首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND PURPOSE: Diffusion-and perfusion-weighted magnetic resonance imaging (DWI and PWI) are useful tools for the assessment of brain ischemia. Discrepancies between the extent of DWI and PWI abnormalities are thought to depend pre dominantly on time from symptom onset to magnetic resonance imaging (MRI) examination. However, underlying ischemic stroke etiology can also be important. A mismatch may indicate the presence of tissue at risk for infarction, whereas the relevance of other DWI/PWI patterns is uncertain. The authors therefore investigated the etiology of brain ischemia in patients with different DWI/PWI patterns. METHODS: Retrospective study of 130 patients with acute brain ischemia and detailed stroke workup, including MRI within a week after symptom onset (40 +/- 39 hours). Patients were divided into the following groups: mis-match (PWI > DWI), reverse mismatch (DWI > PWI), and match (<25% difference between PWI and DWI). RESULTS: Mismatch occurred in 49% of patients, whereas 22% had reverse mis-match and 29% matched lesions. Time from symptom onset to MRI examination was similar between the 3 groups. Largeartery atherosclerosis increased by almost 4-fold the odds of mismatch (odds ratio: 3.89, 95% confidence interval: 1.72-8.78; P < .001), whereas patients with reverse mismatch were likely to have cryptogenic stroke. Patients with matched lesions were similarly distributed among different stroke subtypes. CONCLUSIONS: Ischemic stroke etiology appears to influence the development of specific DWI/PWI patterns. Prospective studies are needed to confirm these observations.  相似文献   

2.
BACKGROUND AND PURPOSE: More effective imaging methods are needed to overcome the limitations of CT in the investigation of treatments for acute ischemic stroke. Diffusion-weighted MRI (DWI) is sensitive in detecting infarcted brain tissue, whereas perfusion-weighted MRI (PWI) can detect brain perfusion in the same imaging session. Combining these methods may help in identifying the ischemic penumbra, which is an important concept in the hemodynamics of acute stroke. The purpose of this study was to determine whether combined DWI and PWI in acute (<24 hours) ischemic stroke can predict infarct growth and final size. METHODS: Forty-six patients with acute ischemic stroke underwent DWI and PWI on days 1, 2, and 8. No patient received thrombolysis. Twenty-three patients underwent single-photon emission CT in the acute phase. Lesion volumes were measured from DWI, SPECT, and maps of relative cerebral blood flow calculated from PWI. RESULTS: The mean volume of infarcted tissue detected by DWI increased from 46.1 to 75.6 cm(3) between days 1 and 2 (P<0.001; n=46) and to 78.5 cm(3) after 1 week (P<0.001; n=42). The perfusion-diffusion mismatch correlated with infarct growth (r=0. 699, P<0.001). The volume of hypoperfusion on the initial PWI correlated with final infarct size (r=0.827, P<0.001). The hypoperfusion volumes detected by PWI and SPECT correlated significantly (r=0.824, P<0.001). CONCLUSIONS: Combined DWI and PWI can predict infarct enlargement in acute stroke. PWI can detect hypoperfused brain tissue in good agreement with SPECT in acute stroke.  相似文献   

3.
Relationship between severity of MR perfusion deficit and DWI lesion evolution   总被引:10,自引:0,他引:10  
OBJECTIVE: To assess whether a quantitative analysis of the severity of the early perfusion deficit on MRI in acute ischemic stroke predicts the evolution of the perfusion/diffusion mismatch and to determine thresholds of hypoperfusion that can distinguish between critical and noncritical hypoperfusion. METHODS: Patients with acute ischemic stroke were studied in whom perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI MRI) were performed within 7 hours of symptom onset and again after 4 to 7 days. Patients with early important decreases in points on the NIH Stroke Scale were excluded. Maps of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) were created. These hemodynamic parameters were correlated with the degree of recruitment of the baseline PWI lesion by the DWI lesion. RESULTS: Twelve patients had an initial PWI > DWI mismatch of >20%. A linear relationship was observed between the initial MTT and the degree of recruitment of the baseline PWI lesion by the DWI lesion at follow-up (R(2) = 0.9, p < 0.001). Higher CBV values were associated with higher degrees of recruitment (rho = 0.732, p < 0.007). The volume of MTT of >4 (R(2) = 0.86, p < 0.001) or >6 seconds (R(2) = 0.85, p < 0.001) predicted final infarct size. CONCLUSION: Among patients who have had an acute stroke with PWI > DWI, who do not have dramatic early clinical improvement, the degree of expansion of the initial DWI lesion correlates with the severity of the initial perfusion deficit as measured by the mean transit time and the cerebral blood volume.  相似文献   

