首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this planning study was to determine whether intensity-modulated radiation therapy (IMRT) reduces the radiation dose to organs at risk (OAR) when compared with 3D conventional radiation therapy (3D-CRT) in patients with vulvar cancer treated by irradiation. This study also investigated the use of sequential IMRT boost (seq-IMRT) and simultaneous integrated boost (SIB-IMRT) for dose escalation in the treatment of locally advanced vulvar cancer. Five vulvar cancer patients treated in the postoperative setting and 5 patients treated with definitive intent (def-group) were evaluated. For the postoperative group, 3D-CRT and IMRT plans to a total dose (TD) of 45 Gy were generated. For the def-group, 4 plans were generated: a 3D-CRT and an IMRT plan to a TD of 56.4 Gy, a SIB-IMRT plan to a TD of 56 Gy, and a SIB-IMRT with dose escalation (SIB-IMRT-esc): TD of 67.2 Gy. Mean dose and dose-volume histograms were compared using Student's t-test. IMRT significantly (all p < 0.05) reduced the Dmean, V30, and V40 for all OAR in the adjuvant setting. The V45 was also significantly reduced for all OAR except the bladder. For patients treated in the def-group, all IMRT techniques significantly reduced the Dmean, V40, and V45 for all OAR. The mean femur doses with SIB-IMRT and SIB-IMRT-esc were 47% and 49% lower compared with 3D-CRT. SIB-IMRT-esc reduced the doses to the OAR compared with seq-3D-CRT but increased the Dmax. for the small bowel, rectum, and bladder. IMRT reduces the dose to the OAR compared with 3D-CRT in patients with vulvar cancer receiving irradiation to a volume covering the vulvar region and nodal areas without compromising the dosimetric coverage of the target volume. IMRT for vulvar cancer is feasible and an attractive option for dose escalation studies.  相似文献   

3.
A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V20Gy and V30Gy dose levels (range, 4.62–17.98%) compared with IMRT plans. The mean dose and D35% of heart for the RA plans were better than the IMRT by 0.5–5.8%. Mean V10Gy and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15–20 Gy) in the range of 14–16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20–25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans.  相似文献   

4.
Quality of life is an important consideration in the treatment of early prostate cancer. Laboratory and clinical data suggest that higher radiation doses delivered to the bulb of penis and proximal penile structures correlates with higher rates of post-radiation impotence. The goal of this investigation was to determine if intensity-modulated radiation therapy (IMRT) spares dose to the penile bulb while maintaining coverage of the prostate. 10 consecutive patients with clinically organ confined prostate cancer were planned with 3D conformal radiation therapy (3D-CRT) or IMRT to give a dose of 74 Gy without specifically constraining the plans to spare the penile bulb. All 10 patients were ultimately treated with IMRT. Dose-volume histograms were evaluated and the doses to prostate, rectum, bladder and penile bulb were compared. IMRT reduced the mean penile bulb doses compared with 3D-CRT (33.2 Gy vs 48.9 Gy, p<0.001), the percentage of penile bulb receiving over 40 Gy (37.7% vs 67.2%, p<0.001) and the dose received by >95% of penile bulb (5.3 Gy vs 11.7 Gy, p=0.003). Maximum penile bulb doses were higher with IMRT (81.2 Gy vs 73.1 Gy, p<0.001) although the volume of this high dose region was small. Both methods resulted in similar coverage of the prostate. The volume of rectum receiving 70 Gy was significantly reduced with IMRT (18.4% vs 21.9%, p=0.003) but the volumes of bladder receiving 70 Gy were similar (p=0.3). IMRT may potentially reduce long term sexual morbidity by reducing the dose to the majority of the penile bulb.  相似文献   

5.
《Medical Dosimetry》2014,39(2):152-158
The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies including gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V10) or 20 Gy (V20) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V5 and D5). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery time, V-MAT is significantly more efficient for APBI than for conventional 3D-CRT and static-beam IMRT.  相似文献   

6.
目的 探讨腮腺癌术后高危复发区用何种照射方法可以更有效的使靶区剂量均匀及更好的保护危及器官.方法 对8例腮腺癌术后患者设计治疗计划,处方剂量为95%计划靶区(PTV)60 Gy/30次.对常规放疗、二维适形放疗(2D-CRT)、三维适形放疗(3D-CRT)和调强放疗(IMRT)等放射治疗技术的腮腺癌术后靶区进行放疗计划设计,分析比较各种治疗计划靶区适形度和在保护危及器官等方面的优劣.结果 在2D-CRT时,以计算点深度取3.5 cm,电子线能量采取12 MeV及X射线/电子射线(X/E)剂量比为1∶2时靶区的适形度和均匀度较好,危及器官的受量较低.与2D-CRT比较,常规放疗照射野能够较好地包括CT断层图像上勾画的靶区.与2D-CRT及3D-CRT相比,IMRT计划有最好的靶区适形度及均匀度,同时对危及器官有较好的保护作用.结论 X射线与电子线混合线束照射时,剂量计算点深度取3.5 cm左右、电子线能量采取12 MeV及X/E剂量比为1∶2时,靶区的适形度和均匀度较好,对正常组织的保护较好,但具体患者最好用计划系统来选择以上指标.常规放疗按解剖标志确定的照射野能够较好地包括三维靶区.IMRT计划的靶区适形度及均匀度最好,并且危及器官受量较低,在腮腺癌术后放射治疗中IMRT技术是值得推广并普及的放射治疗技术.  相似文献   

