首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orbicularis oculi response can be evoked both by mechanical stimulation of the cornea (corneal reflex) and by electrical stimulation of the skin overlying the supraorbital nerve (blink reflex). Mechanical stimuli to the cornea activate A delta and C free nerve endings of the corneal mucosa. Electrical stimuli to the supraorbital nerve activate A beta, A delta and C fibers of the nerve trunk. Both reflexes present a bilateral late response, but the blink reflex shows in addition an early ipsilateral component (R1), which has never been observed with the corneal stimulation in man. We have developed a simple technique of electrical stimulation of the cornea which provides stable responses and allows precise measurements of threshold and latency of the reflex. In normal subjects, the threshold ranged from 50 to 350 microA, and the maximal stimulus that the subject could bear (tolerance level) ranged from 1000 to 2500 microA. The minimal latency to tolerance level stimuli was 39 +/- 3 msec. The latency difference between the direct responses evoked from the two opposite corneas never exceeded 8 msec and the difference between the direct and consensual responses elicited from the same cornea never exceeded 5 msec. An early ipsilateral component similar to the R1 response of the blink reflex was not observed, even with supramaximal stimulation. The electrically evoked corneal reflex was normal in 10 cases of essential trigeminal neuralgia, while the responses showed significant abnormalities in 18 subjects submitted to thermocoagulation of the Gasserian ganglion as a treatment of neuralgic pain, as well as in 2 cases of symptomatic neuralgia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
It has been shown that in patients in whom the central stump of the hypoglossal nerve has been anastomosed to the peripheral stump of a lesioned facial nerve, supraorbital nerve stimulation can elicit a short-latency reflex (12.5±0.6 ms; mean±S.D.) in facial muscles similar to the R1 disynaptic blink reflex response, but not followed by an R2 blink reflex component46. Thus in addition to replacing the facial neurons at peripheral synapses, these hypoglossal nerves contribute to a trigemino-hypoglossal reflex. The aim of this work was to study the type of reflex activities which can be elicited in both facial and tongue muscles by electrical stimulation of cutaneous (supraorbital nerve) or mucosal (lingual nerve) trigeminal (V) afferents in normal subjects. The results show that although stimulation of cutaneous V1 afferents elicits the well-known double component (R1–R2) blink reflex response in the orbicularis oculi muscles, it does not produce any detectable reflex response in the genioglossus muscle, even during experimental paradigms designed to facilitate the reflex activity. Conversely, stimulation of mucosal V3 afferents can elicit a single reflex response of the R1 type in the genioglossus muscle but not in the orbicularis oculi muscles, even during experimental paradigms designed to facilitate the reflex activity. These data are discussed in terms of two similar but separate circuits for the R1 responses of cutaneous (blink reflex) and mucosal (tongue reflex) origins. They suggest that in patients with hypoglossal-facial (XII–VII) nerve anastomosis, the short-latency trigemino-‘hypoglossal-facial' reflex of the R1 blink reflex type observed in facial muscles following supraorbital nerve stimulation could be due to changes in synaptic effectiveness of the central connectivity within the principal trigeminal nucleus where both cutaneous and mucosal trigeminal afferents project.  相似文献   

3.
OBJECTIVE: To evaluate the possible blink reflex responses in facial muscles reinnervated by the accessory nerve. METHOD: Eleven patients with a complete facial palsy were submitted to a surgical repair by an accessory facial nerve anastomosis (AFA). In this pathological group, blink reflex was studied by means of percutaneous electrical stimulation of the supraorbital nerve and recording from the orbicularis oculi muscle. A control group comprised seven normal people and seven patients with a complete Bell's facial palsy; in this group, responses on the sternocleidomastoideus (SCM) muscles were studied after supraorbital nerve stimulation. RESULTS: All the patients with AFA showed a consistent degree of facial reinnervation. Ten out of the 11 patients with AFA showed reflex responses; in six, responses were configured by a double component pattern, resembling the R1 and R2 components of the blink reflex; three patients had an R1-like response and one patient showed a unique R2 component. Mean values of latencies were 15.2 (SD 4.6) ms for the R1 and 85.3 (SD 9.6) ms for the R2. In the control group, eight out of 14 people had evidence of reflex responses in the SCM muscles; these were almost exclusively configured by a bilateral late component (mean latency 63.5 (SD15.9) ms) and only one of the subjects showed an early response at 11 ms. CONCLUSION: The trigemino-accessory reflex response in the pathological group was more complex and of a significantly higher incidence than in the control group. These differences could be tentatively explained by a mechanism of synaptic plasticity induced by the impairment of the efferent portion of the reflex. This could unmask the central linking between the trigeminal and the accessory limbs of the reflex. The findings described could be a demonstration of neurobionomic function in the repairing process of the nervous system.  相似文献   