4.
BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) have been used increasingly in recent years to evaluate acute stroke in the emergency setting. In the present study, we compared DWI and PWI findings in acute stroke patients with and without severe extracranial internal carotid artery (ICA) disease. METHODS: Twenty-seven patients with nonlacunar ischemic stroke were selected for this analysis. DWI, PWI, and conventional MRI were performed in all patients within 24 hours of symptom onset and after 1 week. To exclude patients with partial or complete reperfusion, we included only patients with a PWI deficit larger than the DWI lesion. Severe ICA disease (>70% stenosis) was present unilaterally in 9 and bilaterally in 2 patients. Acute DWI lesion volume, the size of the acute PWI/DWI mismatch, and final infarct size (on T2-weighted images) were determined. RESULTS: The PWI/DWI mismatch was significantly larger in patients with severe ICA disease than in patients without extracranial carotid stenosis, both when time-to-peak and mean transit time maps (P<0.01) were used to calculate the mismatch. Quantitative analysis of the time-to-peak delay in the mismatch indicated that a relatively smaller fraction of the total mismatch was critically ischemic in patients with carotid stenosis than in those without. Average lesion volume increased less in the stenosis group (P=0.14), despite the larger PWI/DWI mismatch, and final infarct size was smaller in the stenosis group (P<0.05). In the 2 patients with bilateral ICA disease, variable hemodynamic involvement of the contralateral hemisphere was found in addition to the ipsilateral PWI deficit. CONCLUSIONS: In most acute stroke patients with severe ICA stenosis, a considerably smaller fraction of the total PWI/DWI mismatch is at risk than in patients without carotid disease.  相似文献   

5.
Transcranial Doppler Markers of Diffusion-Perfusion Mismatch   总被引:1,自引:0,他引:1  
BACKGROUND AND PURPOSE: During the evaluation of acute ischemic stroke with diffusion- and perfusion-weighted magnetic resonance imaging (DWI and PWI, respectively), the presence of salvageable brain tissue is suggested by the occurrence of a perfusion-diffusion "mismatch." DWI and PWI, however, are not universally available and have inherent inconveniences, which justify a search for practical diagnostic alternatives. The purpose of this study is to investigate whether there are transcranial Doppler (TCD) markers of mismatch. METHODS: Retrospective analysis of 22 patients with acute ischemic stroke affecting the middle cerebral artery (MCA) territory, who had a TCD performed within 24 hours of magnetic resonance imaging (MRI) with DWI and PWI. RESULTS: MRI and TCD were performed on average 10.8 +/- 9.2 hours apart. Time from symptom onset to MRI and TCD completion were 1.6 +/- 1.6 and 2 +/- 1.9 days, respectively. MCA and intracranial internal carotid artery (ICA) cerebral blood flow velocity (CBFV) asymmetry, together with a large ICA-to-MCA gradient, were associated with the presence of mismatch. The combined use of 2 TCD parameters (MCA CBFV asymmetry of > or = 30% and ICA-to-MCA gradient > or = 20 cm/sec) had a sensitivity of 75%, specificity of 80%, positive predictive value of 82%, and negative predictive value of 73% at detecting mismatch cases. CONCLUSIONS: Diffusion-perfusion mismatch appears to be associated with interhemispheric asymmetry between MCA and ICA CBFVs, and a large CBFV gradient between the ICA and MCA on the affected side. Prospective studies are required to verify these observations and to determine whether TCD can be used to follow patients with mismatch.  相似文献   

6.
目的评价弥散成像(DWI)、血流灌注成像(PWI)磁共振对急性缺血性脑血管病的诊断价值。方法用DWI、PWI诊断急性脑缺血,并与常规MRI结果比较。结果经MRI检查证实的急性缺血性脑血管病患者共22例。其中发病后90分钟至6小时检查者11例,其CT及常规MRI未见异常,3例短暂性脑缺血发作(TIA)患者的DWI、PWI正常;其余8例脑梗死患者经DWI、PWI检查,均发现相对应的病灶,且6例灌注减低体积(PWIv)>弥散异常体积(DWIv),2例PWIv=DWIv。起病在6-12小时5例,4例行PWI检查,3例PWIv>DWIv,1例PWIv=DWIv。起病在12-48小时6例,2例行PWI检查,PWIv=DWIv。8例陈旧病灶在DWI上表现为低信号,所有新病灶在DWI上均为高信号。结论DWI、PWI可超早期诊断脑梗死,并可帮助了解缺血半暗带。T2加权像和DWI结合可以鉴别新旧梗死灶。  相似文献   

