首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracerebroventricular injection into rats of mast-cell degranulating peptide (MCD), dendrotoxin I (DTXI) and 4-aminopyridine (4-AP), three blockers of a subclass of K+ channels, elicited epileptiform wave bursts and convulsions. Three different types of L-type Ca2+ channel inhibitors (+)PN 200-110, a 1,4-dihydropyridine, (-)D888, a phenylalkylamine, and fluspirilene, a diphenylbutylpiperidine, were potent blockers of the convulsant-induced hyperexcitatory effects when they were administered preventively. D-AP5, a N-methyl-D-aspartate antagonist, was active on the 4-AP-induced seizures but was without effect on the MCD- and dendrotoxin-induced seizures.  相似文献   

2.
Antinociceptive effects of Ca2+ channel blockers.   总被引:5,自引:0,他引:5  
The antinociceptive action of four Ca2+ channel blockers, nifedipine, nimodipine, verapamil and diltiazem, was evaluated and compared to that of morphine using three algesiometric tests in mice and rats, namely, formalin, writhing and modified hot-plate test. Dose-response curves for all the drugs tested were similar and a significant dose-dependent antinociceptive action was evident in the formalin and writhing tests. However, in the hot-plate test, only nimodipine exhibited a significant analgesic effect, confirming the misleading results previously reported for this test. The findings suggest a pharmacological role of Ca2+ channel blockers in the modulation of antinociception under acute conditions. The analgesic action of Ca2+ channel blockers could be mediated by an increase in the nociceptive threshold resulting from interference with Ca2+ influx at opioid receptors, because Ca2+ influx is critical for the release of neurotransmitters and other substances implicated in nociception and inflammation. It is suggested that if a substance has a Ca2+ channel blocking effect, it should probably have some antinociceptive properties.  相似文献   

3.
We studied the correlation between the high affinity binding of Ca2+ channel blockers to purified synaptic plasma membranes (SPM) and the effect of these drugs in blocking the 45Ca2+ uptake and the release of [3H]gamma-aminobutyric acid [( 3H]GABA) by preloaded synaptosomes. The Ca2+ channel blocker binding sites were characterized by studying the binding of the dihydropyridine, [3H]nimodipine, and of the phenylalkylamine, (-)-[3H]desmethoxyverapamil, to purified SPM isolated from sheep brain cortex synaptosomes. The purified SPM had high affinity binding sites for both Ca2+ channel blockers. The binding parameters were similar to those previously reported for whole brain homogenates: KD = 0.64 nM and Bmax = 160 fmol/mg of protein for [3H]nimodipine, and KD = 7.9 nM and Bmax = 1,500 fmol/mg of protein for (-)-[3H]desmethoxyverapamil. The Ca2+ channel blockers inhibited the release of [3H]GABA induced by K+ depolarization in the presence or in the absence of Ca2+. The Ca2+-dependent component of [3H]GABA release was inhibited by verapamil, (-)-D 600, d-cis-diltiazem, nifedipine and PY 108-86 with IC50 values of 2.2 X 10(-5) M, 6.3 X 10(-5) M, 3 X 10(-4) M, greater than 10(-4) M and 3 X 10(-5) M, respectively. Furthermore, the Ca2+ channel blockers also inhibited the Ca2+-independent [3H]GABA release which occurred in the presence, but not in the absence, of external Na+. The Ca2+ channel blockers at concentrations which inhibited [3H]GABA release inhibited the entry of Ca2+ through the Ca2+ channels and also the entry of Ca2+ by Na+/Ca2+ exchange. We conclude that the concentrations of Ca2+ blockers necessary to block Ca2+ uptake through the Ca2+ channels and by Na+/Ca2+ exchange coincide with the concentrations at which they inhibit [3H]GABA release, but that their effect on the relationship between Ca2+ uptake and [3H]GABA release is different for the various blockers. The effects of the drugs on Ca2+ movements and [3H]GABA release are not specifically mediated through the high affinity binding of the drugs since relatively high concentrations were necessary (greater than 10(-5) M) for the effects reported here.  相似文献   

