首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Werner syndrome (WS) is a rare, segmental progeroid syndrome caused by defects in the WRN gene, which encodes a RecQ helicase. WRN has roles in many aspects of DNA metabolism including DNA repair and recombination. In this study, we exploited two different recombination assays previously used to describe a role for the structure-specific endonuclease ERCC1-XPF in mitotic and targeted homologous recombination. We constructed Chinese hamster ovary (CHO) cell lines isogenic with the cell lines used in these previous studies by depleting WRN using shRNA vectors. When intrachromosomal, mitotic recombination was assayed in WRN-depleted CHO cells, a hyperrecombination phenotype was observed, and a small number of aberrant recombinants were generated. Targeted homologous recombination was also examined in WRN-depleted CHO cells using a plasmid-chromosome targeting assay. In these experiments, loss of WRN resulted in a significant decrease in nonhomologous integration events and ablation of recombinants that required random integration of the corrected targeting vector. Aberrant recombinants were also recovered, but only from WRN-depleted cells. The pleiotropic recombination phenotypes conferred by WRN depletion, reflected in distinct homologous and nonhomologous recombination pathways, suggest a role for WRN in processing specific types of homologous recombination intermediates as well as an important function in nonhomologous recombination.  相似文献   

2.
To study the involvement of DNA topoisomerases in recombination in mammalian cells, we used gene transfer assays to examine the effects of DNA topoisomerase inhibitors on nonhomologous (illegitimate) and homologous recombination. The assays were performed by transfecting adenine phosphoribosyltransferase-deficient (APRT) CHO cells with plasmids carrying the wild-type or mutant aprt genes and by treating the cells with the inhibitors, followed by subsequent cultivation to select for APRT-positive (APRT+) colonies. Treatments with DNA topoisomerase II inhibitors such as VP-16, VM-26, ICRF-193 resulted in a 3- to 5-fold stimulation of integration of both closed-circular and linearized plasmids carrying the wild-type aprt gene into the recipient genome through nonhomologous recombination. The same treatments also increased 6- to 9-fold and 3-fold the number of APRT+ recombinant colonies that were generated by cotransfecting two closed-circular plasmids with nonoverlapping defective aprt genes and their linearized equivalents, respectively. However, this cotransfection assay involved intrinsically nonhomologous recombination processes; normalization of the frequencies by dividing them with those of the above nonhomologous recombination revealed 2-fold enhancement of homologous recombination events between the circular mutant genes but not between the linear ones. In contrast, DNA topoisomerase I inhibitor, camptothecin, showed no such effect on either recombination. From these results, we discuss the function of DNA topoisomerases on recombination in mammalian cells.  相似文献   

3.
In the present study the carcinogenic metal ions Cd[II], Co[II], Cr[VI], Ni[II], and Pb[II], as well as As[III], were examined for their ability to induce intrachromosomal homologous and nonhomologous recombination in the hprt gene of two V79 Chinese hamster cell lines, SPD8 and Sp5, respectively. With the exception of Pb[II], all of these ions enhanced homologous recombination, the order of potency being Cr>Cd>As>Co>Ni. In contrast, Cr[VI] was the only ion to enhance recombination of the nonhomologous type. In order to obtain additional information on the mechanism of recombination in the SPD8 cell line, individual clones exhibiting metal-induced recombination were isolated, and the sequence of their hprt gene determined. These findings confirmed that all recombinogenic events in this cell line were of the homologous type, involving predominantly a chromatid exchange mechanism. The mechanisms underlying the recombination induced by these ions are discussed in relationship to their genotoxicity, as well as to DNA repair and replication. Induced recombination may constitute a novel mechanism for induction of neoplastic disease.  相似文献   