7.
BACKGROUND: In acute stroke, a magnetic resonance (MR) perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) mismatch (PWI>DWI mismatch) may indicate tissue at risk for infarction and poor prognosis. However, different to early enthusiasm about this surrogate marker, its validity has shown several drawbacks in individual patients. Rather than relying on imaging, we evaluated motor evoked potentials (MEP) as a measure of cerebral function in the acute stroke setting. METHODS: Thirteen patients with acute hemiparetic stroke underwent time to peak PWI and DWI within 6 h after onset as well as recordings of early MEP of first dorsal interosseous muscles. Outcome was assessed by the Unified Neurological Stroke Scale and Barthel Index at day 42. RESULTS: Of 8 patients with PWI>DWI mismatch, 4 patients with normal MEP had a good clinical outcome and 4 patients with absent or pathological MEP had an unfavourable outcome (p < 0.05, Fisher's exact test). In all patients without PWI>DWI mismatch, MEP findings predicted clinical outcome. Normal MEP at day 0--but not PWI/DWI findings--significantly correlated with a good clinical outcome. CONCLUSIONS: Early MEP recordings in acute stroke patients provide valid prognostic information; they may become more useful for specific treatment decisions than presently available MRI surrogate parameters.  相似文献   

8.
BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI) are relatively new MR techniques increasingly used in acute stroke. During the first hours of stroke evolution, the regions with abnormal perfusion are typically larger than the DWI lesions, and this mismatch region has been suggested to be "tissue at risk." The aim of this study was to evaluate the PWI/DWI mismatch region in acute stroke patients and find parameters indicative of both infarct progression and functional impairment. METHODS: Twenty patients with nonlacunar ischemic stroke were imaged with DWI, PWI, and conventional MRI within 24 hours of symptom onset and after 1 week; in addition, the European Stroke Scale (ESS) score was recorded. With PWI, the volumes of regions with "time-to-peak" (TTP) delays of >/=2, 4, 6, 8, and 10 seconds were measured; these volumes were compared with the acute DWI lesion volumes, final infarct size, and ESS score. RESULTS: In 80% of patients the acute DWI lesion was surrounded by regions with abnormal TTP delays (PWI>DWI lesion). A TTP delay of >/=6 s in the mismatch region was found to be associated with lesion enlargement between the initial and follow-up MRI scans. Lesions increased in 9 of 12 patients (75%) in whom the area with TTP delay >/=6 s was larger than the DWI lesion, but they increased in only 1 of 8 (12.5%) of the remaining patients, in whom the area with a TTP delay >/=6 s was smaller than the DWI lesion. The volume of the regions with TTP delays of >/=4 s correlated better with ESS (r=-0.88, P<0.001) than other PWI (or DWI) volumes, which indicated that a TTP delay of approximately 4 s might be the threshold for functional impairment of brain tissue. CONCLUSIONS: Only patients with severe perfusion deficits in the PWI/DWI mismatch (TTP delays of >/=6 s) are at high risk of lesion enlargement. Functionally, more moderate perfusion deficits (TTP delays >/=4 and <6 s) appear to also contribute to the acute clinical deficit.  相似文献   