4.
The effects of Ca(2+) channel blockers on the proliferation of human epidermoid carcinoma A431 cells were investigated by microtiter tetrazolium (MTT) proliferation assay and bromodeoxyuridine (BrdU) incorporation assay. Dihydropyridine derivatives, such as amlodipine, nicardipine, and nimodipine inhibited A431 cell growth and the incorporation of BrdU into cells with IC(50) values of 20-30 microM, while verapamil, diltiazem and dihydropyridine nifedipine inhibited neither the cell growth nor BrdU incorporation at the same concentration. Though extracellular Ca(2+) is indispensable to the cell growth, an L-type Ca(2+) channel agonist, 1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl) phenyl]pyridine-3-carboxylic acid methyl ester (200 nM), did not affect the antiproliferative action of amlodipine. Thapsigargin, an inhibitor of Ca(2+)-ATPase of the endoplasmic reticulum, inhibited itself the growth of A431 cells and also showed a synergistic effect with the antiproliferative action of amlodipine. In the fluorimetric measurement of intracellular free Ca(2+) concentration in fura-2 or fluo-3 loaded A431 cells, amlodipine blunted the thapsigargin- or cyclopiazonic acid-induced Ca(2+) release from endoplasmic reticulum and the ensuing Ca(2+) influx through Ca(2+)-permeable channels. The effect on the thapsigargin-induced Ca(2+) responses could be reproduced by nicardipine and nimodipine but not by nifedipine or verapamil, lacking antiproliferative potency. These findings suggest that the intracellular Ca(2+) control system responsible for thapsigargin- and cyclopiazonic acid-sensitive endoplasmic reticulum, but not L-type Ca(2+) channels, may be modulated by amlodipine, which results in the inhibition of A431 cell growth.  相似文献   

5.
Chronic pain affects a large percentage of the population, representing a socio-economic burden. Current treatments are characterised by suboptimal efficacy and/or side effects that limit their use. Among several approaches to treating chronic pain, voltage-sensitive Ca(2+) and Na(+) channels are promising targets. This review evaluates the preclinical evidence that supports the involvement of these targets, with specific attention to those subtypes that appear more strictly correlated with pain generation and sustainment, as well as those compounds that modulate the activity of Ca(2+) and/or Na(+) channels that are currently in clinical development for chronic pain conditions.  相似文献   

6.
Chronic pain affects a large percentage of the population, representing a socio–economic burden. Current treatments are characterised by suboptimal efficacy and/or side effects that limit their use. Among several approaches to treating chronic pain, voltage-sensitive Ca2+ and Na+ channels are promising targets. This review evaluates the preclinical evidence that supports the involvement of these targets, with specific attention to those subtypes that appear more strictly correlated with pain generation and sustainment, as well as those compounds that modulate the activity of Ca2+ and/or Na+ channels that are currently in clinical development for chronic pain conditions.  相似文献   

7.
The potential utility of Ca2+ channel blockers in the treatment of various psychiatric disorders has been recently suggested. In the present study, the behavioural and anti-psychotic effects of Ca2+ channel blockers were investigated in unrestrained rhesus monkeys (Macaca mulatta) living together in a colony. The different behaviours categorised as social, solitary and abnormal were video recorded and analysed. Graded doses of verapamil (5-20 mg/kg, i.m.) and nimodipine (7.5-30 mg/kg, p.o.) produced a mild decrease in social and solitary behaviour without producing any cataleptic posture in the tested monkeys. In order to determine potential antipsychotic effects, Ca2+ channel blockers were studied in the model of amphetamine-induced psychosis. Amphetamine, at the dose of 2 mg/kg, i.m., induced suppression of approach, contact, grooming, and feeding, whilst vigilance (checking), stereotyped behaviour and oral hyperkinesia were increased in the monkeys. Pre-treatment with verapamil (10 and 20 mg/kg, i.m.) significantly suppressed amphetamine-induced hypervigilance, stereotypy, oral hyperkinesia and tachypnoea but was unable to reverse other amphetamine-induced behavioural effects. Nimodipine showed insignificant anti-psychotic effects at both 15 and 30 mg/kg doses. These results suggest that verapamil has a definite antipsychotic effect without any extrapyramidal side effects and thus may be of clinical significance in the treatment of psychosis.  相似文献   

