首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
BACKGROUND: Cardiac preconditioning, including that induced by halogenated anesthetics, is an innate protective mechanism against ischemia-reperfusion injury. The adenosine triphosphate-sensitive potassium (K(ATP)) channels are considered essential in preconditioning mechanism. However, it is unclear whether K(ATP) channels are triggers initiating the preconditioning signaling, and/or effectors responsible for the cardioprotective memory and activated during ischemia-reperfusion. METHODS: Adult rat cardiomyocytes were exposed to oxidative stress with 200 microM H(2)O(2) and 100 microM FeSO4. Myocyte survival was determined based on morphologic characteristics and trypan blue exclusion. To induce preconditioning, the myocytes were pretreated with isoflurane. The involvement of sarcolemmal and mitochondrial K(ATP) channels was investigated using specific inhibitors HMR-1098 and 5-hydroxydecanoic acid. Data are expressed as mean +/- SD. RESULTS: Oxidative stress induced cell death in 47 +/- 14% of myocytes. Pretreatment with isoflurane attenuated this effect to 26 +/- 8%. Blockade of the sarcolemmal K(ATP) channels abolished the protection by isoflurane pretreatment when HMR-1098 was applied throughout the experiment (50 +/- 21%) or only during oxidative stress (50 +/- 12%), but not when applied during isoflurane pretreatment (29 +/- 13%). Inhibition of the mitochondrial K(ATP) channels abolished cardioprotection irrespective of the timing of 5-hydroxydecanoic acid application. Cell death was 42 +/- 23, 45 +/- 23, and 46 +/- 22% when 5-hydroxydecanoic acid was applied throughout the experiment, only during isoflurane pretreatment, or only during oxidative stress, respectively. CONCLUSION: The authors conclude that both sarcolemmal and mitochondrial K(ATP) channels play essential and distinct roles in protection afforded by isoflurane. Sarcolemmal K(ATP) channel seems to act as an effector of preconditioning, whereas mitochondrial K(ATP) channel plays a dual role as a trigger and an effector.  相似文献   

2.
Background: Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis.

Methods: Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion.

Results: Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group.  相似文献   


3.
BACKGROUND: Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis. METHODS: Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion. RESULTS: Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group. CONCLUSIONS: Cardiac protection induced by isoflurane against necrotic and apoptotic cell death is associated with an acute memory period that is sustained and functionally relevant 2 weeks after ischemia-reperfusion injury in mice in vivo.  相似文献   

4.
Background: Volatile anesthetics induce pharmacological preconditioning in cardiac tissue. The purpose of this study was to test whether volatile anesthetics mediate this effect by activation of the mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP) or sarcolemmal KATP (sarcKATP) channel in rat ventricular myocytes and to evaluate the signaling pathways involved.

Methods: A cellular model of ischemia with subsequent hypoosmolar trypan blue staining served to determine the effects of 5-hydroxydecanoate, a selective mitoKATP channel blocker, HMR-1098, a selective sarcKATP channel blocker, diazoxide, a preconditioning mimicking agent, and various modulators of putative signaling pathways on cardioprotection elicited by sevoflurane and isoflurane. Microscopy was used to visualize and measure autofluorescence of flavoproteins, a direct index of mitoKATP channel activity.

Results: Volatile anesthetics significantly enhanced diazoxide-mediated activation of mitoKATP channels as assessed by autofluorescence of myocytes. Conversely, volatile anesthetics alone did not alter mitoKATP channel activity, implying a priming effect of volatile anesthetics on mitoKATP channels. Administration of the protein kinase C inhibitor chelerythrine completely blocked this effect. Also, pretreatment with volatile anesthetics potentiated diazoxide-mediated protection against ischemia, as indicated by a reduction in trypan blue-positive myocytes. Importantly, cardioprotection afforded by volatile anesthetics was unaffected by the sarcKATP channel blocker HMR-1098 but sensitive to modulations of nitric oxide and adenosine-Gi signaling pathways.  相似文献   


5.
《Anesthesiology》2008,108(4):612-620
Background: Clinical trials suggest that anesthetic-induced preconditioning (APC) produces cardioprotection in humans, but the mechanisms of APC and significance of aging for APC in humans are not well understood. Here, the impact of age on the role of two major effectors of APC, mitochondria and sarcolemmal adenosine triphosphate-sensitive potassium (sarcKATP) channels, in preconditioning of the human atrial myocardium were investigated.