9.
OBJECTIVE: We used combined diffusion-weighted (DWI) and perfusion-weighted (PWI) MRI to characterize hyperacute infarctions within 6 h of symptom onset with special reference to subcortical infarctions, and investigated the relation between perfusion-diffusion mismatch volume and functional outcome. MATERIAL AND METHODS: Twenty-two patients presenting with symptoms of acute stroke underwent DWI and PWI within 6 h of symptom onset, and follow-up MRI 30 days later. Twelve of these had a subcortical infarction on acute DWI. Lesion volumes were measured by acute DWI and PWI as well as chronic T(2)-weighted MRI (T2WI). Clinical severity was measured by the Scandinavian Stroke Scale (SSS) and the Barthel Index (BI). RESULTS: In the 12 patients with subcortical infarctions, PWI and especially DWI correlated strongly with acute and chronic neurological SSS score, as well as with final infarct volume. Furthermore, a hyperacute PWI/DWI mismatch in this subgroup predicted lesion growth. There was a weaker correlation between acute DWI/PWI and neurological score among all 22 patients, and patients with a PWI/DWI mismatch larger than 100 ml had a significantly larger lesion growth and a poorer outcome than patients with a smaller mismatch. CONCLUSIONS: Subcortical infarctions may represent a sizeable subgroup of acute stroke patients. Also subcortical infarctions may have a PWI/DWI mismatch and therefore may respond to neuroprotective/thrombolytic therapy. Hyperacute DWI may reflect the acute clinical status and predict the outcome in patients with subcortical infarction.  相似文献   

10.
Oxidized low-density lipoprotein (OxLDL) plays a major role in atherosclerosis. We undertook the present study to clarify the relationship between plasma OxLDL and the ischemic volume. We used ELISA to determine plasma OxLDL levels, and performed diffusion- and perfusion-weighted MRI (DWI, PWI) to measure the ischemic volume in 44 ischemic stroke patients. Based on the location of the ischemic lesion, they were divided into three groups: Group I (GI, n = 21) had cortical lesions, Group II (GII, n = 17) had lesions in the basal ganglia or brain stem, and Group III (GIII, n = 6) had massive lesions that involved one entire hemisphere. In GI, but not GII and GIII, plasma OxLDL was significantly higher than in 19 age-matched controls (p < 0.01) and was significantly correlated with the initial ischemic volume visualized on DWI (p = 0.01), PWI (p < 0.01), and the DWI-PWI mismatch (p < 0.05). A persistent increase in plasma OxLDL was associated with enlargement of the ischemic lesion in the early phase after the insult. These findings suggest that elevated plasma OxLDL levels are associated with moderate ischemic damage in patients with cortical lesions (GI), but not those with massive hemispheric lesions (GIII), which may be irreversible. In addition, elevated plasma OxLDL may represent a predictor of enlargement of the ischemic lesion.  相似文献   

11.
BACKGROUND: Methods for determining cerebral blood flow (CBF) using bolus-tracking magnetic resonance imaging (MRI) have recently become available. Reduced apparent diffusion coefficient (ADC) values of brain tissue are associated with reductions in regional CBF in animal stroke models. OBJECTIVES: To determine the clinical and radiological features of patients with severe reductions in CBF on MRI and to analyze the relationship between reduced CBF and ADCs in acute ischemic stroke. DESIGN: Case series. SETTING: Referral center. METHODS: We studied 17 patients with nonlacunar acute ischemic stroke in whom perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) were performed within 7 hours of symptom onset. A PWI-DWI mismatch of more than 20% was required. We compared patients with ischemic lesions that had CBF of less than 50% relative to the contralateral hemisphere with patients with lesions that had relative CBF greater than 50%. Characteristics analyzed included age, time to MRI, baseline National Institutes of Health Stroke Scale score, mean ADC, DWI and PWI lesion volumes, and 1-month Barthel Index score. RESULTS: Patients with low CBF (n = 5) had lower ADC values (median, 430 x 10 (-6) mm(2)/s vs. 506 x 10 (-6) mm(2)/s; P =.04), larger DWI volumes (median, 41.8 cm(3) vs. 14.5 cm(3); P =.001) and larger PWI lesions as defined by the mean transit time volume (median, 194.6 cm(3) vs. 69.3 cm(3); P =.01), and more severe baseline National Institutes of Health Stroke Scale scores (median, 15 vs. 9; P =.02). CONCLUSION: Ischemic lesions with severe CBF reductions, measured using bolus-tracking MRI, are associated with lower mean ADCs, larger DWI and PWI volumes, and higher National Institutes of Health Stroke Scale scores.  相似文献   