8.
9.
  1. High potassium produced a concentration-dependent contraction in rat isolated spleen.
  2. The high potassium-induced contraction of rat spleen was abolished in Ca2+-free Krebs solution containing 1 mM EGTA, and the subsequent addition of 3 mM Ca2+ restored the high potassium-induced contraction to the control level.
  3. Nifedipine, verapamil, diltiazem, Cd2+, Ni2+, Co2+, R-(+)-Bay K 8644 and pimozide inhibited and relaxed high potassium-induced contraction of rat spleen with IC50 and EC50 values much higher than those values in rat aorta.
  4. In addition, high potassium-stimulated contraction of rat spleen was insensitive to ω-conotoxin GVIA, ω-conotoxin MVIIC and ω-agatoxin IVA.
  5. The high potassium-induced contraction of rat spleen was also unaffected by tetrodotoxin (TTX), prazosin, chloroethylclonidine (CEC), yohimbine, propranolol, atropine, diphenhydramine, cimetidine, ketanserin, 3-tropanyl-indole-3-carboxylate, saralasin, indomethacin, nordihydroguaiaretic acid, GR32191B, domperidone, naloxone, chlorpromazine, suramin, (±)-2-amino-5-phosphonopentanoic acid, 6,7-dinitroquinoxaline-2,3-dione (DNQX), L-659,877, L-703,606, lorglumide, PD 135,158 N-methyl-D-glucamine, benextramine, amiloride, dantrolene, TMB-8, econazole, staurosporine and neomycin.
  6. Forskolin and sodium nitroprusside relaxed high potassium-induced contraction of rat spleen with EC50 values of 0.55±0.04 and 20.0±2.7 μM, respectively.
  7. It is concluded that high potassium may activate a novel, pharmacologically uncharacterized voltage-operated Ca2+ channel in rat spleen.
  相似文献   

10.
To develop a new concept of central acting drugs, the modulation of brain Ca2+ flux must be considered as one of the important factors. This is because excessive Ca2+ influx to neuronal cells damages or kills these cells, and also because abnormal intracellular Ca2+ concentrations induce several types of mental disorders. Recently, both pre-clinical and clinical studies indicated that some Ca2+ channel blockers (Ca antagonists) will be useful for the treatment of grand mal, manic depressive insanity, panic disorder and anxiety. Furthermore, it has been estimated by animal studies and clinical pharmacology that ischemia-induced neuronal death can be prevented by the treatment with a Ca antagonist. However, the latter data, especially, has been mainly explained by pharmacological effects on the cerebrovascular system, not because of possible direct central actions. To invoke the notion of direct central action, it must be assumed that Ca antagonists might pass the blood-brain barrier (BBB). This potentiality that some Ca antagonists (i.e., flunarizine, nicardipine, nimodipine, etc.) can pass the BBB has been initially explored. If substantiated, such direct central effects of Ca antagonists may explain both the psychotropic effects and neuronal protection by these agents. To investigate the actual therapeutic effects of Ca2+ antagonists on psychotropic disorders and neuronal death, a suitable animal model and reasonable methods and criteria must be established. Then, both preclinical and clinical studies can be expected to relate to atypical central acting drugs modulating the brain Ca2+ channels, and also to the development of new pharmacological properties of Ca2+ antagonists.  相似文献   

11.
Ro 5-4864, the prototype ligand of the peripheral benzodiazepine binding site caused a decrease of the action potential duration in isolated guinea-pig cardiac myocytes. Voltage-clamp experiments showed that, at concentrations below 3 X 10(-6) M, Ro 5-4864 caused a parallel outward shift of the membrane current elicited by depolarization to + 10 mV from a holding potential of -50 mV. The peak inward Ca2+ current (ICa) and the inwardly rectifying K+ current were not affected. ICa was reduced by Ro 5-4864 at concentrations above 3 X 10(-6) M. At these concentrations, Ro 5-4864 also caused a negative inotropic effect in isolated guinea-pig papillary muscles, reduced K+ depolarization-induced contractures of the isolated rat aorta and inhibited [3H]nitrendipine binding to guinea-pig cardiac membranes. These data provide no evidence that the peripheral high affinity benzodiazepine binding site is coupled to the cardiac Ca2+ channel. The possibility cannot be excluded that a postulated micromolar affinity benzodiazepine receptor is associated with the Ca2+ channel.  相似文献   