4.
In normal subjects, electrical stimulation of trigeminal mucosal afferents (lingual nerve - V3) can elicit a short latency (12.5+/-0. 3 ms; mean+/-S.D.) reflex response in the ipsilateral genioglossus muscle (Maisonobe et al., Reflexes elicited from cutaneous and mucosal trigeminal afferents in normal human subjects. Brain Res. 1998;810:220-228). In the present study on patients with hypoglossal-facial (XII-VII) nerve anastomoses, we were able to record similar R1-type blink reflex responses in the orbicularis oculi muscles, following stimulation of either supraorbital nerve (V1) or lingual nerve (V3) afferents. However, these responses were not present in normal control subjects. Voluntary swallowing movements produced clear-cut facilitations of the R1 blink reflex response elicited by stimulation of V1 afferents. In a conditioning-test procedure with a variable inter-stimulus interval, the R1 blink reflex response elicited by supraorbital nerve stimulation was facilitated by an ipsilateral mucosal conditioning stimulus in the V3 region. This facilitatory effect was maximal when the two stimuli (conditioning and test) were applied simultaneously. This effect was not observed on the R1 component of the blink reflex in the normal control subjects. These data strongly suggest that in patients with XII-VII anastomoses, but not in normal subjects, both cutaneous (V1) and mucosal (V3) trigeminal afferents project onto the same interneurones in the trigeminal principal sensory nucleus. This clearly supports the idea that peripheral manipulation of the VIIth and the XIIth nerves induces a plastic change within this nucleus.  相似文献   

5.
Patients with hemifacial spasm (HFS) have an abnormal muscle response (AMR) that can be elicited by stimulating one branch of the facial nerve and recording electromyographically from muscles innervated by other branches of the facial nerve. In addition, the R1 component of the blink reflex can be elicited from the affected side in patients with HFS who are undergoing microvascular decompression (MVD) operations under inhalation anesthesia. A synkinetic component of the blink reflex response that corresponds to the R1 component can be recorded from the mentalis muscle. In the present study we show that the blink reflex elicited by electrical stimulation of the supraorbital nerve can suppress the AMR elicited by electrical stimulation of the temporal branch of the facial nerve in patients with HFS when the interval between stimulation of the supraorbital nerve and stimulation of the temporal branch of the facial nerve (interstimulus interval, ISI) is such that the blink reflex response would appear later than the AMR if they had been elicited independently. Within a short range of ISIs the two responses suppress each other partially or totally. We find evidence that the suppression of the AMR is the result of an interaction in the facial motonucleus. We believe that the results of the present study support the hypothesis that the facial motonucleus is hyperactive in patients with HFS, and we suggest that the AMR is a result of backfiring from the facial motonucleus and that it may thus be an exaggerated F-response.  相似文献   

6.
The blink reflex cannot normally be elicited during surgical anesthesia using inhalation anesthetics. However, in patients with hemifacial spasm (HFS) the early component of the reflex response (R1) can be elicited on the affected side but not on the unaffected side during such anesthesia. The electromyographic (EMG) response from the mentalis muscle to stimulation of the supraorbital nerve was recorded during microvascular decompression (MVD) of the facial nerve to relieve HFS and compared to the response from the same muscle to stimulation of the zygomatic branch of the facial nerve in four patients. During the operation before the facial nerve was decompressed, contractions in both the orbicularis oculi and the mentalis muscles could be elicited by stimulation of the supraorbital nerve (mean latencies 12.2 +/- 1.9 and 12.9 +/- 2.0 ms, respectively). When the facial nerve had been decompressed the blink reflex could no longer be elicited, and there was no response from the mentalis muscle to stimulation of the zygomatic branch of the facial nerve. Compound action potentials (CAP) recorded from the 7th cranial nerve in response to stimulation of the supraorbital nerve had latencies of 7.5 ms +/- 1.4 ms to the negative peak.  相似文献   

