首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic (94)Tc-methoxyisobutylisonitrile ((94)Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K(1) for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K(1). For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from (94)Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of (99m)Tc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum-likelihood expectation-maximization (4D ML-EM) reconstructions gave more accurate reconstructions than did standard frame-by-frame static 3D ML-EM reconstructions. The SPECT/P results showed that 4D ML-EM reconstruction gave higher and more accurate estimates of K(1) than did 3D ML-EM, yielding anywhere from a 44% underestimation to 24% overestimation for the three patients. The SPECT/D results showed that 4D ML-EM reconstruction gave an overestimation of 28% and 3D ML-EM gave an underestimation of 1% for K(1). For the patient study the 4D ML-EM reconstruction provided continuous images as a function of time of the concentration in both ventricular cavities and myocardium during the 2 min infusion. It is demonstrated that a 2 min infusion with a two-headed SPECT system rotating 180° every 54 s can produce measurements of blood pool and myocardial TACs, though the SPECT simulation studies showed that one must sample at least every 30 s to capture a 1 min infusion input function.  相似文献   

2.
Pulmonary imaging using single photon emission computed tomography (SPECT) is the focus of current radiotherapy research, including dose-response analysis and three-dimensional (3D) radiation treatment planning. Improvement in the quantitative capability of SPECT may help establish its potential role in this application as well as others requiring accurate knowledge of pulmonary blood flow. The purposes of this study were to quantitatively evaluate SPECT filtered backprojection (FBP) and ordered subset-expectation maximization (OS-EM) reconstruction implementations for measuring absolute activity concentration in lung phantom experiments, and to incorporate quantitative SPECT techniques in 3D-RTP for lung cancer. Quantitative FBP (nonuniform iterative Chang attenuation compensation, scatter correction, and 3D postreconstruction Metz filtering) and OS-EM implementations were compared with a "clinical" implementation of FBP (uniform multiplicative Chang attenuation compensation and post-reconstruction von Hann filtering), for their ability to improve quantification of inactive and active spherical defects in the lungs of an anthropomorphic torso phantom. Activity concentration estimates were found to depend on many factors, such as region of interest size, scatter subtraction constant (k), postreconstruction deconvolution filtering and, in the case of OS-EM, total number of iterations. In general, reconstruction implementations incorporating compensation for nonuniform attenuation and scatter provided reduced bias relative to the clinical implementation. Potential applications to lung radiotherapy, including dose-functional histograms and treatment planning are also discussed. SPECT has the potential to provide accurate estimates of lung activity distributions that, together with improved image quality, may be useful for the study and prediction of therapeutic response.  相似文献   

3.
In SPECT imaging of pure beta emitters, such as (90)Y, the acquired spectrum is very complex, which increases the demands on the imaging protocol and the reconstruction. In this work, we have evaluated the quantitative accuracy of bremsstrahlung SPECT with focus on the reconstruction algorithm including model-based attenuation, scatter and collimator-detector response (CDR) compensations. The scatter and CDR compensation methods require pre-calculated point-spread functions, which were generated with the SIMIND MC program. The SIMIND program is dedicated for simulation of scintillation camera imaging and only handles photons. The aim of this work was therefore twofold. The first aim was to implement simulation of bremsstrahlung imaging into the SIMIND code and to validate simulations against experimental measurements. The second was to investigate the quality of bremsstrahlung SPECT imaging and to evaluate the possibility of quantifying the activity in differently shaped sources. In addition, a feasibility test was performed on a patient that underwent treatment with (90)Y-Ibritumomab tiuxetan (Zevalin). The MCNPX MC program was used to generate bremsstrahlung photon spectra which were used as source input in the SIMIND program. The obtained bremsstrahlung spectra were separately validated by experimental measurement using a HPGe detector. Validation of the SIMIND generated images was done by a comparison to gamma camera measurements of a syringe containing (90)Y. Results showed a slight deviation between simulations and measurements in image regions outside the source, but the agreement was sufficient for the purpose of generating scatter and CDR kernels. For the bremsstrahlung SPECT experiment, the RSD torso phantom with (90)Y in the liver insert was measured with and without background activities. Projection data were obtained using a GE VH/Hawkeye system. Image reconstruction was performed by using the OSEM algorithm with and without different combinations of model-based attenuation, scatter and CDR compensations. The reconstructed images were then evaluated in terms of the accuracy of the total activity estimate in the liver insert. It was found that the activity in a large source such as the liver was estimated with a bias of around -70%, when no compensations were included in the reconstruction, whereas when compensations were included the bias obtained was between -10 and 16%. It is concluded that although the (90)Y bremsstrahlung spectrum is continuous with no pronounced peak and the count rate is low, it is possible to achieve reasonably accurate activity estimates from bremsstrahlung SPECT images if proper compensations are applied in the reconstruction. This conclusion was also confirmed by the patient study.  相似文献   

