首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
常染色体显性多囊肾组织差异表达基因的初步研究   总被引:1,自引:0,他引:1  
目的应用基因芯片技术及最新公共数据库,筛选常染色体显性多囊肾组织中差异表达的基因,对其进行功能分类,并对其中1条基因利用原位杂交技术进行验证。方法将代表8398条人类基因的PCR产物制成基因芯片。将等量的多囊肾组织和正常肾组织mRNA分别用Cy5、Cy3荧光标记,逆转录合成cDNA探针,混合后与上述基因芯片杂交。扫描杂交信号荧光强度,找出差异表达基因,对获得的基因进行分子生物信息学分析。并对其中的上调表达基因IGF1 mRNA进行原位杂交,验证基因芯片结果的准确性。结果(1)在进入研究的8398条基因中,共发现357条差异表达基因。94条基因在多囊肾组织中低表达,263条基因高表达;(2)上调表达基因主要属于原癌基因,细胞骨架蛋白和运动相关蛋白,凋亡相关蛋白,细胞信号和传递蛋白,细胞因子;下调表达基因主要属于抑癌基因,DNA结合、转录和转录因子,细胞信号和传递蛋白,参与代谢的基因;(3)IGF1 mRNA原位杂交结果与芯片结果一致。结论基因表达谱芯片可快速、高效地筛选差异表达基因;多囊肾病的发生、发展中存在着多种不同功能基因表达调控的改变。  相似文献   

2.
目的 鉴定两个常染色体显性成人多囊肾病家系的致病突变.方法 采用酚氯仿法提取家系成员及无亲缘关系的100名健康对照个体的外周血白细胞DNA,PCR扩增先证者致病基因PKD1、PKD2的所有外显子序列及其侧翼内含子剪切区域,直接测序确定DNA序列的变异.通过家系和正常对照的比较分析,对检测到的变异是否与疾病相关进行了初步探讨.结果 在两个家系中共检测到5个序列变异:PKD1:c.2469G>A,PKD1:c.5014_5015 delAG,PKD1:c.10529C>T,PKD2:c.568G>A和PKD2:c.2020-1_2020 delAG.其中PKD1:c.2469G>A和PKD2:c.2020-1_2020 delAG为新发现的变异.此外,检测到的移码突变和剪切突变未见于家系中健康成员及无亲缘关系的正常对照.结论 PKD1:c.5014_5015 delAG和PKD2:c.2020-1_2020 delAG分别为家系A和B的致病突变,且PKD2:c.2020-1_2020 delAG为先证者新发生的突变.  相似文献   

3.
目的研究中国人多囊肾病基因1(polycystic kidney disease 1 gene,PKD1)突变的特点,检测基因突变位点。方法25例多囊肾患者,正常对照16名,扩增PKD1基因的第44、45外显子的基因片段,变性梯度凝胶电泳突变检测系统进行初筛,然后测序。结果发现1个移码突变(12431delCT)、1个无义突变(C12217T)、1个多态性(A50747C),突变检测率为8%(2/25)。结论检测到2个新的可能的致病突变:1个移码突变(12431delCT)、1个无义突变(C12217T)。  相似文献   

4.
变性高效液相色谱检测 PKD2基因突变   总被引:3,自引:2,他引:3  
目的 利用变性高效液相色谱分析技术 ( denaturing high- performance liquidchromatography,DHPL C) ,检测 2型常染色体显性遗传性多囊肾病致病基因 ( polycystic kidney diseasegene 2 ,PKD2 )突变。方法 收集临床确诊的汉族常染色体显性遗传性多囊肾病 ( autosomal dominantpolycystic kidney disease,ADPKD) 94个家系 ,提取外周血白细胞 DNA,用聚合酶链反应 ( polymerasechain reaction,PCR)扩增目的基因的全编码区 ,DHPL C对 PCR产物进行突变筛选 ,出现异常峰型的DNA片段进行核苷酸序列测定 ,明确突变位点和类型。结果 以 5 0名健康志愿者为正常对照 ,从 94例患者家系中成功检测出 8种突变 ,包括 2种无义突变、3种移码突变、3种错义突变。无义突变分别位于第 5和13外显子 ( 12 4 9C→ T,2 4 0 7C→ T) ,编码氨基酸分别在 4 17和 80 3位形成终止密码子。移码突变分别位于第2、12和 13外显子 ( 6 36 - 6 37ins T,2 348- 2 35 1del AGAA,2 4 0 1del A)。错义突变分别位于第 1、4和 5外显子 ( 5 6 8G→ A,96 4 C→T,116 8G→A) ,其编码氨基酸发生改变 ( 190 Ala→ Thr,32 2 Arg→Trp,390 Gly→ Ser)。结论 所检测出的 8种突变 ,为 ADPKD患者的基因诊断、产前诊断和囊肿前诊断积累了资料  相似文献   