12.
BACKGROUND: Effective therapy was not available for treatment of acute stroke until 1995, when tissue plasminogen activator (tPA) was shown to improve neurological and functional outcome in stroke patients who were treated within 3 hours of symptom onset. SUMMARY OF REVIEW: Currently, many patients do not qualify for tPA therapy because they present for evaluation beyond 3 hours after stroke onset. Attempts to expand the treatment window to 6 hours, using CT to select patients, have failed. Use of early MR imaging may provide significant advantages over CT for identification of patients who are likely to benefit from thrombolytic therapy because (1) the early perfusion-weighted imaging (PWI) lesion estimates the region of acute dysfunctional brain tissue, whereas the acute diffusion-weighted imaging (DWI) lesion appears to correspond to the core of the early infarction; (2) the mismatch between the acute PWI lesion and the smaller DWI lesion represents potentially salvageable brain tissue (an estimate of the ischemic penumbra); and (3) in patients with a PWI/DWI mismatch, early reperfusion is often associated with substantial clinical improvement and reversal or reduction of DWI lesion growth. CONCLUSIONS: Clinical trials that use new MRI techniques to screen patients may be able to identify a subset of acute stroke patients who are ideal candidates for thrombolytic therapy even beyond 3 hours after stroke onset.  相似文献   

13.
BACKGROUND: Despite its importance for acute stroke management, little is known about the underlying pathophysiology when patients with acute stroke are classified using clinical methods. OBJECTIVE: To examine the relation between the magnetic resonance defined stroke subtype and clinical stroke classifications using diffusion weighted imaging (DWI), perfusion weighted imaging (PWI), and angiographic magnetic resonance techniques. METHODS: Consecutive patients with clinical syndromes consistent with acute anterior circulation stroke were assessed clinically within six hours of onset and scanned as soon as possible using multimodal magnetic resonance imaging (MRI). Patients were classified clinically into total or partial anterior circulation syndromes using the Oxford classification, or according the severity of the National Institutes of Health stroke scale (NIHSS) (severe > 15; mild/moderate 15). There were 42 with partial anterior circulation syndromes (PACS) and 42 with total anterior circulation syndromes (TACS). Patients with TACS or severe stroke were more likely to have actually suffered a stroke (Fischer's exact test, p = 0.01), to have a correctly classified stroke (chi(2) 28.2, p < 0.01), to have persisting occlusion (chi(2) 30.6, p < 0.01), and to have a large DWI-PWI mismatch (chi(2) 17.1, p < 0.01). CONCLUSIONS: There is more inaccuracy in patients presenting with acute PACS or clinically mild to moderate anterior circulation stroke than in those with TACS or severe acute stroke syndromes. The latter appear more likely to be the targets for acute stroke interventions, as they include a significantly higher proportion of patients with persisting occlusion and diffusion/perfusion mismatch.  相似文献   

14.
BACKGROUND: Whether intravenous tissue plasminogen activator (alteplase) is effective beyond 3 h after onset of acute ischaemic stroke is unclear. We aimed to test whether alteplase given 3-6 h after stroke onset promotes reperfusion and attenuates infarct growth in patients who have a mismatch in perfusion-weighted MRI (PWI) and diffusion-weighted MRI (DWI). METHODS: We prospectively and randomly assigned 101 patients to receive alteplase or placebo 3-6 h after onset of ischaemic stroke. PWI and DWI were done before and 3-5 days after therapy, with T2-weighted MRI at around day 90. The primary endpoint was infarct growth between baseline DWI and the day 90 T2 lesion in mismatch patients. Major secondary endpoints were reperfusion, good neurological outcome, and good functional outcome. Patients, caregivers, and investigators were unaware of treatment allocations. Primary analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT00238537. FINDINGS: We randomly assigned 52 patients to alteplase and 49 patients to placebo. Mean age was 71.6 years, and median score on the National Institutes of Health stroke scale was 13. 85 of 99 (86%) patients had mismatch of PWI and DWI. The geometric mean infarct growth (exponential of the mean log of relative growth) was 1.24 with alteplase and 1.78 with placebo (ratio 0.69, 95% CI 0.38-1.28; Student's t test p=0.239); the median relative infarct growth was 1.18 with alteplase and 1.79 with placebo (ratio 0.66, 0.36-0.92; Wilcoxon's test p=0.054). Reperfusion was more common with alteplase than with placebo and was associated with less infarct growth (p=0.001), better neurological outcome (p<0.0001), and better functional outcome (p=0.010) than was no reperfusion. INTERPRETATION: Alteplase was non-significantly associated with lower infarct growth and significantly associated with increased reperfusion in patients who had mismatch. Because reperfusion was associated with improved clinical outcomes, phase III trials beyond 3 h after treatment are warranted.  相似文献   