4.
A three-dimensional reconstruction method for simultaneous compensation of attenuation, scatter and distance-dependent detector response for single photon emission computed tomography is described and tested by experimental studies. The method determines the attenuation factors recursively along each projection ray starting at the intersected source voxel closest to the detector. The method substracts the scatter energy window data from the primary energy window data for scatter compensation. The detector response is modelled to be spatially invariant at a constant distance from the detector. The method convolves source distribution with the modelled response function to compensate for the smoothed by use of a non-uniform entropy prior to searching for the maximum a posteriori probability solution. The method was tested using projections acquired from a chest phantom by a three-headed detector system with parallel hole collimators. An improvement was shown in image noise, recognition of object sizes and shapes, and quantification of concentration ratios.  相似文献   

5.
Simultaneous 99mTC/ 123I SPECT allows the assessment of two physiological functions under identical conditions. The separation of these radionuclides is difficult, however, because their energies are close. Most energy-window-based scatter correction methods do not fully model either physical factors or patient-specific activity and attenuation distributions. We have developed a fast Monte Carlo (MC) simulation-based multiple-radionuclide and multiple-energy joint ordered-subset expectation-maximization (JOSEM) iterative reconstruction algorithm, MC-JOSEM. MC-JOSEM simultaneously corrects for scatter and cross talk as well as detector response within the reconstruction algorithm. We evaluated MC-JOSEM for simultaneous brain profusion (99mTc-HMPAO) and neurotransmission (123I-altropane) SPECT. MC simulations of 99mTc and 123I studies were generated separately and then combined to mimic simultaneous 99mTc/ 123I SPECT. All the details of photon transport through the brain, the collimator, and detector, including Compton and coherent scatter, septal penetration, and backscatter from components behind the crystal, were modeled. We reconstructed images from simultaneous dual-radionuclide projections in three ways. First, we reconstructed the photopeak-energy-window projections (with an asymmetric energy window for 1231) using the standard ordered-subsets expectation-maximization algorithm (NSC-OSEM). Second, we used standard OSEM to reconstruct 99mTc photopeak-energy-window projections, while including an estimate of scatter from a Compton-scatter energy window (SC-OSEM). Third, we jointly reconstructed both 99mTc and 123I images using projection data associated with two photo-peak energy windows and an intermediate-energy window using MC-JOSEM. For 15 iterations of reconstruction, the bias and standard deviation of 99mTc activity estimates in several brain structures were calculated for NSC-OSEM, SC-OSEM, and MC-JOSEM, using images reconstructed from primary (unscattered) photons as a reference. Similar calculations were performed for 123I images for NSC-OSEM and MC-JOSEM. For 123I images, dopamine binding potential (BP) at equilibrium and its signal-to-noise ratio (SNR) were also calculated. Our results demonstrate that MC-JOSEM performs better than NSC- and SC-OSEM for quantitation tasks. After 15 iterations of reconstruction, the relative bias of 99mTc activity estimates in the thalamus, striata, white matter, and gray matter volumes from MC-JOSEM ranged from -2.4% to 1.2%, while the same estimates for NSC-OSEM (SC-OSEM) ranged from 20.8% to 103.6% (7.2% to 41.9%). Similarly, the relative bias of 123I activity estimates from 15 iterations of MC-JOSEM in the striata and background ranged from -1.4% to 2.9%, while the same estimates for NSC-OSEM ranged from 1.6% to 10.0%. The relative standard deviation of 99mTc activity estimates from MC-JOSEM ranged from 1.1% to 4.8% versus 1.2% to 6.7% (1.2% to 5.9%) for NSC-OSEM (SC-OSEM). The relative standard deviation of 123I activity estimates using MC-JOSEM ranged from 1.1% to 1.9% versus 1.5% to 2.7% for NSC-OSEM. Using the 123I dopamine BP obtained from the reconstruction produced by primary photons as a reference, the result for MC-JOSEM was 50.5% closer to the reference than that of NSC-OSEM after 15 iterations. The SNR for dopamine BP was 23.6 for MC-JOSEM as compared to 18.3 for NSC-OSEM.  相似文献   