7.
The purpose of this study was to identify clinical predictors and anatomical structures involved in patients with pain after dorsolateral medullary infarction. Eight out of 12 patients (67%) developed poststroke pain within 12 days to 24 months after infarction. The pain occurred in the ipsilateral face (6 patients) and/or the contralateral limbs and trunk (5 patients, 3 of whom also had facial pain). Ipsilateral facial pain was significantly correlated with lower medullary lesions, including those of the spinal trigeminal tract and/or nucleus, as documented by magnetic resonance imaging. The R2 blink reflex component was abnormal only in patients with facial pain. Likewise, pain and temperature sensation in the ipsilateral face was decreased in all patients with facial pain but not in patients without pain. Ipsilateral touch sensation in the face was also decreased in all patients with facial pain, but the lesions revealed on magnetic resonance imaging did not involve the principal sensory nucleus of the fifth cranial nerve, and the R1 blink reflex latencies were normal. Although facial pain was correlated with lesions of the spinal trigeminal tract and/or nucleus, none of the lesions involved the subnucleus caudalis, which contains most nociceptive neurons. These findings suggest that facial pain after medullary infarction is due to lesions of the lower spinal trigeminal tract (axons of primary afferent neurons), leading to deafferentation of spinal trigeminal nucleus neurons.  相似文献   

8.
A crossed short latency component (R1) of the human blink reflex could be elicited in orbicularis oculi muscles to stimulation of the contralateral supraorbital nerve, when infraliminal conditioning stimuli were applied to various cutaneous afferents of the body (facial, upper and lower limbs). The crossed R1 responses appeared when the time interval between the conditioning and the test stimuli was of 30 to 40 ms, 50 to 65 ms and 95 to 110 ms for facial, upper and lower limbs afferents respectively. For the same time intervals, these conditioning volleys also exerted a facilitatory effect on the ipsilateral R1 responses. Furthermore, crossed R1 responses were also obtained during supraspinal facilitation induced by a voluntary contraction of the eyelids. These data show that crossed oligosynaptic trigemino-facial reflex connections exist in normal subjects, which become functional when adequate conditioning stimuli are available.  相似文献   

9.
The corneal reflex and the R2 component of the blink reflex   总被引:2,自引:0,他引:2  
A reflex contraction of the human orbicularis oculi muscles can be evoked by stimulation of either the supraorbital region ("blink reflex") or the cornea ("corneal reflex"). We found that the latency of the corneal reflex was longer, and the duration was longer than the R2 component of the blink reflex. The absolute refractory period of the R2 component of the blink reflex was longer after supraorbital than after corneal conditioning stimulation. When the R2 component of the blink reflex was habituated by repetitive stimuli, stimulation of the cornea still evoked a reflex, but supraorbital stimulation produced only a depressed R2 response. These findings suggest that the two reflexes do not have identical neural connections.  相似文献   

10.
Introduction - In order to develop an objective electrophysiological method for detecting and grading lesions in the inferior alveolar nerve (IAN) and its terminal branch, the mental nerve (MN), the normal physiology of the blink reflex (BR) with stimulation of the distribution of the MN was evaluated and reference values for the MN BR test obtained. Material and methods - The BR responses to electrical stimulation of the distribution of the MN on each side were recorded in all 44 healthy adults. The onset latencies and peak-to-peak amplitudes were measured and analysed. The effects of the stimulation site, the size of the stimulating electrode, and facilitation by eye closure and mathemathical task on the MN BR responses were tested. Results - A small paediatric stimulating electrode was found to be efficient for dermatomal stimulation of the MN distribution. The MN BR responses consisted of an ipsilateral late component (R2i) on the side of the stimulation and a contralateral component (R2c) with similar latency. The latencies were longer and the stimulation thresholds needed to evoke a reflex response were higher with stimulation of the MN, when compared with the BRs with supraorbital nerve stimulation. Eye closure resulted in facilitation of the MN BR in the form of latency shortening, while mathematical task did not have any significant effect on the responses. In addition, the test was found useful in the diagnosis of iatrogenic IAN lesions after extraction of third molars in two patients, and after an orthognathic operation in one patient. Conclusion - Contrary to some previous reports, constant MN BR responses can be elicited in healthy adults, which enables further clinical application of this test.  相似文献   