5.
一个可能与PKD2基因连锁的常染色体显性多囊肾病家系   总被引:3,自引:0,他引:3  
目的 研究常染色体显性多囊肾病(autosomal dominant polycystic kidney disease,ADPKD)在中国人中的遗传异质性。方法 采用聚合酶链反应 (polymerase chain reaction, PCR)、非变性聚丙烯酰胺凝胶电泳,检测了1个ADPKD家系各成员中与PKD1基因连锁的4种和与PKD2连锁的4种微卫星标记的基因分型。然后以软件辅助构建单倍型,并推测疾病单倍型。结果 发现该ADPKD家系中,与PKD1紧密连锁的4个微卫星KG8、SM6、CW4和CW2是有信息的;与PKD2基因紧密连锁的3种微卫星DNAIMS1563、D4S414和D4S423是有信息的。推定的单倍型提示,在这个家系中疾病可能与PKD2连锁,而不与PKD1连锁。结论 在此家系中,受累成员间存在表型异质性,并且有一个早发的儿童患者。与PKD2连锁的家系较少,这个家系的报道表明中国人中存在ADPKD的遗传异质性,PKD2的异常也可能会引起中国人ADPKD的发生。另外,发现有遗传早现现象存在,且疾病通过母亲传递。这提示在与PKD1不连锁的家系中后代可能早发病。  相似文献   

6.
常染色体显性视网膜色素变性 (autosomal dominant retinitis pigmentosa,ad RP)属视网膜色素变性的一种类型 ,是单基因遗传病 ,具有遗传异质性和临床异质性。目前已克隆了 8个致病基因 ,包括 RHO、Peripherin/ RDS、RP1、NRL、CRX等 ,现简介如下。  相似文献   

7.
目的 分析常染色体显性遗传性多囊肾病(ADPKD)患者临床特征及基因突变特点。方法 入选ADPKD患者23例,收集临床数据,并进行家系调查;抽取外周血经高通量测序方法进行多囊肾基因检测。结果 23例ADPKD患者主要临床表现为腰腹痛、血尿、感染,肾功能不全;与女性患者相比,男性ADPKD患者血尿酸水平明显增高;基因检测PKD1基因突变19例;PKD2基因突变4例。同处于慢性肾脏病(CKD)5期的ADPKD患者,PKD1基因突变患者血红蛋白明显低于PKD2基因突变患者(65.89±13.59 vs 97.5±17.02,P<0.01)。结论 ADPKD可进展至肾功能衰竭,基因检测有助于早期诊断和预后评估,终末期ADPKD患者,PKD1基因突变患者预后更差。  相似文献   

8.
目的通过对一常染色体显性多囊肾家系男性患者进行AZF微缺失检测,了解其AZF基因缺失情况及不育原因。方法用聚合酶链反应技术扩增ADPKD家系男性成员sY84、sY86、sYl27、sYl34、sYl52、sYl53、sY254、sY255等8个AZF位点,并以X/Y连锁锌指蛋白基因(ZFX/Y)为内对照。结果家系中1例严重少弱精子症男性患者存在sY254缺失。结论该ADPKD家系男性患者AZF微缺失可能与其精子生成障碍相关。  相似文献   

9.
常染色体显性视网膜色素变性(autosomal dominant retinitis pigmentosa,adRP)属视网膜色素变性的一种类型,是单基因遗传病,具有遗传异质性和临床异质性。目前已克隆了8个致病基因,包括RHO、Peripherin/RDS、RPI、NRL、CRX等,现简介如下。  相似文献   