12.
1. The effects of Ca2+ concentration and Ca2+ channel blockers on noradrenaline (NA) and adenosine 5'-triphosphate (ATP) release from postganglionic sympathetic nerves have been investigated in rat tail arteries in vitro. Intracellularly recorded excitatory junction potentials (e.j.ps) were used as a measure of ATP release and continuous amperometry was used to measure NA release. 2. Varying the extracellular Ca2+ concentration similarly affected the amplitudes of e.j.ps and NA-induced oxidation currents evoked by trains of ten stimuli at 1 Hz. 3. The N-type Ca2+ blocker, omega-conotoxin GVIA (omega-CTX GVIA, 0.1 microM) reduced the amplitudes of both e.j.ps (evoked by trains of ten stimuli at 1 Hz) and NA-induced oxidation currents (evoked by trains of ten stimuli at 1 Hz and 50 stimuli at 10 Hz) by about 90%. 4. The omega-CTX GVIA resistant e.j.ps and NA-induced oxidation currents evoked by trains of 50 stimuli at 10 Hz were abolished by the non-selective Ca2+ channel blocker, Cd2+ (0.1 mM), and were reduced by omega-conotoxin MVIIC (0.5 microM) and omega-agatoxin IVA (40 nM). 5. Nifedipine (10 microm) had no inhibitory effect on omega-CTX GVIA resistant e.j.ps and NA-induced oxidation currents. 6. Thus both varying Ca2+ concentration and applying Ca2+ channel blockers results in similar effects on NA and ATP release from postganglionic sympathetic nerves. These findings are consistent with the hypothesis that NA and ATP are co-released together from the sympathetic nerve terminals.  相似文献   

13.
Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCCs) regulates various aspects of physiological function, including neurotransmitter release, regulation of cell membrane excitability, and control of gene expression. VDCCs are classified into several sub-types (L-, N-, P/Q-, R-, and T-types) based on electrophysiological and pharmacological properties. Each type of channels except the T-type is composed of at least four subunits, designated alpha(1), alpha(2), beta, and delta. During the past decade, a number of genes encoding these subunits have been cloned, and cDNA expression studies using heterologous expression systems have revealed the intricate nature of subunit interaction and many biophysical aspects of channel function. In recent years, an entirely new strategy has been introduced in attempts to clarify the physiological role of each of the VDCCs, and this has proven to be very useful in defining previously unknown in vivo functions of VDCCs. In this article, we briefly review the recent advances in our understanding of VDCCs with special emphasis on the N-type channel, which is mainly expressed in neural tissues and is the essential component of neurotransmitter release. We will mainly discuss the subunit composition, channel regulation by G proteins and exocytotic proteins, and the mouse phenotypes in which N-type channel subunits have been deleted by gene targeting technology.  相似文献   

14.
Calcium channel entry blockers representing different structural classes were studied for their effects on human erythrocyte basal and calmodulin-stimulated (Ca2+ + Mg2+)-ATPase. Effects on the activity of (Mg2+)-ATPase and (Na+ + K+)-ATPase were also assessed. Of the four Ca2+ entry blockers tested, only verapamil and diltiazem specifically inhibited the calmodulin-stimulated (Ca2+ + Mg2+)-ATPase activity, the basal enzyme activity being unaltered by these drugs. Other membrane-associated ATPases were not affected. Calmodulin concentration effect curves showed the inhibition by verapamil (10(-3) M) and diltiazem (10(-3) M) to be non-competitive. This concentration inhibited the calmodulin-dependent increment (5.1 nM calmodulin) of the ATPase activity by 35 and 36% respectively. Similarly, both drugs inhibited the Ca2+-activation process of calmodulin-stimulated activity in a non-competitive manner, decreasing Vmax by 23 and 17% respectively. Basal (Ca2+ + Mg2+)-ATPase activity was not affected by verapamil or diltiazem at any calcium concentration. In contrast, cinnarizine non-specifically inhibited all four membrane ATPases including calmodulin-stimulated (Ca2+ + Mg2+)-ATPase activity at concentrations above 3 X 10(-6) M. Nifedipine was without effect on any of the four membrane ATPases. From this we conclude that certain calcium channel entry blockers can inhibit calmodulin-regulated plasma membrane Ca2+-pump ATPase. Therefore, this identifies an additional functional low affinity receptor in the plasma membrane for some of the calcium channel entry blockers.  相似文献   