11.
Although synaptic plasticity in the human cerebral cortex is governed by metaplasticity, whether a similar mechanism operates at brainstem level is unknown. In this study in healthy humans we examined the effects and interactions induced by pairing supraorbital nerve high-frequency electrical stimulation (HFS) protocols on the R2 component of the trigeminal blink reflex [Mao, J.B. & Evinger, C (2001) J Neurosci., 21:RC151(1-4)]. Changes in the R2 component were tested by pairing three different priming stimulation protocols inducing long-term potentiation (LTP)-like or long-term depression (LTD)-like effects (LTP-HFS and LTD-HFS), or no change (CONTROL-HFS) with a subsequent test LTP-HFS. Additionally, to examine changes in the R2 component induced by nonspecific factors, two CONTROL-HFS sessions were paired. Priming LTP-, LTD- or CONTROL-HFS potentiated, inhibited or left unchanged the area of the R2 component. Regardless of the type of priming LTP-, LTD- or CONTROL-HFS, the test LTP-HFS induced negligible differences in the R2 component. When two CONTROL-HFS sessions were paired, the test CONTROL-HFS increased the latency and markedly reduced the duration and area of the R2 component. The analysis of the normalized data across the first three experimental sessions, corrected for the inhibitory effects found in the fourth experiment, showed that the test LTP-HFS potentiated the R2 component area of the trigeminal blink reflex only when preceded by a priming LTD-HFS. We propose that homosynaptic metaplasticity might operate in the brainstem circuitry of the blink reflex.  相似文献   

12.
OBJECTIVE: In patients with hemifacial spasm (HFS), abnormal muscle responses (AMR) are frequently present. The objective of this study was to investigate whether the afferent input of AMR is mediated by antidromic facial nerve stimulation or orthodromic trigeminal nerve stimulation. METHODS: AMR in the orbicularis oris muscle were recorded in 28 patients with HFS. When AMR were present, they were recorded after subthreshold stimulation of the facial nerve and weak stimulation delivered to the skin. RESULTS: AMR were recordable in 24 (86%) of the patients, and usually consisted of the early constant component (mean onset latency, 10.0 ms) and late variable component (35.3 ms), similar to R1 and R2 of the blink reflex. The early or late components of AMR, or both, were frequently elicited after subthreshold stimulation of the facial nerve (43%) and skin stimulation (88%). CONCLUSIONS: AMR are likely to be mediated by trigeminal afferent inputs, rather than antidromic activation of the facial nerve, and are a type of trigeminal reflex.  相似文献   

13.
Electrical stimulation of the aortic nerve of anesthetized rabbits reflexly evoked both excitation and inhibition of renal nerve activity. The excitatory component of the reflex, observed in about 75% of the animals, was elicited by activation of aortic C-fibers. It was selectively suppressed by chronic treatment of the animal with capsaicin. Intracisternal injection of either [D-ala2]-met-enkephalinamide or beta-endorphin markedly attenuated this excitatory component, although neither affected the excitatory component mediated by chemoreceptor fibers in response to stimulation of the carotid sinus nerve. It seems most likely that nociceptive C-fibers of the rabbit's aortic nerve were responsible for the excitatory component. On the other hand, the inhibitory component was reflexly elicited by stimulation of the aortic A- or C-fiber group activated separately or in combination. In agreement with previous reports, the sympatho-inhibitory action of C-fibers was more powerful and longer-lasting than that of A-fibers. We found that the inhibitory component induced by C-fibers was markedly attenuated by the two opioid peptides mentioned above, but was resistant to pentobarbital. On the contrary, the component mediated by A-fibers was suppressed by pentobarbital but was relatively resistant to the opioid peptides. Thus, the rabbit's aortic nerve-renal sympathetic reflex consists of the following 3 subsystems characterized by different physiological and pharmacological properties: sympatho-inhibitory systems activated by barosensory A- or C-fibers and a sympatho-excitatory system attributable to C-fibers probably of nociceptive modality.  相似文献   