Methods: Right atrial appendages were obtained from adult patients undergoing cardiac surgery and assigned to mid-aged (MA) and old-aged (OA) groups. APC was induced by isoflurane in isolated myocardium and isolated cardiomyocytes. Mitochondrial oxygen consumption measurements, myocyte survival testing, and patch clamp techniques were used to investigate mitochondrial respiratory function and sarcKATP channel activity.

Results: After in vitro APC with isoflurane, the respiratory function of isolated mitochondria was better preserved after hypoxia-reoxygenation stress in MA than in OA. In isolated intact myocytes, APC significantly decreased oxidative stress-induced cell death in MA but not in OA, and isoflurane protection from cell death was attenuated by the sarcKATP channel inhibitor HMR-1098. Further, the properties of single sarcKATP channels were similar in MA and OA, and isoflurane sensitivity of pinacidil-activated whole cell KATP current was no different between MA and OA myocytes.  相似文献   


6.
Background: Accumulating evidence suggests that mitochondrial rather than sarcolemmal adenosine triphosphate-sensitive K+ (KATP) channels may have an important role in the protection of myocardium during ischemia. Because both lidocaine and mexiletine are frequently used antiarrhythmic drugs during myocardial ischemia, it is important to investigate whether they affect mitochondrial KATP channel activities.

Methods: Male Wistar rats were anesthetized with ether. Single, quiescent ventricular myocytes were dispersed enzymatically. The authors measured flavoprotein fluorescence to evaluate mitochondrial redox state. Lidocaine or mexiletine was applied after administration of diazoxide (25 [mu]m), a selective mitochondrial KATP channel opener. The redox signal was normalized to the baseline flavoprotein fluorescence obtained during exposure to 2,4-dinitrophenol, a protonophore that uncouples respiration from ATP synthesis and collapses the mitochondrial potential.

Results: Diazoxide-induced oxidation of flavoproteins and the redox changes were inhibited by 5-hydroxydecanoic acid, a selective mitochondrial KATP channel blocker, suggesting that flavoprotein fluorescence can be used as an index of mitochondrial oxidation mediated by mitochondrial KATP channels. Lidocaine (10-3 to 10 mm) and mexiletine (10-3 to 10 mm) reduced oxidation of the mitochondrial matrix in a dose-dependent manner with an EC50 of 98 +/- 63 [mu]m for lidocaine and 107 +/- 89 [mu]m for mexiletine.  相似文献   


7.
Background: Volatile anesthetic-induced preconditioning is mediated by adenosine triphosphate-dependent potassium (KATP) channels; however, the subcellular location of these channels is unknown. The authors tested the hypothesis that desflurane reduces experimental myocardial infarct size by activation of specific sarcolemmal and mitochondrial KATP channels.

Methods: Barbiturate-anesthetized dogs (n = 88) were acutely instrumented for measurement of aortic and left ventricular pressures. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3-h reperfusion. In four separate groups, dogs received vehicle (0.9% saline) or the nonselective KATP channel antagonist glyburide (0.1 mg/kg intravenously) in the presence or absence of 1 minimum alveolar concentration desflurane. In four additional groups, dogs received 45-min intracoronary infusions of the selective sarcolemmal (HMR 1098; 1 [mu]g [middle dot] kg-1 [middle dot] min-1) or mitochondrial (5-hydroxydecanoate [5-HD]; 150 [mu]g [middle dot] kg-1 [middle dot] min-1) KATP channel antagonists in the presence or absence of desflurane. Myocardial perfusion and infarct size were measured with radioactive microspheres and triphenyltetrazolium staining, respectively.