15.
脑功能成像在急性脑梗死降纤治疗中的应用价值   总被引:1,自引:1,他引:0  
目的了解脑功能成像的弥散加权成像(DWI)、灌注加权成像(PWI)在急性脑梗死降纤治疗中的应用价值。方法对80例发病2~72h的脑梗死患者行MR常规及DWI、PWI检查,并将检测的结果分型。结果PWI>DWI 48例,有半暗带存在,降纤效果最佳;PWI=DWI 12例,不宜降纤治疗;PWI相似文献   

16.
BACKGROUND: Current guidelines for the treatment of acute ischemic stroke exclude patients with seizure at stroke onset from consideration for thrombolytic therapy. It may be difficult to differentiate an ischemic stroke from postictal Todd's paralysis by clinical examination and noncontrast CT scan. Magnetic resonance imaging (MRI) with diffusion- (DWI) and perfusion-weighted images (PWI) and angiography (MRA) can be used to confirm the diagnosis of an acute ischemic process in the presence of concurrent seizures. METHODS: A case report of a patient who presented with seizures, in whom the combination of DWI/PWI MRI and MRA confirmed the diagnosis of an embolic ischemic stroke. The patient was treated with intravenous recombinant tissue plasminogen activator with clinical and radiological improvement. CONCLUSIONS: Treatment decisions with regard to thrombolysis in acute stroke patients should be based on parameters of cerebral perfusion, assessment of collateral blood flow and presence of potentially salvageable tissue. Modern neuroimaging techniques that can rapidly assess these variables, such as DWI/PWI MRI and MRA, can improve the current selection of patients who are likely to benefit from thrombolysis and extend its benefit to patients who would otherwise be excluded, such as those with seizures at stroke onset.  相似文献   

17.
A prospective longitudinal diffusion-weighted and perfusion-weighted magnetic resonance imaging (DWI/PWI) study of stroke patients (n = 21) at five distinct time points was performed to evaluate lesion evolution and to assess whether DWI and PWI can accurately and objectively demonstrate the degree of ischemia-induced deficits within hours after stroke onset. Patients were scanned first within 7 hours of symptom onset and then subsequently at 3 to 6 hours, 24 to 36 hours, 5 to 7 days, and 30 days after the initial scan. Lesion evolution was dynamic during the first month after stroke. Most patients (18 of 19, 95%) showed increased lesion volume over the first week and then decreased at 1 month relative to 1 week (12 of 14, 86%). Overall, lesion growth appeared to depend on the degree of mismatch between diffusion and perfusion at the initial scan. Abnormal volumes on the acute DWI and PWI (<7 hours) correlated well with initial National Institutes of Health (NIH) stroke scale scores, outcome NIH stroke scale scores, and final lesion volume. DWI and PWI can provide an early measure of metabolic and hemodynamic insufficiency, and thus can improve our understanding of the evolution and outcome after acute ischemic stroke.  相似文献   

18.
BACKGROUND: Acute diffusion-weighted (DWI) and perfusion-weighted (PWI) magnetic resonance imaging (MRI) findings may correlate with secondary hemorrhagic transformation (HT) risk in patients with stroke. This information could be of value, particularly in individuals being considered for thrombolytic therapy. OBJECTIVE: To determine the relationship between DWI and PWI findings and the risk of secondary HT in patients with acute stroke. DESIGN: Retrospective case series. SETTING: Academic medical center. PATIENTS: Twenty-seven patients with acute stroke capable of being evaluated with DWI/PWI 8 hours or less after symptom onset. MAIN OUTCOME MEASURES: Apparent diffusion coefficient values, perfusion delay measurements, and subsequent MRI or computed tomographic scans detected HT. RESULTS: The mean +/- SD apparent diffusion coefficient of ischemic regions that experienced HT was significantly lower than the overall mean +/- SD apparent diffusion coefficient of all ischemic areas analyzed (0.510 +/- 0.140 x 10(-3) mm(2)/s vs 623 +/- 0.113 x 10(-3) mm(2)/s; P =.004). This difference remained significant when comparing the HT-destined ischemic areas with the non-HT-destined areas within the same ischemic lesion (P =.02). Patients receiving recombinant tissue-type plasminogen activator (rt-PA) experienced HT significantly earlier than patients not receiving rt-PA (P =.002). Moreover, a persistent perfusion deficit in the area of subsequent hemorrhage at 3 to 6 hours after the initial MRI scan was identified in significantly more patients who experienced HT than in those who did not (83% vs 30%; P =.03). CONCLUSION: Both DWI and PWI scans detect abnormalities that are associated with HT. These findings support a role for MRI in identifying patients who are at increased risk for secondary HT following acute ischemic stroke.  相似文献   