14.
Although the blink reflex is a standard neurophysiological investigation its relationship with eyelid movement has not been clearly established. We studied normal subjects and patients with unilateral facial paralysis to define the pattern of eyelid movement following glabellar tap, supraorbital nerve stimulation, facial nerve stimulation and direct corneal stimulation. We found that eyelid closure did not necessarily occur in a single movement. Following glabellar tap the first component of a two-stage movement was initiated by levator palpebrae relaxation while with supraorbital nerve stimulation orbicularis oculi contraction produced the first movement. The compound muscle action potential following direct facial nerve stimulation produced only minimal eyelid movement, the major closure being associated with a longer latency orbicularis oculi reflex. Corneal stimulation elicited a single component eyelid movement. Thus, the pattern of eyelid movement differed for each stimulus reflecting variations in orbicularis oculi contraction and levator palpebrae inhibition.  相似文献   

15.
The aortic nerve-sympathetic reflex in the rat   总被引:1,自引:0,他引:1  
The effects of stimulation of aortic nerve A- and C-fibers on the renal and cardiac sympathetic nerve activities in anesthetized and immobilized Sprague-Dawley rats were investigated. A separate aortic nerve was found in 46 rats (90%) out of 51. Activation of A- and C-fiber groups, alone or in combination, resulted in an inhibition of renal and cardiac nerve activities. However, an excitatory component preceding the inhibitory component, representing the reflex response to stimulation of non-barosensory afferent fibers contained in the carotid sinus or aortic nerve, was never observed. This result provides electrophysiological evidence supporting the view that the rat's aortic nerve does not contain a significant amount of functionally active non-barosensory afferents. As with the aortic nerve reflex in the rabbit and cat, the sympatho-inhibitory action of C-fibers was more powerful and longer-lasting than that of A-fibers. Furthermore, the C-fiber reflex was elicited at stimulus frequencies as low as 2 Hz. No significant difference was found between the reflex response of cardiac and renal nerves. On the other hand, stimulation of the superior laryngeal nerve, which constitutes an important pathway carrying arterial baroreceptor fibers, caused a reflex sympathetic response typically consisting of excitatory and inhibitory components. Thus, the rat's aortic nerve provides a useful experimental means to activate selectively central neural structures associated with barosensory afferents and to elicit the reflex response homologous to that in the arterial baroreceptor reflex in rabbits and cats.  相似文献   

16.
BACKGROUND: In humans, the excitability of the electrically evoked blink reflex is influenced by the subject's attention to the stimulus. The early reflex component R1 has been found to be facilitated in conditions of increased selective attention, whereas the late components R2 and R3 exhibited a marked suppression. Distraction from the stimulus leads to enhanced R2 and R3 magnitudes. METHODS: We investigated the excitability of the distinct reflex components in 19 patients with schizophrenia and 19 healthy control subjects. In the control condition (EE), stimulation was elicited by the experimenter; in a second condition (SE), subjects released a key to evoke the reflex themselves. RESULTS: The SE patients with schizophrenia exhibited an abnormally increased R1 facilitation and an impaired R2 inhibition in comparison with normal control subjects. An R3 component could be registered in EE in 13 of 19 patients but only in one control subject; SE resulted in a complete suppression of this component in all but two patients with schizophrenia. CONCLUSIONS: The abnormal R1 facilitation and the impaired R2 inhibition may be regarded as neurophysiological markers of defective information processing in a condition of increased selective attention to a self-controlled stimulus in patients with schizophrenia. The enhanced excitability of the R3 component under standard conditions indicates defective attentional mechanisms in patients with schizophrenia in an uninstructed passive condition attending a stimulus triggered by the experimenter.  相似文献   

