly, we found that exogenous Epo reduced the numbers of presumably more mature (nonadherent) myeloid CFU (CFU-C), granulocytes, and macrophages compared to controls and did not alter the levels of any of the most primitive hemopoietic progenitors measured (CFU-MIX, adherent BFU-E, and adherent CFU-C). Thus the data show that exogenous Epo modulates hemopoiesis in human LTMC, enhancing erythropoiesis and suppressing myelopoiesis, but that its effects appear limited to modulating levels of the nonadherent (more mature) progenitors, leaving the numbers of the adherent (immature) progenitor cells unchanged.  相似文献   

15.
In preliminary studies, we have analyzed the hematopoietic growth factor (HGF) requirement of hematopoietic progenitor cells (HPCs) purified from embryonic-fetal liver (FL) and grown in fetal calf serum- supplemented (FCS+) clonogenic culture. The key role of erythropoietin (Epo) for colony formation by early erythroid progenitors (burst- forming units-erythroid [BFU-E]) has been confirmed. Furthermore, in the absence of exogenous HGFs, FL monocytic progenitors (colony-forming unit monocyte [CFU-M]) generate large colonies exclusively composed of monocytes-macrophages; these colonies are absent in FCS- clonogenic culture. On this basis, we have investigated the role of all-trans retinoic acid (ATRA) and its isomer 9-cis RA in FL hematopoiesis. Both compounds modulate the growth of purified FL HPCs, which show a dose- dependent shift from mixed/erythroid/ monocytic to granulocytic colony formation. Studies on unicellular and paired daughter cell culture unequivocally indicate that the shift is mediated by modulation of the HPC differentiation program to the granulopoietic pathway (rather than RA-induced down-modulation of multipotent/ erythroid/monocytic HPC growth coupled with recruitment of granulocytic HPCs). ATRA and 9-cis RA also exert their effect on the proliferation of primitive HPCs (high- proliferative potential colony-forming cells [HPP-CFCs]) and putative hematopoietic stem cells (HSCs; assayed in Dexter-type long-term culture). High concentrations of either compound (1) drastically reduced the number of primary HPP-CFC colonies and totally abolished their recloning capacity and (2) inhibited HSC proliferation. It is crucial that these results mirror recent observations indicating that murine adult HPCs transduced with dominant negative ATRA receptor (RAR) gene are immortalized and show a selective blockade of granulocytic differentiation. Altogether, these results suggest that ATRA/9-cis RA may play a key role in FL hematopoiesis via a dual effect hypothetically mediated by interaction with the RAR/RXR heterodimer, ie, inhibition of HSC/ primitive HPC proliferation and induction of CFU- GEMM/ BFU-E/CFU-M shift from the multipotent/erythroid/monocytic to the granulocytic-neutrophilic differentiation program.  相似文献   

16.
Migliaccio  AR; Bruno  M; Migliaccio  G 《Blood》1987,70(6):1867-1871
The biologic activity of human biosynthetic granulocyte-monocyte colony stimulating factor (GM-CSF) was investigated in serum-free culture of erythroid progenitors derived from adult peripheral blood. The morphology of erythroid bursts and the cloning efficiency of BFU-E under serum-free conditions were similar to those observed in dishes with fetal bovine serum (FBS). For these experiments, progenitor cells were partially purified by Ficoll-Paque density centrifugation, adherence to a plastic surface, and complement-mediated cytotoxicity of Leu-1+ elements. For some studies, blastlike cells were harvested directly from 6-day-old semisolid cultures. In serum-free culture of the light-density cell fraction, biosynthetic erythropoietin (Ep) was sufficient for formation of pure and mixed erythroid colonies whereas GM-CSF was required for granulocyte-monocytic colonies. When adherent and Leu-1+ cells were removed, or when in vitro differentiated blast cells were used as a source of progenitors, neither Ep or GM-CSF alone induced colony formation. In dishes supplemented with both growth factors, erythroid bursts were detected. Although the presence of GM- CSF alone did not induce formation of any colony or clusters, BFU-E were recorded when Ep was added 8 days later, suggesting that BFU-E could be maintained. Terminal maturation of the resulting erythroid bursts was delayed by 8 days. These results provide evidence that GM- CSF acts directly on early erythroid progenitors. Furthermore, they suggest that both Ep and GM-CSF are necessary to start the differentiation process.  相似文献   