19.
Objectives Instead of the mismatch in MRI between the perfusion-weighted imaging (PWI) lesion and the smaller diffusion-weighted imaging (DWI) lesion (PWI-DWI mismatch), clinical-DWI mismatch (CDM) has been proposed as a new diagnostic marker of brain tissue at risk of infarction in acute ischemic stroke. The Alberta Stroke Program Early CT Score (ASPECTS) has recently been applied to detect early ischemic change of acute ischemic stroke. The present study applies the CDM concept to DWI data and investigated the utility of the CDM defined by the NIH Stroke Scale (NIHSS) and ASPECTS in patients with non-lacunar anterior circulation infarction. Methods Eighty-seven patients with first ever ischemic stroke within 24 hours of onset with symptoms of non-lacunar anterior circulation infarction with the NIHSS score ≥ 8 were enrolled. Initial lesion extent was measured by the ASPECTS on DWI within 24 hours, and initial neurological score was measured by the NIHSS. As NIHSS ≥ 8 has been suggested as a clinical indicator of a large volume of ischemic brain tissue, and the majority of patients with non-lacunar anterior infarction with score of NIHSS < 8 had lesions with ASPECTS ≥ 8 on DWI, so CDM was defined as NIHSS ≥ 8 and DWI-ASPECTS 8 ≥ . We divided patients into matched and mismatched patient groups, and compared them with respect to background characteristics, neurological findings, laboratory data, radiological findings and outcome. Results There were 35 CDM-positive patients (P group, 40.2%) and 52 CDM-negative patients (N group , 59.8%). P group patients had a higher risk of early neurological deterioration (END) than N group patients (37.1% vs 13.5%, p < 0.05), which were always accompanied by lesion growth defined by 2 or more points decrease on ASPECTS (36 to 72 hours after onset on CT). The NIHSS at entry were significantly lower in the P group, but there was no difference in the outcome at three months measured by the modified Rankin Scale. However, CDM was not an independent predictor of END by multiple logistic regression analysis. Conclusions Patients with CDM had high rate of early neurological deterioration and lesion growth. CDM defined as NIHSS ≥ 8 and DWI-ASPECTS ≥ 8 can be another marker for detecting patients with tissue at risk of infarction, but more work is needed to clarify whether this CDM method is useful in acute stroke management. Received in revised form: 30 July 2006  相似文献   

20.
The perfusion-/diffusion-weighted imaging (PWI/DWI) mismatch and the diffusion/fluid attenuated inversion recovery (DWI/FLAIR) mismatch are magnetic resonance imaging (MRI) markers of evolving brain ischemia. We examined whether the DWI/FLAIR mismatch was independently associated with the PWI/DWI mismatch. Furthermore, we determined whether the presence of the DWI/FLAIR mismatch in patients with the PWI/DWI mismatch would provide additional information regarding last seen normal time (LTM). We used data from the ‘AX200 for ischemic stroke'' trial (AXIS 2 study NCT00927836). We studied the association between the presence of the DWI/FLAIR and PWI/DWI mismatch, baseline National Institute of Health Stroke Scale (NIHSS), age, ischemic-core volume, gender, intravenous (IV) tissue plasminogen activator (tPA), and perfusion-mismatch volume in univariate analysis. Significant variables (P<0.05) were added into the final multivariate model. We analyzed 197 patients. Seventy-two (37%) had both the PWI/DWI and the DWI/FLAIR mismatch. Patients with the double mismatch pattern had a shorter LTM than patients with the PWI/DWI mismatch alone (Median difference 90 minutes, P<0.01). Multivariate analysis confirmed the independent association between the two mismatch patterns (odds ratio (OR) 2.6, 95% confidence interval (CI) 1.2 to 5.4). Our study implies that the DWI/FLAIR mismatch and PWI/DWI mismatch are strongly associated, independent from LTM. Furthermore, in the presence of the PWI/DWI mismatch, the DWI/FLAIR pattern indicates a shorter LTM. This could have implications in selecting patients for reperfusion therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号