6.
单光子发射断层成像(SPECT)在临床上有广泛的应用,但由于各种因素的限制,一般仅能得到定性成像,大大削弱了其诊断功能。要想得到定量的图像,就需要在图像重建过程中对各种影响因素进行补偿。目前所用重建算法主要分为迭代法和解析法两大类。本文主要阐述用于SPECT图像重建的各种解析算法,通过追踪国际研究前沿,对现有算法按噪声抑制、散射去除、衰减校正、探测器效应补偿等分类进行了较为全面的概述。  相似文献   

7.
Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data are expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H(∞) filtering is adopted for robust estimation. H(∞) filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help us to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches.  相似文献   

8.
Converging collimation increases the geometric efficiency for imaging small organs, such as the heart, but also increases the difficulty of correcting for the physical effects of attenuation, geometric response and scatter in SPECT. In this paper, 3D first-order Compton scatter in non-uniform scattering media is modelled by using an efficient slice by-slice incremental blurring technique in both parallel and converging beam SPECT. The scatter projections are generated by first forming an effective scatter source image (ESSI), then forward-projecting the ESSI. The Compton scatter cross section described by the Klein-Nishina formula is used to obtain spatial scatter response functions (SSRFs) of scattering slices which are parallel to the detector surface. Two SSRFs of neighbouring scattering slices are used to compute two small orthogonal 1D blurring kernels used for the incremental blurring from the slice which is further from the detector surface to the slice which is closer to the detector surface. First-order Compton scatter point response functions (SPRFs) obtained using the proposed model agree well with those of Monte Carlo (MC) simulations for both parallel and fan beam SPECT. Image reconstruction in fan beam SPECT MC simulation studies shows increased left ventricle myocardium-to-chamber contrast (LV contrast) and slightly improved image resolution when performing scatter compensation using the proposed model. Physical torso phantom fan beam SPECT experiments show increased myocardial uniformity and image resolution as well as increased LV contrast. The proposed method efficiently models the 3D first-order Compton scatter effect in parallel and converging beam SPECT.  相似文献   

9.
The qualitative and quantitative accuracy of SPECT images is degraded by physical factors of attenuation, Compton scatter and spatially varying collimator geometric response. This paper presents a 3D ray-tracing technique for modelling attenuation, scatter and geometric response for SPECT imaging in an inhomogeneous attenuating medium. The model is incorporated into a three-dimensional projector-backprojector and used with the maximum-likelihood expectation-maximization algorithm for reconstruction of parallel-beam data. A transmission map is used to define the inhomogeneous attenuating and scattering object being imaged. The attenuation map defines the probability of photon attenuation between the source and the scattering site, the scattering angle at the scattering site and the probability of attenuation of the scattered photon between the scattering site and the detector. The probability of a photon being scattered through a given angle and being detected in the emission energy window is approximated using a Gaussian function. The parameters of this Gaussian function are determined using physical measurements of parallel-beam scatter line spread functions from a non-uniformly attenuating phantom. The 3D ray-tracing scatter projector-backprojector produces the scatter and primary components. Then, a 3D ray-tracing projector-backprojector is used to model the geometric response of the collimator. From Monte Carlo and physical phantom experiments, it is shown that the best results are obtained by simultaneously correcting attenuation, scatter and geometric response, compared with results obtained with only one or two of the three corrections. It is also shown that a 3D scatter model is more accurate than a 2D model. A transmission map is useful for obtaining measurements of attenuation and scatter in SPECT data, which can be used together with a model of the geometric response of the collimator to obtain corrected images with quantitative and diagnostically accurate information.  相似文献   