Results: Desflurane significantly (P < 0.05) decreased infarct size to 10 +/- 2% (mean +/- SEM) of the area at risk as compared with control experiments (25 +/- 3% of area at risk). This beneficial effect of desflurane was abolished by glyburide (25 +/- 2% of area at risk). Glyburide (24 +/- 2%), HMR 1098 (21 +/- 4%), and 5-HD (24 +/- 2% of area at risk) alone had no effects on myocardial infarct size. HMR 1098 and 5-HD abolished the protective effects of desflurane (19 +/- 3% and 22 +/- 2% of area at risk, respectively).  相似文献   


8.
Protein kinase C (PKC)-dependent signaling pathways may be involved in the "memory" effect of anesthetic and ischemic preconditioning, which facilitates activation of cardioprotective adenosine triphosphate (ATP)-sensitive potassium channels during later ischemic challenge and ATP depletion. Using patch-clamp techniques, we found that exposure of isolated guinea pig cardiomyocytes to 1 mM of isoflurane after phorbol ester stimulation of PKC facilitates the induction of larger (P < or = 0.05) sarcolemmal K(ATP) channel currents (IKATP) during cell dialysis with 0.5, compared to 1.0, mM of ATP in the pipette (10 +/- 5 versus 2 +/- 1 pA/pF in five and six cells, respectively). A PKC inhibitor, bisindolylmaleimide, abolished the induction of IKATP by a second brief isoflurane exposure under these conditions. A diacylglycerol PKC activator applied via the pipette elicited concentration-related activation of IKATP. The diacylglycerol alone (0.5 microM) elicited I(KATP), averaging 5 +/- 3 pA/pF in nine cells. Briefly treating myocytes on the microscope stage with isoflurane, followed by washout and patching with the same diacylglycerol solution, elicited larger (P < or = 0.01) IKATP, averaging 40 +/- 9 pA/pF (10 cells), with an onset 48 +/- 2 min after anesthetic pretreatment. Facilitation of IKATP by isoflurane during the reduction of intracellular ATP is dependent on PKC, whereas "preconditioning" myocytes with isoflurane causes persistent changes in sarcolemmal KATP channel function, which enhance the induction of IKATP by a diacylglycerol.  相似文献   

9.
Chronic consumption of small doses of ethanol protects myocardium from ischemic injury. We tested the hypothesis that mitochondrial and sarcolemmal adenosine triphosphate-dependent potassium (K(ATP)) channels mediate these beneficial effects. Dogs (n = 76) were fed with ethanol (1.5 g/kg) or water mixed with dry food bid for 6 or 12 wk, fasted overnight before experimentation, and instrumented for measurement of hemodynamics. Dogs received intracoronary saline (vehicle), 5-hydroxydecanoate (a mitochondrial K(ATP) channel antagonist; 6.75 mg/kg over 45 min), or HMR-1098 (a sarcolemmal K(ATP) channel antagonist; 45 microg/kg over 45 min) and were subjected to a 60 min coronary artery occlusion followed by 3 h of reperfusion. A final group of dogs was pretreated with ethanol and chow for 6 wk before occlusion and reperfusion. Myocardial infarct size and transmural coronary collateral blood flow were measured with triphenyltetrazolium chloride staining and radioactive microspheres, respectively. The area at risk of infarction was similar between groups. A 12-wk pretreatment with ethanol significantly reduced infarct size to 13% +/- 2% (mean +/- SEM; n = 8) of the area at risk compared with control experiments (25% +/- 2%; n = 8), but a 6-wk pretreatment did not (21% +/- 2%; n = 8). 5-hydroxydecanoate and HMR-1098 abolished the protective effects of 12-wk ethanol pretreatment (24% +/- 2% and 29% +/- 3%, respectively; n = 8 for each group) but had no effect in dogs that did not receive ethanol (22% +/- 2% and 23% +/- 4%, respectively; n = 8 for each group). No differences in hemodynamics or transmural coronary collateral blood flow were observed between the groups. The results indicate that mitochondrial and sarcolemmal K(ATP) channels mediate ethanol-induced preconditioning in dogs independent of alterations in systemic hemodynamics or coronary collateral blood flow. IMPLICATIONS: Mitochondrial and sarcolemmal K(ATP) channels mediate ethanol-induced preconditioning independent of alterations in systemic hemodynamics or coronary collateral perfusion in vivo.  相似文献   

10.
Background: The authors examined the role of adenosine triphosphate-sensitive potassium (KATP) channels, adenosine A1 receptor, and [alpha] and [beta] adrenoceptors in desflurane-induced preconditioning in human myocardium, in vitro.