4.
Gene targeting at the human CD4 locus by epitope addition.   总被引:12,自引:0,他引:12  
  相似文献   

5.
Ideally, gene therapy involves the correction of genetic defects through the natural means of gene targeting. This therapy possesses a number of conceptual advantages. However, a major obstacle to successful gene therapy is the relative inefficiency of the targeting process in mammalian cells. Gene targeting may be accomplished by two different mechanisms: the homologous recombination and the mismatch correction of DNA heteroduplexes. Based on the model of homologous recombination for the well-studied prokaryotic and the less studied eukaryotic systems, three approaches have been employed to improve the efficiency and accuracy of homologous recombination events. These are: (1) artificial double-strand breaks in both the exogenous and the chromosomal DNA, (2) a contiguous long homology between the exogenous and chromosomal DNA, and (3) a transient overproduction of an active recombinase, the bacterial RecA or mammalian RecA-like proteins, in mammalian cell nuclei. Combining these approaches can result in more effective gene targeting protocols. The second mechanism has been improved based on recent observations of recombinogenic activity of oligonucleotides and, especially, specifically designed chimeric RNA/DNA oligonucleotides. The use of RecA-like proteins to stimulate searching for homology and forming stable DNA heteroduplexes between oligonucleotides and chromosomal DNA remains an attractive idea for additional improvement of gene targeting events.  相似文献   

6.
Zinc-finger nucleases (ZFNs) drive highly efficient genome editing by generating a site-specific DNA double-strand break (DSB) at a predetermined site in the genome. Subsequent repair of this break via the nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways results in targeted gene disruption or gene addition, respectively. Here, we report that ZFNs can be engineered to induce a site-specific DNA single-strand break (SSB) or nick. Using the CCR5-specific ZFNs as a model system, we show that introduction of a nick at this target site stimulates gene addition using a homologous donor template but fails to induce significant levels of the small insertions and deletions (indels) characteristic of repair via NHEJ. Gene addition by these CCR5-targeted zinc finger nickases (ZFNickases) occurs in both transformed and primary human cells at efficiencies of up to ~1%-8%. Interestingly, ZFNickases targeting the AAVS1 "safe harbor" locus revealed similar in vitro nicking activity, a marked reduction of indels characteristic of NHEJ, but stimulated far lower levels of gene addition-suggesting that other, yet to be identified mediators of nick-induced gene targeting exist. Introduction of site-specific nicks at distinct endogenous loci provide an important tool for the study of DNA repair. Moreover, the potential for a SSB to direct repair pathway choice (i.e., HDR but not NHEJ) may prove advantageous for certain therapeutic applications such as the targeted correction of human disease-causing mutations.  相似文献   

7.
Gene targeting via homologous recombination is a powerful tool for studying gene function, but the targeting efficiency in human cell lines is too low for generating knockout mutants. Several cell lines null for the gene responsible for Bloom syndrome, BLM, have shown elevated targeting efficiencies. Therefore, we reasoned that gene targeting would be enhanced by transient suppression of BLM expression by RNA interference. To test this, we constructed a gene correction assay system to measure gene targeting frequencies using a disrupted hypoxanthine phosphoribosyltransferase (HPRT) locus in the human HT1080 cell line, and examined the effect of small interfering RNA (siRNA) for BLM on gene targeting. When HPRT-null cells pretreated with BLM siRNA were co-transfected with the siRNA and a gene correction vector, the gene targeting frequency was elevated three-fold, while the random integration frequency was marginally affected. Remarkably, in BLM heterozygous (+/-) cells derived from HPRT-null cells, the BLM siRNA treatment gave more than five-fold higher targeting frequencies, even with one-tenth the amount of BLM siRNA used for BLM+/+ cells. Furthermore, in the human pre-B cell line Nalm-6, the siRNA treatment enhanced gene targeting 6.3-fold and > 5.8-fold at the HPRT and adenine phosphoribosyltransferase (APRT) loci, respectively. These results indicate that transient suppression of BLM expression by siRNA stimulates gene targeting in human cells, facilitating a further improvement of gene targeting protocols for human cell lines.  相似文献   