17.
In chloralose-anaesthetized cats, sympathetic reflex responses were recorded in left cardiac and renal nerve during stimulation of afferent fibres in the ipsilateral phrenic nerve. In cardiac nerve, a late reflex potential with a mean onset latency of 75.6 +/- 13.8 ms was regularly recorded which, in 20% of the experiments, was preceded by an early, very small reflex component (latency between 35 and 52 ms). In contrast, in renal nerve only a single reflex component after a mean latency of 122.1 +/- 13.1 ms was observed. Bilateral microinjections of the GABA-agonist muscimol into the rostral ventrolateral medulla oblongata resulted in a nearly complete abolition of sympathetic background activity and in an 88% reduction of the late reflex amplitude with only small effects on the latency of the evoked potentials. Under this condition, an early reflex component was never observed to appear. After subsequent high cervical spinalization, the residual small potentials which persisted after bilateral muscimol injections were completely abolished and in cardiac nerve an early reflex potential with a mean latency of 45 +/- 10 ms was observed in all but one experiment. The early reflex was therefore referred to as a spinal reflex component which, however, is suppressed in most animals with an intact neuraxis. In the renal nerve a spinal response was only observed in one experiment after spinalization. The results suggest that sympathetic reflexes evoked by stimulation of phrenic nerve afferent fibres possess similar spinal and supraspinal pathways as previously described for somato-sympathetic and viscero-sympathetic reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
One of the classic features of hemifacial spasm (HFS) is spread of the blink reflex responses to muscles other than the orbicularis oculi. The pathophysiological mechanisms underlying the generation of such abnormal responses include lateral spread of activity between neighboring fibers of the facial nerve and hyperexcitability of facial motoneurons. In this report we present evidence for another mechanism that can contribute to the generation of responses in lower facial muscles resembling the R1 response of the blink reflex. In 13 HFS patients, we studied the responses induced in orbicularis oris by electrical stimuli applied at various sites between the supraorbital and zygomatic areas. We identified responses with two different components: an early and very stable component, with an onset latency ranging from 10.5 to 14.8 ms, and a more irregular longer-latency component. Displacement of the stimulation site away from the supraorbital nerve and towards the extracranial origin of the facial nerve caused a progressive shortening of response latency. These features indicate that, in our patients, the shortest latency component of the orbicularis oris response was likely generated by antidromic conduction in facial nerve motor axons followed by axono-axonal activation of the fibers innervating the lower facial muscles. Our results suggest that motor axono-axonal responses are generated by stimulation of facial nerve terminals in HFS.  相似文献   

19.
A previous study in our laboratory showed a long-lasting, naloxone-reversible inhibition of the flexion reflex after prolonged repetitive stimulation of a peripheral nerve in the spinal cat. The present study employed a special pattern of conditioning stimulation for a shorter period (200 s) to determine the time course of the inhibition and the afferent fibers responsible for the inhibition. We stimulated the common peroneal nerve in 10 decerebrated and spinalized cats to elicit the flexion reflex, which we recorded as single-unit activity from filaments of the L7 ventral root. The C fiber-evoked late component of the flexion reflex was compared before, during, and after conditioning electrical stimulation applied to the tibial nerve. Stimulating the tibial nerve at an intensity that excited only A alpha beta fibers produced weak inhibition of the flexion reflex; increasing intensity above the threshold for A delta fibers produced much greater inhibition. Inhibition began during the first 10 s of conditioning stimulation and was maximum at about 100 s. Stimulation at a suprathreshold intensity for C fibers, however, produced an initial transient excitation, lasting 10 to 20 s, followed by inhibition. Intravenous injection of naloxone (0.05 mg/kg) produced no observable changes in this inhibition and excitation. These results suggest that conditioning stimulation of a peripheral nerve inhibits the flexion reflex. This inhibition has a short latency; the afferent fibers seem to be A delta fibers. In addition, input from afferent C fibers may trigger a mechanism that produces facilitation of the reflex. The differences in recovery time course and in sensitivity to naloxone suggest that two different mechanisms may be responsible for the fast-onset inhibition and the previously observed long-lasting inhibition produced after prolonged conditioning stimulation.  相似文献   

20.
The blink reflex was induced by a defined mechanical impact covering the range from light touch to a hard, painful stroke, and by an electrical current. In both modes of stimulation, the R3--but not the R2--thresholds were correlated with subjective pain thresholds, suggesting a connection between R3 and nociceptor activation. However, R3 magnitude did not increase systematically with increasing levels of subjectively felt pain. The R3, induced by painful impacts, habituated quickly and was strongly affected by attention. The functional significance of the R3 component is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号