Methods: The authors recorded isometric contraction of human right atrial trabeculae suspended in oxygenated Tyrode's solution (34[degrees]C; stimulation frequency, 1 Hz). Before a 30-min anoxic period, 3, 6, and 9% desflurane was administered during 15 min. Desflurane, 6%, was also administered in the presence of 10 [mu]m glibenclamide, a KATP channels antagonist; 10 [mu]m HMR 1098, a sarcolemmal KATP channel antagonist; 800 [mu]m 5-hydroxy-decanoate (5-HD), a mitochondrial KATP channel antagonist; 1 [mu]m phentolamine, an [alpha]-adrenoceptor antagonist; 1 [mu]m propranolol, a [beta]-adrenoceptor antagonist; and 100 nm 8-cyclopentyl-1,3-dipropylxanthine (DPX), the adenosine A1 receptor antagonist. Developed force at the end of a 60-min reoxygenation period was compared (mean +/- SD).

Results: Desflurane at 3% (95 +/- 13% of baseline), 6% (86 +/- 6% of baseline), and 9% (82 +/- 6% of baseline) enhanced the recovery of force after 60 min of reoxygenation as compared with the control group (50 +/- 11% of baseline). Glibenclamide (60 +/- 12% of baseline), 5-HD (57 +/- 21% of baseline), DPX (63 +/- 19% of baseline), phentolamine (56 +/- 20% of baseline), and propranolol (63 +/- 13% of baseline) abolished desflurane-induced preconditioning. In contrast, HMR 1098 (85 +/- 12% of baseline) did not modify desflurane-induced preconditioning.  相似文献   


11.
BACKGROUND: Volatile anesthetic-induced preconditioning is mediated by adenosine triphosphate-dependent potassium (KATP) channels; however, the subcellular location of these channels is unknown. The authors tested the hypothesis that desflurane reduces experimental myocardial infarct size by activation of specific sarcolemmal and mitochondrial KATP channels. METHODS: Barbiturate-anesthetized dogs (n = 88) were acutely instrumented for measurement of aortic and left ventricular pressures. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3-h reperfusion. In four separate groups, dogs received vehicle (0.9% saline) or the nonselective KATP channel antagonist glyburide (0.1 mg/kg intravenously) in the presence or absence of 1 minimum alveolar concentration desflurane. In four additional groups, dogs received 45-min intracoronary infusions of the selective sarcolemmal (HMR 1098; 1 microg. kg-1. min-1) or mitochondrial (5-hydroxydecanoate [5-HD]; 150 microg. kg-1. min-1) KATP channel antagonists in the presence or absence of desflurane. Myocardial perfusion and infarct size were measured with radioactive microspheres and triphenyltetrazolium staining, respectively. RESULTS: Desflurane significantly (P < 0.05) decreased infarct size to 10 +/- 2% (mean +/- SEM) of the area at risk as compared with control experiments (25 +/- 3% of area at risk). This beneficial effect of desflurane was abolished by glyburide (25 +/- 2% of area at risk). Glyburide (24 +/- 2%), HMR 1098 (21 +/- 4%), and 5-HD (24 +/- 2% of area at risk) alone had no effects on myocardial infarct size. HMR 1098 and 5-HD abolished the protective effects of desflurane (19 +/- 3% and 22 +/- 2% of area at risk, respectively). CONCLUSION: Desflurane reduces myocardial infarct size in vivo, and the results further suggest that both sarcolemmal and mitochondrial KATP channels could be involved.  相似文献   

12.
Background: Remifentanil preconditioning (RPC) reduces the infarct size in anesthetized rat hearts, and this effect seems to be mediated by all three types of opioid receptors (ORs). Because there is evidence of only [kappa]- and [delta]- but not [mu]-ORs in the rat heart, the authors investigated whether RPC confers cardioprotection via cardiac [kappa]- and [delta]-OR as well as via extracardiac [mu]-OR agonist activity. The authors also investigated the involvement of signaling mechanisms, namely protein kinase C and mitochondrial adenosine triphosphate-sensitive potassium (KATP) channels.