8.
The tumor suppressor breast cancer susceptibility protein 1 (BRCA1) protects our cells from genomic instability in part by facilitating the efficient repair of DNA double-strand breaks (DSBs). BRCA1 promotes the error-free repair of DSBs through homologous recombination and is also implicated in the regulation of nonhomologous end joining (NHEJ) repair fidelity. Here, we investigate the role of BRCA1 in NHEJ repair mutagenesis following a DSB. We examined the frequency of microhomology-mediated end joining (MMEJ) and the fidelity of DSB repair relative to BRCA1 protein levels in both control and tumorigenic breast epithelial cells. In addition to altered BRCA1 protein levels, we tested the effects of cellular exposure to mirin, an inhibitor of meiotic recombination enzyme 11 (Mre11) 3'-5'-exonuclease activity. Knockdown or loss of BRCA1 protein resulted in an increased frequency of overall plasmid DNA mutagenesis and MMEJ following a DSB. Inhibition of Mre11-exonuclease activity with mirin significantly decreased the occurrence of MMEJ, but did not considerably affect the overall mutagenic frequency of plasmid DSB repair. The results suggest that BRCA1 protects DNA from mutagenesis during nonhomologous DSB repair in plasmid-based assays. The increased frequency of DSB mutagenesis and MMEJ repair in the absence of BRCA1 suggests a potential mechanism for carcinogenesis.  相似文献   

9.
The Chinese hamster ovaryaprt gene was used as a model for studying the effect of vector topology on gene targeting frequency. A single recombination vector containing 2.7 kb of isogenic DNA homologous to theaprt gene was digested with eight separate restriction enzymes to generate a variety of both replacement- and insertion-type recombination substrates. The frequency of homologous recombination, normalized by cotransfection with a linearized neor marker, was assayed by the correction of a mutant hemizygousaprt allele and was not found to reflect vector topology. Southern analysis of representative recombination products suggests that the gene targeting events occurred predominantly by double crossover/gene conversion.  相似文献   

10.
Studies on homologous recombination in mammalian cells between an exogenous DNA molecule containing a double-strand break and a homologous genomic sequence have indicated that there were at least two distinct types of homologous recombination processes, one that involved the formation of two homologous junctions and another that involved the formation of one homologous junction and one illegitimate junction. Both types of events are produced in gene targeting experiments. We have proposed a model to account for the later process called one-sided invasion. One-sided invasion has now been reported in numerous species belonging to different phyla and appears to be a universal mechanism. It has also been observed in normal human germ cells. The role of one-side invasion is still unknown. Using a recombination assay between LINE-1 elements from the human genome and exogenous LINE-1 sequences, we have characterized the process of homologous junction formation in one-sided invasion. We found that at each of the homologous junctions, variable lengths of the vector L1 sequences had been replaced by genomic L1 sequences. We also found a homologous junction that involved three partners, suggesting that the homologous end could be released and become available for a second round of interaction.  相似文献   

11.
Translocations and gross deletions are important causes of both cancer and inherited disease. Such gene rearrangements are nonrandomly distributed in the human genome as a consequence of selection for growth advantage and/or the inherent potential of some DNA sequences to be frequently involved in breakage and recombination. Using the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] (containing 397 germ-line and somatic DNA breakpoint junction sequences derived from 219 different rearrangements underlying human inherited disease and cancer), we have analyzed the sequence context of translocation and deletion breakpoints in a search for general characteristics that might have rendered these sequences prone to rearrangement. The oligonucleotide composition of breakpoint junctions and a set of reference sequences, matched for length and genomic location, were compared with respect to their nucleotide composition. Deletion breakpoints were found to be AT-rich whereas by comparison, translocation breakpoints were GC-rich. Alternating purine-pyrimidine sequences were found to be significantly over-represented in the vicinity of deletion breakpoints while polypyrimidine tracts were over-represented at translocation breakpoints. A number of recombination-associated motifs were found to be over-represented at translocation breakpoints (including DNA polymerase pause sites/frameshift hotspots, immunoglobulin heavy chain class switch sites, heptamer/nonamer V(D)J recombination signal sequences, translin binding sites, and the chi element) but, with the exception of the translin-binding site and immunoglobulin heavy chain class switch sites, none of these motifs were over-represented at deletion breakpoints. Alu sequences were found to span both breakpoints in seven cases of gross deletion that may thus be inferred to have arisen by homologous recombination. Our results are therefore consistent with a role for homologous unequal recombination in deletion mutagenesis and a role for nonhomologous recombination in the generation of translocations.  相似文献   