10.
We investigated the accuracy of qSPECT, a quantitative SPECT reconstruction algorithm we have developed which employs corrections for collimator blurring, photon attenuation and scatter, and provides images in units of absolute radiotracer concentrations (kBq cm(-3)). Using simulated and experimental phantom data with characteristics similar to clinical cardiac perfusion data, we studied the implementation of a scatter correction (SC) as part of an iterative reconstruction protocol. Additionally, with experimental phantom studies we examined the influence of CT-based attenuation maps, relative to those obtained from conventional SPECT transmission scans, on SCs and quantitation. Our results indicate that the qSPECT estimated scatter corrections did not change appreciably after the third iteration of the reconstruction. For the simulated data, qSPECT concentrations agreed with images reconstructed using ideal, scatter-free, simulated data to within 6%. For the experimental data, we observed small systematic differences in the scatter fractions for data using different combinations of SCs and attenuation maps. The SCs were found to be significantly influenced by errors in image coregistration. The reconstructed concentrations using CT-based corrections were more quantitatively accurate than those using attenuation maps from conventional SPECT transmission scans. However, segmenting the attenuation maps from SPECT transmission scans could provide sufficient accuracy for most applications.  相似文献   

11.
In order to obtain an accurate and quantitative positron emission tomography (PET) image, emission data need to be corrected for random coincidences, photon attenuation and Compton scattering of photons in the tissue, and detector efficiency response or normalization. The accuracy of these corrections strongly affects the quality of the PET image. There is evidence that time-of-flight (TOF) PET reconstruction is less sensitive than non-TOF reconstruction to inconsistencies between emission data and corrections. The purpose of this study is to analyze and discuss such experimental evidence. In this work, inconsistent correction data (inconsistent normalization, absence of scatter correction and mismatched attenuation correction) are introduced in experimental phantom data. Both TOF and non-TOF reconstructed images are analyzed to examine the effect of flawed data. The behavior of TOF reconstruction in respiratory artifacts, a very common example of inconsistency in the data, is studied in patient images. TOF reconstruction is less sensitive to mismatched attenuation correction, erroneous normalization and poorly estimated scatter correction. Such robustness depends strongly on the time resolution of the TOF PET scanner. In particular, the robustness of TOF in the presence of attenuation correction inconsistencies is discussed, using a simulation of a simple model of respiratory artifacts. We expect new generations of PET scanners, with improved time resolution, to be less and less sensitive to poor quality normalization, scatter and attenuation corrections. This not only reduces artifacts in the PET image, but also opens the way to less stringent requirements for the quality of the CT image (reducing either the equipment cost or the dose to the patient), and for the normalization protocols (simplifying or shortening the normalization procedures). Moreover, TOF reconstruction can be beneficial in multimodalities such as PET/MR, where a direct attenuation measurement is not available and attenuation correction can only be approximated.  相似文献   

12.
The purpose of this study was to investigate the importance of 2D versus 3D compensation methods in SPECT. The compensation methods included in the study addressed two important degrading factors, namely attenuating and collimator-detector response in SPET. They can be divided into two general categories. The conventional methods are based on the filtered backprojection algorithm, the Chang algorithm for attenuation compensation and the Metz filter for detector response compensation. These methods, which were computationally efficient, could only achieve approximate compensation due to the assumptions made. The quantitative compensation methods provide accurate compensation by modelling the degrading effects at the expense of large computational requirements. Both types of compensation methods were implemented in 2D and 3D reconstructions. The 2D and 3D reconstruction/compensation methods were evaluated using data from simulation of brain and heart, and patient thallium SPECT studies. Our results demonstrate the importance of compensation methods in improving the quality and quantitative accuracy of SPECT images and the relative effectiveness of the different 2D and 3D reconstruction/compensation methods. We concluded that 3D implementation of the quantitative compensation methods provides the best SPECT image in terms of quantitative accuracy, spatial resolution, and noise at a cost of high computational requirements.  相似文献   