Methods: The hearts of male Sprague-Dawley rats weighing 190-210 g were removed, mounted on a Langendorff apparatus, and perfused retrogradely at 100 cm H2O with Krebs-Ringer's solution. All hearts were subjected to 30 min of ischemia and 2 h of reperfusion. The study consisted of three series of experiments on the effect of ischemic preconditioning or RPC (10, 50, and 100 ng/ml remifentanil) after blockade of OR subtypes ([delta]-OR antagonist naltrindol, [kappa]-OR antagonist nor-binaltorphimine, and [mu]-OR antagonist CTOP). The involvement of protein kinase C or the KATP channel in the cardioprotection of RPC was also investigated using specific blockers in each group. RPC was produced by three cycles of 5-min perfusion of remifentanil in Krebs-Ringer's solution interspersed with a 5-min reperfusion with Krebs solution only. Infarct size, as a percentage of the area at risk, was determined by 2,3,5-triphenyltetrazolium staining.

Results: Infarct size as a percentage of the area at risk was significantly reduced after RPC from 51.9 +/- 5.0% (control, n = 8) to 36.2 +/- 10.0% (100 ng/ml RPC, n = 8, P < 0.01). This effect was stopped by pretreatment with naltrindol (52.3 +/- 5.2%) and nor-binaltorphimine (43.5 +/- 6.0%) but not CTOP (37.1 +/- 6.0%). Chelerythrine and GF109203X, both protein kinase C inhibitors, abolished the effects of RPC or ischemic preconditioning on infarct size as a percentage of area at risk. 5-Hydroxydecanoate (a selective mitochondrial KATP channel blocker) also abolished the cardioprotection of RPC and IPC, but HMR-1098 (a selective inhibitor of the sarcolemmal KATP channel) did not.  相似文献   


13.
Background: Myocardial protection by volatile anesthetics involves activation of cardiac adenosine triphosphate-sensitive potassium (KATP) channels. The authors have previously shown that isoflurane enhances sensitivity of the sarcolemmal KATP channel to the opener, pinacidil. Because reactive oxygen species seem to be mediators in anesthetic preconditioning, the authors investigated whether they contribute to the mechanism of the sensitization effect by isoflurane.

Methods: Ventricular myocytes were isolated from guinea pig hearts for the whole cell patch clamp recordings of the sarcolemmal KATP channel current (IKATP). Free radical scavengers N-acetyl-l-cysteine, carnosine, superoxide dismutase, and catalase were used to investigate whether reactive oxygen species mediate isoflurane facilitation of the channel opening by pinacidil. A possible role of the mitochondrial KATP channels was tested using a blocker of these channels, 5-hydroxydecanoate.

Results: The mean density (+/- SEM) of IKATP elicited by pinacidil (20 [mu]m) was 18.9 +/- 1.8 pA/pF (n = 11). In the presence of isoflurane (0.55 mm), the density of pinacidil-activated IKATP increased to 38.5 +/- 2.4 pA/pF (n = 9). Concurrent application of isoflurane and N-acetyl-l-cysteine decreased the sensitization effect by isoflurane in a concentration-dependent manner, whereby the densities of IKATP were 32.6 +/- 1.4 (n = 6), 26.2 +/- 2.3 (n = 6), and 19.4 +/- 2.1 pA/pF (n = 8) at 100, 250, and 500 [mu]m N-acetyl-l-cysteine, respectively. Concurrent application of isoflurane and carnosine (100 [mu]m), superoxide dismutase (100 U/ml), or catalase (100 U/ml) attenuated the densities of IKATP to 27.9 +/- 2.6, 27.2 +/- 2.9, and 25.9 +/- 2.2 pA/pF, respectively. None of the scavengers affected activation of IKATP by pinacidil alone. 5-Hydroxydecanoate (100 [mu]m) did not alter the sensitization effect by isoflurane, and the density of IKATP in this group was 37.1 +/- 3.8 pA/pF (n = 6).  相似文献   


14.
Background: Cardiac adenosine triphosphate-sensitive potassium (KATP) channels and protein tyrosine kinases (PTKs) are mediators of ischemic preconditioning, but the interaction of both and a role in myocardial protection afforded by volatile anesthetics have not been defined.