12.
The CDKN2A tumor-suppressor locus on chromosome band 9p21, which encodes p16(INK4A), a negative regulator of cyclin-dependent kinases, and p14(ARF1), an activator of TP53, is inactivated in many human cancers by point mutation, promoter hypermethylation, and, often, deletion. Homozygous deletions are unusually prevalent at this locus in very different human cancers. In the present study, we compared deletions in squamous cell carcinoma of the head and neck (SCCHN) cell lines to those in T-cell acute lymphatic leukemia (T-ALL), glioma, and bladder carcinoma (TCC) cell lines. Of 14 SCCHN lines, 10 showed homozygous deletions of CDKN2A, one displayed promoter hypermethylation with gene silencing, and one had a frameshift deletion in exon 2. Many deletion ends were in or proximal to the repetitive sequence clusters flanking the locus. Breakpoint junctions displayed variable microhomologies or insertions characteristic of DNA repair by nonhomologous end-joining. In general, deletions were much smaller in SCCHN than in TCC and glioma. In T-ALL, breakpoints were near consensus sites for recombination mediated by RAG (recombination activating genes) enzymes, and the structure of the junctions was consistent with this mechanism. We suggest that different mechanisms of CDKN2A deletion prevail in different human cancers. Aberrant RAG-mediated recombination may be responsible in T-ALL, and exuberant DNA repair by nonhomologous end-joining is the likely prevailing mechanism in SCCHN, but a distinct mechanism in TCC and glioma remains to be elucidated.  相似文献   

13.
The pseudorabies virus (PRV) genome consists of two components, long (U(L)) and short (U(S)) regions. The U(S) region is the only one capable of inverting itself relative to the U(L) region during productive infection, generating two equimolecular isomeric forms of viral DNA. Here we describe a recombinant virus (gIp2) generated by genetic recombination between pseudorabies viral isomers. This recombination event was observed in the parental virus gIS8, which was obtained by insertion of the alpha4-TK herpes simplex virus type 1 (HSV1) gene. The growth of gIS8 virus in the presence of 5-bromodeoxyuridine (BrdU) yielded gIp2. This was generated by nonhomologous recombination either between the two viral genomic isomers of gIS8, P and I(U/S), or between the same P isomer using nonhomologous and homologous recombination, with loss of the HSV1 sequences and duplication of the PRV US3-encoded protein kinase gene. Virus gIp2 is negative for TK, gI, gE, 11K and 28K and shows an in vitro replication capacity in neuronal cells approximately 22 times lower than that of parental virus gIS8, and similar to that of the Bartha vaccine virus strain in monkey kidney and human neuronal cells.  相似文献   

14.
Partial gene duplication as a cause of human disease.   总被引:6,自引:0,他引:6  
Tandem duplication of large regions of DNA, including duplication of whole genes, provides a substrate for genetic evolution. Tandem duplication of smaller regions involving parts of genes is now recognized as a contributor to the mutation spectrum that results in genetic disease. In this review, more than 30 unrelated partial gene duplications that have been implicated in the genesis of human genetic disease are presented and the pathogenic effects and frequency of such duplications are summarized. The mechanisms of duplication formation are analyzed with special emphasis on the molecular details of the nucleotide sequences at the duplication junctions. Evidence to date suggests that duplication may arise from either homologous (Alu-Alu) recombination or nonhomologous recombination, the latter possibly mediated by topoisomerases. For the dystrophin gene, in which most duplications have been identified, these recombination events are intrachromosomal, suggesting that unequal sister chromatid exchange is the major mechanism.  相似文献   

15.
Twelve mammalian somatic cell lines, some of them DNA damage-sensitive mutants paired with their respective wild-type parental lines, were assayed for their ability to catalyze extrachromosomal, intermolecular homologous recombination between pSV2neo plasmid recombination substrates. All of the somatic cell lines analyzed are capable of catalyzing homologous recombination; however, there is a wide range of efficiencies with which they do so. Five human cell lines display a fourfold range of recombination frequencies, and six hamster cell lines vary almost 20-fold. Linearizing one of the recombination substrates stimulates recombination in all but one of the cell lines. Two of the three paired mutant cell lines display a threefold reduction in their ability to catalyze homologous recombination when compared to their respective parental cell lines, indicating that the mutations that render them sensitive to DNA damaging agents might also play a role in homologous recombination.  相似文献   