13.
The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period.  相似文献   

14.
An efficient reconstruction method for myocardial perfusion single-photon emission computed tomography (SPECT) has been developed which compensates simultaneously for attenuation, scatter, and resolution variation. The scattered photons in the primary-energy-window measurements are approximately removed by subtracting the weighted scatter-energy-window samples. The resolution variation is corrected by deconvolving the subtracted data with the detector-response kernel in frequency space using the depth-dependent frequency relation. The attenuated photons are compensated by recursively tracing the attenuation factors through the object-specific attenuation map. An experimental chest phantom with defects inside myocardium was used to test the method. The attenuation map of the phantom was reconstructed from transmission scans using a flat external source and a high-resolution parallel-hole collimator of a single-detector system. The detector-response kernel was approximated from measurements of a point source in air at several depths from the collimator surface. The emission data were acquired by the same detector setting. A computer simulation using similar protocols as in the experiment was performed. Both the simulation and experiment showed significant improvement in quantification with the proposed method, as compared to the conventional filtered-backprojection technique. The quantitative gain by the additional deconvolution was demonstrated. The computation time was less than 20 min on a HP/730 desktop computer for reconstruction of a 1282 x 64 array from 128 projections of 128 x 64 samples.  相似文献   

15.
The non-negativity constraint inherently present in OSEM reconstruction successfully reduces the standard deviation in cold regions but at the cost of introducing a positive bias, especially at low iteration numbers. For low-count data, as often encountered in short-duration frames in dynamic imaging protocols, it has been shown that it can be advantageous (in terms of bias in the reconstructed image) to remove the non-negativity constraint. In this work two competing algorithms that do not impose non-negativity in the reconstructed image are investigated: NEG-ML and AB-OSEM. It was found that the AB-OSEM reconstruction outperformed the NEG-ML reconstruction. The AB-OSEM algorithm was then further developed to allow a forward model that includes randoms and scatter background terms. In addition to static reconstruction the current analysis was extended to consider the important case of kinetic parameter estimation from dynamic PET data. Simulation studies (comparing OSEM, FBP and AB-OSEM) showed that the positive bias obtained with OSEM reconstruction can be avoided in both static and parametric imaging through use of a negative lower bound in AB-OSEM reconstruction (i.e. by lifting the implicit non-negativity constraint of OSEM). When quantification tasks are considered, the overall error in the estimates (composed of both bias and standard deviation) is often of primary concern. An important finding of this work is that in most cases the activity concentration and the kinetic parameters obtained from images reconstructed using AB-OSEM showed a lower overall root mean squared error compared to the popular choices of either OSEM or FBP reconstruction for both cold and warm regions. As such, AB-OSEM should be preferred instead of the standard OSEM and FBP reconstructions when kinetic parameter estimation is considered. Finally, this work shows example parametric images from the high-resolution research tomograph obtained using the different reconstruction methods.  相似文献   

16.
Kaplan MS  Haynor DR 《Medical physics》1999,26(11):2333-2340
A penalized weighted least squares reconstruction algorithm is described that simultaneously estimates activity and attenuation distributions from emission sinogram data alone. This estimation technique is based on differential attenuation information and is applicable to any single photon emission computed tomography imaging isotope with emissions at two or more distinct energies, after accurate compensation for Compton scatter. A rotation-based forward projector is used to efficiently model photon attenuation at multiple emission energies, as well as distance-dependent spatial resolution. The algorithm was tested using simulated scatter-free 201T1 projection data from a single-slice numerical cardiac phantom with and without cold myocardial defects. Poisson noise was added to the projection data to mimic clinically realistic count densities. The activity estimates resulting from the proposed method had fewer artifacts and were substantially more accurate than images reconstructed with filtered backprojection without compensation for attenuation. Several techniques were employed to reduce the time required for the iterative routine to converge and to reduce the sensitivity of the solution to noise in the projection data. These included: (1) a preconditioning image variable transformation; (2) a coarse-to-fine grid initialization schedule; and (3) a convex hull image mask determined directly from the data. The combined effect of these techniques substantially reduced the compute time required for the reconstruction.  相似文献   