Methods: Whole cell and single channel patch clamp techniques were used to investigate the effects of isoflurane and the PTK inhibitor genistein on the cardiac sarcolemmal KATP channel in acutely dissociated guinea pig ventricular myocytes.

Results: At 0.5 mm internal ATP, genistein (50 [mu]m) elicited whole cell KATP current (22.5 +/- 7.9 pA/pF). Genistein effects were concentration-dependent, with an EC50 of 32.3 +/- 1.4 [mu]m. Another PTK inhibitor, tyrphostin B42, had a similar effect. The inactive analog of genistein, daidzein (50 [mu]m), did not elicit KATP current. Isoflurane (0.5 mm) increased genistein (35 [mu]m)- activated whole cell KATP current from 14.5 +/- 3.1 to 32.5 +/- 6.6 pA/pF. Stimulation of receptor PTKs with epidermal growth factor, nerve growth factor, or insulin attenuated genistein and isoflurane effects, and the protein tyrosine phosphatase inhibitor orthovanadate (1 mm) prevented their actions on KATP current. In excised inside-out membrane patches, and at fixed 0.2 mm internal ATP, genistein (50 [mu]m) increased channel open probability from 0.053 +/- 0.016 to 0.183 +/- 0.039, but isoflurane failed to further increase open probability (0.162 +/- 0.051) of genistein-activated channels. However, applied in the presence of genistein and protein tyrosine phosphatase 1B (1 [mu]g/ml), isoflurane significantly increased open probability to 0.473 +/- 0.114.  相似文献   


15.
Background: Volatile anesthetics can protect the myocardium against ischemic injury by opening the adenosine triphosphate (ATP)-sensitive potassium (KATP) channels. However, direct evidence for anesthetic-channel interaction is still limited, and little is known about the role KATP channel modulators play in this effect. Because pH is one of the regulators of KATP channels, the authors tested the hypothesis that intracellular pH (pHi) modulates the direct interaction of isoflurane with the cardiac KATP channel.

Methods: The effects of isoflurane on sarcolemmal KATP channels were investigated at pHi 7.4 and pHi 6.8 in excised inside-out membrane patches from ventricular myocytes of guinea pig hearts.

Results: At pHi 7.4, intracellular ATP (1-1,000 [mu]m) inhibited KATP channels and decreased channel open probability (Po) in a concentration-dependent manner with an IC50 of 8 +/- 1.5 [mu]m, and isoflurane (0.5 mm) either had no effect or decreased channel activity. Lowering pHi from 7.4 to 6.8 enhanced channel opening by increasing Po and reduced channel sensitivity to ATP, with IC50 shifting from 8 +/- 1.2 to 45 +/- 5.6 [mu]m. When applied to the channels activated at pHi 6.8, isoflurane (0.5 mm) increased Po and further reduced ATP sensitivity, shifting IC50 to 110 +/- 10.0 [mu]m.  相似文献   