10.
常染色体显性遗传型多囊肾病(ADPKD)是一种常见的遗传性肾病,可累及多个系统,最终导致肾功能衰竭,严重危害着人类健康,也是国际肾脏病领域研究的热点之一。本文对近年来ADPKD在分子诊断、发病机制和治疗等方面的研究进行了系统综述。  相似文献   

11.
12.
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic renal disorder (incidence, 1:1,000). The mutation of PKD1 is thought to account for 85% of ADPKD. Although a considerable number of studies on PKD1 mutation have been published recently, most of them concern Caucasian ADPKD patients. In the present study, we examined PKD1 mutations in Japanese ADPKD patients. Long-range polymerase chain reaction (LR-PCR) with PKD1-specific primers followed by nested PCR was used to analyze the duplicated region of PKD1. Six novel chain-terminating mutations were detected: three nonsense mutations (Q2014X transition in exon 15, Q2969X in exon 24, and E2810X in exon 23), two deletions (2132del29 in exon10 and 7024delAC in exon 15), and one splicing mutation (IVS21-2delAG). There was also one nonconservative missense mutation (T2083I). Two other potentially pathogenic missense mutations (G2814R and L2816P) were on the downstream site of one nonsense mutation. These three mutations and a following polymorphism (8662C>T) were probably the result of gene conversion from one of the homologous genes to PKD1. Six other polymorphisms were found. Most PKD1 mutations in Japanese ADPKD patients were novel and definitely pathogenic. One pedigree did not link to either PKD1 or PKD2.  相似文献   

13.
Chung W  Kim H  Hwang YH  Kim SY  Ko AR  Ro H  Lee KB  Lee JS  Oh KH  Ahn C 《Clinical genetics》2006,70(6):502-508
Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous and is caused by mutations in the PKD1 or PKD2 genes. ADPKD caused by PKD2 mutations is characterized by a longer survival and a later onset of end-stage renal disease than ADPKD caused by PKD1 mutations. PKD2 encodes a 2.9-kb messenger RNA and is derived from 15 exons. Two-dimensional gene scanning (TDGS) is more efficient in detecting mutations in genes such as PKD2 because it can scan the whole coding regions simultaneously. In order to determine the prevalence of Korean PKD2 patients, all the coding sequences of PKD2 were screened using TDGS and direct sequencing in 46 randomly selected ADPKD patients (group 1). Another 45 ADPKD patients (group 2), who were presumed to be PKD2 patients, were screened in order to identify the type of mutation in the Korean PKD2 patients. Eight novel different mutations and three known mutations in the PKD2 gene were detected in 17 patients: 6 patients (13.0%) in group 1 and 11 patients (24.4%) in group 2. Considering the sensitivity of TDGS, the prevalence of PKD2 in Korean population might be greater than 18.6%. Both known and novel mutations were identified by TDGS in Korean PKD2 patients. Overall, these results showed that TDGS might be useful for diagnosing PKD2.  相似文献   

14.
Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family.  相似文献   

15.
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is caused by mutations in PKD1 or PKD2. The molecular diagnosis of ADPKD is complicated by extensive allelic heterogeneity and particularly by the presence of six highly homologous sequences of PKD1 exons 1-33. Here, we screened PKD1 and PKD2 for both conventional mutations and gross genomic rearrangements in up to 700 unrelated ADPKD patients--the largest patient cohort to date--by means of direct sequencing, followed by quantitative fluorescent multiplex polymerase chain reaction or array-comparative genomic hybridization. This resulted in the identification of the largest number of new pathogenic mutations (n = 351) in a single publication, expanded the spectrum of known ADPKD pathogenic mutations by 41.8% for PKD1 and by 23.8% for PKD2, and provided new insights into several issues, such as the population-dependent distribution of recurrent mutations compared with founder mutations and the relative paucity of pathogenic missense mutations in the PKD2 gene. Our study, together with others, highlights the importance of developing novel approaches for both mutation detection and functional validation of nondefinite pathogenic mutations to increase the diagnostic value of molecular testing for ADPKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号