17.
Wendling  F; Penciolelli  JF; Charon  M; Tambourin  P 《Blood》1989,73(5):1161-1167
The myeloproliferative leukemia virus (MPLV), a novel murine retroviral complex that does not transform fibroblasts, has been shown to cause an acute leukemia in adult mice accompanied by a progressive polycythemia. The present study demonstrates that, on in vivo inoculation, MPLV induces a rapid suppression of growth factor requirement for in vitro colony formation by both the late and the primitive erythroid progenitor cells. CFU-e-derived erythrocytic colonies developed and differentiated in semi-solid medium without the addition of erythropoietin (Epo). In addition, the formation of CFU-e colonies was not altered by the presence of specific neutralizing Epo antibodies. In the spleen, the CFU-e pool size increased rapidly up to 30-fold. By day 6 postinfection, 100% of these progenitor cells were Epo-independent. The in vivo effects of MPLV-infection on early erythroid progenitor cell compartments were examined in cultures grown for seven days. The concentration of erythroid progenitor cells was twofold elevated in spleen from MPLV-infected mice. As early as day 4 postinfection, 50% of these progenitors produced fully hemoglobinized colonies in serum-free cultures without the addition of interleukin-3 (IL-3) and Epo. Most spontaneous colonies were large and contained up to 10(5) cells per colony. They were composed of either erythroblasts only (16%) or erythroblasts and megakaryocytes (70%); few of them were multipotential (14%). In the marrow, the total number of BFU-e was reduced and only few factor-independent bursts were observed, suggesting a rapid migration of infected progenitors from marrow to spleen. Furthermore, the data show that abnormal erythropoiesis was due to the replication defective MPLV information and was not influenced by the Fv-2 locus.  相似文献   

18.
Purified natural (n) and recombinant (r) murine (mu) mast cell growth factor (MGF, a c-kit ligand) were evaluated alone and in combination with r human (hu) erythropoietin (Epo), rhu granulocyte-macrophage colony-stimulating factor (rhuGM-CSF), rhuG-CSF, and/or rhuM-CSF for effects in vitro on colony formation by multipotential (colony-forming unit-granulocyte, erythroid, monocyte, megakaryocyte [CFU-GEMM]), erythroid (burst-forming unit erythroid [BFU-E]) and granulocyte-macrophage (CFU-GM) progenitor cells from normal human bone marrow. MGF was a potent enhancing cytokine for Epo-dependent CFU-GEMM and BFU-E colony formation, stimulating more colonies and of a larger size than either rhu interleukin-3 (rhuIL-3) or rhuGM-CSF. MGF, especially at lower concentrations, also acted with rhuIL-3 or rhuGM-CSF to enhance Epo-dependent CFU-GEMM and BFU-E colony formation. MGF had little stimulating activity for CFU-GM colonies by itself, but in combination with suboptimal to optimal amounts of rhuGM-CSF enhanced the numbers and the size of CFU-GM colonies in an additive to greater than additive manner. While we did not detect an effect of MGF on CFU-G colony numbers stimulated by maximal concentrations of rhuG-CSF, MGF did enhance the size of CFU-G-derived colonies. MGF did not enhance the activity of rhuM-CSF. In a comparative assay, maximal concentrations of rmu and rhuMGF were equally effective in the enhancement of human bone marrow colony formation, but rhuMGF, in contrast to rmuMGF, did not at the concentrations tested enhance colony formation by mouse bone marrow cells. MGF effects on BFU-E, CFU-GM, and CFU-GEMM may be direct acting ones as MGF-enhanced colony formation by these cells in highly enriched progenitor cell populations of CD34 HLA-DR+ and CD34 HLA-DR+CD33- sorted cells in which greater than or equal to 1 of 2 cells was a BFU-E plus CFU-GM plus CFU-GEMM. MGF appears to be an early acting cytokine that preferentially stimulates the growth of immature hematopoietic progenitor cells.  相似文献   