16.
Zhang Y  Irwin MG  Wong TM  Chen M  Cao CM 《Anesthesiology》2005,102(2):371-378
BACKGROUND: Remifentanil preconditioning (RPC) reduces the infarct size in anesthetized rat hearts, and this effect seems to be mediated by all three types of opioid receptors (ORs). Because there is evidence of only kappa- and delta- but not mu-ORs in the rat heart, the authors investigated whether RPC confers cardioprotection via cardiac kappa- and delta-OR as well as via extracardiac mu-OR agonist activity. The authors also investigated the involvement of signaling mechanisms, namely protein kinase C and mitochondrial adenosine triphosphate-sensitive potassium (KATP) channels. METHODS: The hearts of male Sprague-Dawley rats weighing 190-210 g were removed, mounted on a Langendorff apparatus, and perfused retrogradely at 100 cm H2O with Krebs-Ringer's solution. All hearts were subjected to 30 min of ischemia and 2 h of reperfusion. The study consisted of three series of experiments on the effect of ischemic preconditioning or RPC (10, 50, and 100 ng/ml remifentanil) after blockade of OR subtypes (delta-OR antagonist naltrindol, kappa-OR antagonist nor-binaltorphimine, and mu-OR antagonist CTOP). The involvement of protein kinase C or the KATP channel in the cardioprotection of RPC was also investigated using specific blockers in each group. RPC was produced by three cycles of 5-min perfusion of remifentanil in Krebs-Ringer's solution interspersed with a 5-min reperfusion with Krebs solution only. Infarct size, as a percentage of the area at risk, was determined by 2,3,5-triphenyltetrazolium staining. RESULTS: Infarct size as a percentage of the area at risk was significantly reduced after RPC from 51.9 +/- 5.0% (control, n = 8) to 36.2 +/- 10.0% (100 ng/ml RPC, n = 8, P < 0.01). This effect was stopped by pretreatment with naltrindol (52.3 +/- 5.2%) and nor-binaltorphimine (43.5 +/- 6.0%) but not CTOP (37.1 +/- 6.0%). Chelerythrine and GF109203X, both protein kinase C inhibitors, abolished the effects of RPC or ischemic preconditioning on infarct size as a percentage of area at risk. 5-Hydroxydecanoate (a selective mitochondrial KATP channel blocker) also abolished the cardioprotection of RPC and IPC, but HMR-1098 (a selective inhibitor of the sarcolemmal KATP channel) did not. CONCLUSION: Cardiac delta- and kappa- but not mu-ORs mediate the cardioprotection produced by RPC. Both protein kinase C and the mitochondrial KATP channel were involved in this effect.  相似文献   

17.
BACKGROUND: Volatile anesthetics induce pharmacological preconditioning in cardiac tissue. The purpose of this study was to test whether volatile anesthetics mediate this effect by activation of the mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) or sarcolemmal K(ATP) (sarcK(ATP)) channel in rat ventricular myocytes and to evaluate the signaling pathways involved. METHODS: A cellular model of ischemia with subsequent hypoosmolar trypan blue staining served to determine the effects of 5-hydroxydecanoate, a selective mitoK(ATP) channel blocker, HMR-1098, a selective sarcK(ATP) channel blocker, diazoxide, a preconditioning mimicking agent, and various modulators of putative signaling pathways on cardioprotection elicited by sevoflurane and isoflurane. Microscopy was used to visualize and measure autofluorescence of flavoproteins, a direct index of mitoK(ATP) channel activity. RESULTS: Volatile anesthetics significantly enhanced diazoxide-mediated activation of mitoK(ATP) channels as assessed by autofluorescence of myocytes. Conversely, volatile anesthetics alone did not alter mitoK(ATP) channel activity, implying a priming effect of volatile anesthetics on mitoK(ATP) channels. Administration of the protein kinase C inhibitor chelerythrine completely blocked this effect. Also, pretreatment with volatile anesthetics potentiated diazoxide-mediated protection against ischemia, as indicated by a reduction in trypan blue-positive myocytes. Importantly, cardioprotection afforded by volatile anesthetics was unaffected by the sarcK(ATP) channel blocker HMR-1098 but sensitive to modulations of nitric oxide and adenosine-G(i) signaling pathways. CONCLUSIONS: Using autofluorescence in live cell imaging microscopy and a simulated model of ischemia, the authors present evidence that volatile anesthetics mediate their protection in cardiomyocytes by selectively priming mitoK(ATP) channels through multiple triggering protein kinase C-coupled signaling pathways. These observations provide important new insight into the mechanisms of anesthetic-induced preconditioning.  相似文献   

18.
Background: Volatile anesthetics have cardioprotective effects that mimic ischemic preconditioning, including the involvement of adenosine triphosphate-sensitive potassium (KATP) channels. However, evidence for a direct effect of volatile anesthetic on the KATP channel is limited. In this study, the effects of isoflurane on the cardiac sarcolemmal KATP channel were investigated.

Methods: Single ventricular myocytes were enzymatically isolated from guinea pig hearts. Whole cell and single-channel configurations, specifically the cell-attached and inside-out patch mode, of the patch clamp technique were used to monitor sarcolemmal KATP channel current.