16.
The moss Physcomitrella patens is the only land plant known to date with highly efficient homologous recombination in its nuclear DNA, making it a unique model for plant functional genomics approaches. For high-throughput production of knockout plants, a robust transformation system based on polyethylene glycol-mediated transfection of protoplasts was developed and optimised. Both the DNA conformation and pre-culture of plants used for protoplast isolation significantly affected transformation efficiencies. Employing a newly developed PCR high-throughput method, the gene-targeting efficiency in more than 1,000 plants transformed with different cDNA-based knockout constructs was determined and analysed with regard to the length and intron/exon structure of the homologous gene locus. Different targeting constructs, each containing an identical selectable marker gene, were applied as batch DNA in a single transformation experiment and resulted in double-knockout plants. Thus, the fast and efficient generation of multiple targeted gene-knockouts is now feasible in Physcomitrella.Communicated by U. Kück  相似文献   

17.
DNA repair pathways involved in anaphase bridge formation   总被引:1,自引:0,他引:1  
Cancer cells frequently exhibit gross chromosomal alterations such as translocations, deletions, or gene amplifications an important source of chromosomal instability in malignant cells. One of the better-documented examples is the formation of anaphase bridges-chromosomes pulled in opposite directions by the spindle apparatus. Anaphase bridges are associated with DNA double strand breaks (DSBs). While the majority of DSBs are repaired correctly, to restore the original chromosome structure, incorrect fusion events also occur leading to bridging. To identify the cellular repair pathways used to form these aberrant structures, we tested a requirement for either of the two major DSB repair pathways in mammalian cells: homologous recombination (HR) and nonhomologous end joining (NHEJ). Our observations show that neither pathway is essential, but NHEJ helps prevent bridges. When NHEJ is compromised, the cell appears to use HR to repair the break, resulting in increased anaphase bridge formation. Moreover, intrinsic NHEJ activity of different cell lines appears to have a positive trend with induction of bridges from DNA damage.  相似文献   

18.
The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected, patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression, avoiding the risk of insertional mutagenesis by therapeutic vectors, and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However, gene targeting in human pluripotent cells has remained challenging and inefficient. Recently, engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs, raising the prospect of using this technology to correct disease causing mutations. Here, we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions, we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient, transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications.  相似文献   

19.
A major goal of current cancer research is to understand the functional consequences of mutations in recombinational DNA repair genes. The introduction of artificial recombination substrates into living cells has evolved into a powerful tool to perform functional analysis of DNA double strand break (DSB) repair. Here, we review the principles and practice of current plasmid assays with regard to the two major DSB repair pathways, homologous recombination and nonhomologous end-joining. A spectrum of assay types is available to assess repair in a wide variety of cell lines. However, several technical challenges still need to be overcome. Understanding the alterations of DSB repair in cancers will ultimately provide a rational basis for drug design that may selectively sensitize tumor cells to ionizing radiation and chemotherapy, thereby achieving therapeutic gain.  相似文献   

20.
Recent studies suggest a crucial role for homologous recombination (HR) in repairing replication-associated DNA lesions. In mammals, the Mus81 endonuclease and the Fanconi anemia (FA) pathway have been implicated in HR repair; however, their functional relationship has remained unexplored. Here, we knockout the genes for Mus81 and FANCB, a component of the FA core complex, in the human Nalm-6 cell line. We show that Mus81 plays an important role in cell proliferation to suppress cell death when FANCB is missing, indicating a functional linkage between Mus81 and the FA pathway. In DNA cross-link repair, roles for Mus81 and the FA pathway appear to have an overlapping function. Intriguingly, Mus81 and FANCB act independently in surviving exposure to camptothecin (CPT). Although CPT-induced FANCD2 and Mus81 foci co-localize with Rad51, loss of Mus81, but not FANCB, results in significantly decreased levels of spontaneous and CPT-induced sister chromatid exchanges (SCEs). In addition, Mus81, unlike FANCB, has no significant role in gene targeting as well as in repairing hydroxyurea (HU)-induced stalls of replication forks. Collectively, our results provide the first evidence for differential functions of Mus81 and the FA pathway in repair of DNA damage during replication in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号