17.
Dynamic imaging using SPECT has been a topic of research interest for many years. Several proposed approaches have considered the reconstruction of dynamic images from SPECT data acquired with a conventional single slow rotation of the camera, which results in an extremely underdetermined reconstruction problem. Accurate attenuation correction (AC) is particularly important in this context, in order to distinguish the actual dynamic behavior of the tracer within a region from the effects of attenuation on the projection data as the camera rotates around the patient. In this paper, we demonstrate that the standard approach to AC used in conventional SPECT imaging is not sufficient to account for the effects of attenuation in dynamic imaging of this type. As a result, artifacts may be created in the reconstructed images. Using realistic dynamic 3D phantom simulations, as well as real-life dynamic renal SPECT data, we assess the severity of these artifacts and investigate a method to eliminate them. The proposed method is shown to substantially improve the accuracy of the reconstructed image.  相似文献   

18.
Accurate estimation of the 3D in vivo activity distribution is important for dose estimation in targeted radionuclide therapy (TRT). Although SPECT can potentially provide such estimates, SPECT without compensation for image degrading factors is not quantitatively accurate. In this work, we evaluated quantitative SPECT (QSPECT) reconstruction methods that include compensation for various physical effects. Experimental projection data were obtained using a GE VH/Hawkeye system and an RSD torso phantom. Known activities of In-111 chloride were placed in the lungs, liver, heart, background and two spherical compartments with inner diameters of 22 mm and 34 mm. The 3D NCAT phantom with organ activities based on clinically derived In-111 ibritumomab tiuxetan data was used for the Monte Carlo (MC) simulation studies. Low-noise projection data were simulated using previously validated MC simulation methods. Fifty sets of noisy projections with realistic count levels were generated. Reconstructions were performed using the OS-EM algorithm with various combinations of attenuation (A), scatter (S), geometric response (G), collimator-detector response (D) and partial volume compensation (PVC). The QSPECT images from the various combinations of compensations were evaluated in terms of the accuracy and precision of the estimates of the total activity in each organ. For experimental data, the errors in organ activities for ADS and PVC compensation were less than 6.5% except the smaller sphere (-11.9%). For the noisy simulated data, the errors in organ activity for ADS compensation were less than 5.5% except the lungs (20.9%) and blood vessels (15.2%). Errors for other combinations of compensations were significantly (A, AS) or somewhat (AGS) larger. With added PVC, the error in the organ activities improved slightly except for the lungs (11.5%) and blood vessels (3.6%) where the improvement was more substantial. The standard deviation/mean ratios were all less than 1.5%. We conclude that QSPECT methods with appropriate compensations provided accurate In-111 organ activity estimates. For the collimator used, AGS was almost as good as ADS and may be preferable due to the reduced reconstruction time. PVC was important for small structures such as tumours or for organs in close proximity to regions with high activity. The improved quantitative accuracy from QSPECT methods has the potential for improving organ dose estimations in TRT.  相似文献   

19.
Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling (99m)Tc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.  相似文献   

20.
An analytical approach to quantitative brain SPECT (single-photon-emission computed tomography) with non-uniform attenuation is developed. The approach formulates accurately the projection-transform equation as a summation of primary- and scatter-photon contributions. The scatter contribution can be estimated using the multiple-energy-window samples and removed from the primary-energy-window data by subtraction. The approach models the primary contribution as a convolution of the attenuated source and the detector-response kernel at a constant depth from the detector with the central-ray approximation. The attenuated Radon transform of the source can be efficiently deconvolved using the depth-frequency relation. The approach inverts exactly the attenuated Radon transform by Fourier transforms and series expansions. The performance of the analytical approach was studied for both uniform- and non-uniform-attenuation cases, and compared to the conventional FBP (filtered-backprojection) method by computer simulations. A patient brain X-ray image was acquired by a CT (computed-tomography) scanner and converted to the object-specific attenuation map for 140 keV energy. The mathematical Hoffman brain phantom was used to simulate the emission source and was resized such that it was completely surrounded by the skull of the CT attenuation map. The detector-response kernel was obtained from measurements of a point source at several depths in air from a parallel-hole collimator of a SPECT camera. The projection data were simulated from the object-specific attenuating source including the depth-dependent detector response. Quantitative improvement (>5%) in reconstructing the data was demonstrated with the nonuniform attenuation compensation, as compared to the uniform attenuation correction and the conventional FBP reconstruction. The commuting time was less than 5 min on an HP/730 desktop computer for an image array of 1282*32 from 128 projections of 128*32 size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号