Results: In the cell-attached patch configuration, 2,4-dinitrophenol (150 [mu]m) opened the sarcolemmal KATP channel. Isoflurane (0.5 mm) further increased channel open probability and the number of active channels in the patch. In contrast, in the inside-out patch experiments, isoflurane had no significant effect on the KATP channel activated by low ATP (0.2-0.5 mm). In addition, isoflurane had no effect on the KATP channel when activated by adenosine diphosphate, adenosine + guanosine triphosphate, bimakalim, and 2,4-dinitrophenol under inside-out patch configurations. When KATP current was monitored in the whole cell mode, isoflurane alone was unable to elicit channel opening. However, during sustained protein kinase C activation by 12,13-dibutyrate, isoflurane activated the KATP current that was sensitive to glibenclamide. In contrast, isoflurane had no effect on the KATP channel activated by 12,13-dibutyrate in a cell-free environment.  相似文献   


19.
Background: Isoflurane enhances mechanical function in hearts subject to normothermic global or regional ischemia. The authors examined the effectiveness of isoflurane in preserving mechanical function in hearts subjected to cardioplegic arrest and prolonged hypothermic no-flow storage. The role of isoflurane in altering myocardial glucose metabolism during storage and reperfusion during these conditions and the contribution of adenosine triphosphate-sensitive potassium (KATP) channel activation in mediating the functional and metabolic effects of isoflurane preconditioning was determined.

Methods: Isolated working rat hearts were subjected to cardioplegic arrest with St. Thomas' II solution, hypothermic no-flow storage for 8 h, and subsequent aerobic reperfusion. The consequences of isoflurane treatment were assessed during the following conditions: (1) isoflurane exposure before and during storage; (2) brief isoflurane exposure during early nonworking poststorage reperfusion; and (3) isoflurane preconditioning before storage. The selective mitochondrial and sarcolemmal KATP channel antagonists, 5-hydroxydecanoate and HMR 1098, respectively, were used to assess the role of KATP channel activation on glycogen consumption during storage in isoflurane-preconditioned hearts.

Results: Isoflurane enhanced recovery of mechanical function if present before and during storage. Isoflurane preconditioning was also protective. Isoflurane reduced glycogen consumption during storage under the aforementioned circumstances. Storage of isoflurane-preconditioned hearts in the presence of 5-hydroxydecanoate prevented the reduction in glycogen consumption during storage and abolished the beneficial effect of isoflurane preconditioning on recovery of mechanical function.  相似文献   


20.
BACKGROUND: Volatile anesthetics produce differing degrees of myocardial protection in animal models of ischemia. The purpose of the current investigation was to determine the influence of isoflurane and halothane on myocardial protection in a human model of simulated ischemia and the role of adenosine A1 receptors and adenosine triphosphate-sensitive potassium (KATP) channels in the anesthetic pathway. METHODS: Human atrial trabecular muscles were superfused with oxygenated Krebs-Henseleit buffer and stimulated at 1 Hz, with recording of maximum contractile force. Fifteen minutes before a 30-min anoxic insult, muscles were pretreated for 5 min with either anoxia, the A1 agonist N6-cyclohexyladenosine, 1% halothane or 1.2% isoflurane. These treatments were also performed in the presence of either the KATP channel antagonist glibenclamide or the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Anesthetic effects were also determined on KATP currents in isolated whole cell voltage-clamped human atrial myocytes. RESULTS: Recovery of force (recorded 60 min after anoxia) in isoflurane-pretreated muscles was reduced from 76.6 +/- 7.5% of baseline to 43.7 +/- 7.1% by pretreatment with glibenclamide, and to 52.5 +/- 6.2% by pretreatment with DPCPX. Halothane treatment provided no cardioprotection and seemed to inhibit protection by anoxic preconditioning. Halothane decreased whole cell KATP currents in atrial myocytes, whereas isoflurane had no effects. CONCLUSIONS: This study demonstrates the cardioprotective effects of isoflurane in contrast to the effects of halothane. Furthermore, A1 receptors and KATP channels seem to mediate the beneficial effects of anoxia and isoflurane in human myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号