15.
The pharmacologic profile of a cyproheptadine-related compound, 4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-[(E)-3-(3-methoxy-2-nitro)phenyl-2-propenyl]piperidine hydrochloride (AH-1058), was assessed in various in vivo and in vitro models. In guinea pig cardiomyocytes, AH-1058 effectively suppressed L-type Ca2+ channel currents without affecting other ion channel or ion exchange currents. In rat cerebral cortical membranes AH-1058 appears to bind preferentially to L-type Ca2+ channels at phenylalkylamine- and benzothiazepine-binding sites. In canine isolated, blood-perfused heart preparations, AH-1058 exerted negative inotropic, dromotropic, and chronotropic and weak coronary vasodilator effects. In halothane-anesthetized dogs, AH-1058 suppressed ventricular contractility and decreased blood pressure and cardiac output. Total peripheral vascular resistance was hardly affected by the drug, suggesting that in vivo AH-1058 can selectively suppress cardiac, as compared to peripheral vascular, function. In conscious dogs, by intravenous administration AH-1058 reduced systolic blood pressure and maximal upstroke velocity of the left ventricular pressure, while it increased heart rate in a dose-dependent manner. The drug did not affect diastolic blood pressure, which is quite different from cardiovascular properties of well-known Ca2+ channel blockers, verapamil and diltiazem. This unique cardiovascular profile of AH-1058 is expected to be useful in the treatment of certain pathological processes such as the obstructive hypertrophic cardiomyopathy, vasovagal syncope, dissecting aortic aneurysm, and ventricular arrhythmias, in which selective inhibition of the ventricular Ca2+ channels is essential for drug therapy.  相似文献   

16.
Tetraethylammonium and 9-tetraethylammonium have previously been reported to inhibit inositol-1,4,5-trisphosphate (IP3)-induced Ca2+ release from brain microsomes, purportedly by blocking potassium channels [Biochem. J. 258:617-620 (1988)]. The effects of these and other K+ channel blockers have been studied here in greater detail using a spectrophotometric assay for Ca2+ movements into and out of canine brain microsomes. IP3-induced Ca2+ release was inhibited by substitution of K+ in the medium with nominally impermeant cations or by addition of most of the K+ channel blockers tested. Nevertheless, addition of valinomycin to the medium (to provide an alternative pathway for counter-ion K+ movements) failed to alleviate the inhibition of IP3-induced Ca2+ release caused by K+ channel blockers. To determine whether these substances act by inhibition of IP3 binding or by direct interaction with the Ca2+ channel of the internal store that promotes IP3-induced Ca2+ release, their effect on [3H]IP3 binding was investigated. None of the K+ channel blockers tested inhibited [3H]IP3 binding. Nearly all the K+ channel blockers appear to interact directly with a Ca2+ channel of the intracellular stores or perhaps interfere with its coupling to the IP3 receptor. Because of their multiplicity of actions, these substances cannot be presumed to be either selective K+ channel blockers or selective inhibitors of IP3-induced Ca2+ release from internal stores. Three of them were even found to partially inhibit valinomycin-stimulated 86Rb uptake into liposomes.  相似文献   