19.
P N Correa  A A Axelrad 《Blood》1991,78(11):2823-2833
Several culture media for the growth of human circulating erythroid burst-forming units (BFU-E) that have been claimed to be "serum-free" ("SF") have actually included albumin preparations known to be contaminated with an undefined burst-promoting activity (BPA); a BPA has also been found in the preparations of other "SF" medium components. This has precluded reliable investigation of the growth factor (GF) requirements of these progenitors. Using a defatted, BPA-free bovine serum albumin (BSA) and the recombinant human growth factors (GFs) erythropoietin (rHu Epo), insulinlike growth factor 1 (rHu IGF-1), and interleukin-3 (rHu IL-3), we have developed an improved serum-free (SF) medium for the production of erythroid bursts from normal adult human peripheral blood mononuclear cells (PBMNC), which requires both hemin and retinyl acetate for its optimal performance. In the presence of BSA without IL-3 or Epo, no burst or colony formation was observed. With IL-3 and Epo alone, only a small number of day 14 erythroid colonies was obtained (12 +/- 1/10(5) PBMNC). Addition of hemin (0.1 mmol/L) allowed the direct scoring of day 14 hemoglobinized colonies and increased their number sevenfold (86 +/- 5). Inclusion of retinyl acetate at physiologic concentrations further augmented the number of colonies threefold to fourfold. Under these apparently optimal conditions, we found that IGF-I could entirely replace Epo. However, IGF-I required a 100-fold higher molar concentration than that of Epo to reach maximal stimulation. The combined effect of Epo and IGF-I was found to be less than the sum of their individual effects, suggesting an overlap in the sensitivities of erythroid progenitors to these GFs. The colony-forming efficiencies of erythroid progenitors in the improved SF medium was very high: 700 single, day 14 erythroid colonies/10(5) PB MNC (at 0.25 mmol/L hemin) distributed as 126 clusters (bursts), with a mean of 5.6 component colonies per burst. These findings show that IGF-I has an Epo-like activity that targets circulating early erythroid progenitors or their progeny, providing strong evidence for the existence of an Epo-independent pathway for normal human adult erythropoiesis, possibly operative when Epo levels are low.  相似文献   

20.
Correa  PN; Eskinazi  D; Axelrad  AA 《Blood》1994,83(1):99-112
We have investigated the question of erythropoietin (Epo) hypersensitivity versus Epo independence as the basis for the endogenous erythroid bursts (EEBs) that develop in cultures without added Epo from hematopoietic cells of polycythemia vera (PV) patients. Using an improved serum-free (SF) medium containing interleukin (IL)-3, but no insulin-like growth factor-1 (IGF-1), and devoid of contaminants that influence erythropoiesis, we compared circulating normal and PV early erythroid progenitors (BFU-E) with respect to their responses in vitro to recombinant human (rHu) Epo. Cultures were seeded with Ficoll- Hypaque density-separated peripheral blood (PB) mononuclear cells (MNCs), and erythroid bursts, together with their component colonies of > or = 50 cells, were scored in situ at 13 to 16 days of culture. The Epo dose-response curve of BFU-E from PV patients was found to be statistically indistinguishable from that of normal subjects. This observation provides compelling evidence against the Epo- hypersensitivity hypothesis. In the complete SF medium minus Epo, the sensitivity of BFU-E to IGF-1 was much greater in PV than in normals, the dose-response curve being shifted to the left by at least 2 orders of magnitude. These data show that the erythroid progenitor cell response in PV is hypersensitive to IGF-1, and independent of Epo. The data also emphasize the importance of truly SF medium conditions for assessment of progenitor cell sensitivities to recombinant growth factors. Depletion of adherent cells totally prevented erythroid burst formation by normal circulating progenitors, but did not prevent the hypersensitive response to IGF-1 of such cells from PV patients. Hence, again unlike its normal counterpart, the progenitor cell response in PV appears to be independent of adherent cell control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号