17.
The term 'Ca2+ channel alpha2delta ligands' has recently been applied to an evolving drug class that includes gabapentin (Neurontin) and pregabalin (Lyrica), and reflects significant progress over the past decade in elucidating the mechanism of action of these drugs: a novel, specific action at one of the subunits constituting voltage-sensitive Ca2+ channels. Binding of these ligands to the alpha2delta subunit is considered to explain their usefulness in treating several clinical disorders, including epilepsy, pain from diabetic neuropathy, postherpetic neuralgia and fibromyalgia, and generalized anxiety disorder. The evidence indicates a relationship between alpha2delta subunit binding and the modulation of processes that subserve neurotransmission. This modulation is characterized by a reduction of the excessive neurotransmitter release that is observed in certain neurological and psychiatric disorders.  相似文献   

18.
1. In guinea-pig trachealis Ca2+ are mobilized from different stores to produce the contractions to various agents. 2. Sr2+ can substitute for Ca2+ and maintain responses to KC1 but not responses to A23187 or agents acting via drug-receptor interaction. 3. Resting tone and responses to KC1 are supported by low affinity Ca2+. 4. Responses to the other agents are supported by high affinity Ca2+.  相似文献   

19.
We have previously shown the involvement of Na(+) channel as well as N-type and P/Q-type Ca(2+) channels in the oxygen and glucose deprivation-induced injury in rat cerebrocortical slices. In the present study, we investigated the influence of halothane on the cerebroprotective effects of a variety of Na(+) and Ca(2+) channel blockers in rat cerebrocortical slices. The hypoxic injury was attenuated by Na(+) channel blockers including tetrodotoxin, lidocaine and dibucaine, and Ca(2+) channel blockers, such as verapamil, omega-agatoxin IVA and omega-conotoxin GVIA. Halothane abolished the protective effects of lidocaine, dibucaine and verapamil, all of which block the respective cation channels in a voltage-dependent manner, without affecting the actions of tetrodotoxin, omega-agatoxin IVA and omega-conotoxin GVIA, which reveal voltage-independent blockade. On the other hand, the nitric oxide synthesis estimated from the extracellular cyclic GMP formation was elevated during exposure to hypoxia. All channel blockers tested here attenuated hypoxia-evoked nitric oxide synthesis. Halothane blocked almost completely these actions of lidocaine and verapamil. Moreover, the Na(+) and Ca(2+) channel blockade by these compounds, as determined by veratridine- and KCl-stimulated nitric oxide synthesis, respectively, was also reversed by halothane. These findings suggest that an anesthetic agent halothane reversed the Na(+) and Ca(2+) channel blockade of several voltage-dependent ion channel blockers, leading to the attenuation of their cerebroprotective actions. Therefore, the influence of halothane anesthesia should be taken into consideration for the evaluation of neuroprotective action of Na(+) and Ca(2+) channel blockers.  相似文献   

20.
Flubendiamide, developed by Nihon Nohyaku Co., Ltd. (Tokyo, Japan), is a novel activator of ryanodine-sensitive calcium release channels (ryanodine receptors; RyRs), and is known to stabilize insect RyRs in an open state in a species-specific manner and to desensitize the calcium dependence of channel activity. In this study, using flubendiamide as an experimental tool, we examined an impact of functional modulation of RyR on Ca2+ pump. Strikingly, flubendiamide induced a 4-fold stimulation of the Ca2+ pump activity (EC50=11 nM) of an insect that resequesters Ca2+ to intracellular stores, a greater increase than with the classical RyR modulators ryanodine and caffeine. This prominent stimulation, which implies tight functional coupling of Ca2+ release with Ca2+ pump, resulted in a marginal net increase in the extravesicular calcium concentration despite robust Ca2+ release from the intracellular stores by flubendiamide. Further analysis suggested that luminal Ca2+ is an important mediator for the functional coordination of RyRs and Ca2+ pumps. However, kinetic factors for Ca2+ pumps, including ATP and cytoplasmic Ca2+, failed to affect the Ca2+ pump stimulation by flubendiamide. We therefore conclude that the stimulation of Ca2+ pump by flubendiamide is mediated by the decrease in luminal calcium, which may induce calcium dissociation from the luminal Ca2+ binding site on the Ca2+ pump. This mechanism should play an essential role in precise control of intracellular Ca2+ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号