7.
Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range (<10 Gy) in comparison to the AP/PA plan; however, the IMRT plan irradiated a smaller liver volume within the higher dose region (>10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits. In conclusion, our study suggests a dosimetric benefit of IMRT over conventional planning, and suggests an important role for IMRT in the neoadjuvant treatment of gastric cancer.  相似文献   

8.
Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range (<10 Gy) in comparison to the AP/PA plan; however, the IMRT plan irradiated a smaller liver volume within the higher dose region (>10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits. In conclusion, our study suggests a dosimetric benefit of IMRT over conventional planning, and suggests an important role for IMRT in the neoadjuvant treatment of gastric cancer.  相似文献   

9.
The purpose of this report is to communicate the observed advantage of intensity-modulated radiotherapy (IMRT) in a patient with bilateral metallic hip prostheses. In this patient with early-stage low-risk disease, a dose of 74 Gy was planned in two phases--an initial 50 Gy to the prostate and seminal vesicles and an additional 24 Gy to the prostate alone. Each coplanar beam avoided the prosthesis in the beam's eye view. Using the same target expansions for each phase, IMRT and 3D-conformal radiotherapy (CRT) plans were compared for target coverage and inhomogeneity as well as dose to the bladder and rectum. The results of the analysis demonstrated that IMRT provided superior target coverage with reduced dose to normal tissues for both individual phases of the treatment plan as well as for the composite treatment plan. The dose to the rectum was significantly reduced with the IMRT technique, with a composite V 80 of 35% for the IMRT plan versus 70% for 3D-CRT plan. Similarly, the dose to the bladder was significantly reduced with a V 80 of 9% versus 20%. Overall, various dosimetric parameters revealed the corresponding 3D-CRT plan would not have been acceptable. The results indicate significant success with IMRT in a clinical scenario where there were no curative alternatives for local treatment other than external beam radiotherapy. Therefore, definitive external beam radiation of prostate cancer patients with bilateral prosthesis is made feasible with IMRT. The work described herein may also have applicability to other groups of patients, such as those with gynecological or other pelvic malignancies.  相似文献   

10.
11.
Radiotherapy of the posterior fossa for medulloblastoma treatment can induce ototoxicity, especially when combined with cisplatin chemotherapy. Sensorineural hearing loss can be severe enough to cause permanent disability, which may compromise cognitive development in paediatric patients. This study evaluates the sparing of the cochlea in conventional radiotherapy, three-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT). CT scans of three patients were used to plan posterior fossa radiotherapy using coplanar beam arrangements. The posterior fossa and the cochlea were contoured as well as other organs-at-risk (non-posterior fossa brain, lenses, optic nerves, pituitary and cervical spinal cord). Three treatment plans were compared: conventional two-dimensional treatment (parallel-opposed lateral pair); 3D-CRT (two wedged posterior oblique fields); and a four-field coplanar IMRT plan. 3D-CRT and IMRT reduced cochlear doses to less than 70% of the mean target dose. These plans also reduced dose to the non-posterior fossa brain and cervical spinal cord. IMRT showed no advantage over 3D-CRT in sparing the optic nerves and lenses, compared with 3D-CRT. Normal tissue doses were higher in both conformal techniques than in the IMRT plans. Conformal techniques reduced the dose to the cochlea, non-posterior fossa brain and cervical spinal cord. The small size and proximity to the planning target volume (PTV) of the cochlea limited the effectiveness of the IMRT plan. Coplanar 3D-CRT was judged superior to coplanar IMRT, particularly in children, because it achieved adequate sparing of the cochlea and anterior cranial structures, such as the lenses and optic nerves, without compromising the dose to the posterior fossa.  相似文献   

12.
Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non–small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose ≥60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control.  相似文献   

13.
Purpose: To investigate the dose distribution in active bone marrow of patients undergoing intensity-modulated radiotherapy (IMRT) for prostate cancer and compare it to the distribution in the same patients, if they had been treated using conformal plans, in order to develop criteria for optimization to minimize the estimated risk of secondary leukemia. Patients and Methods: Mean bone marrow doses were calculated for ten patients with localized prostate cancer who underwent whole-pelvis IMRT and compared to three-dimensional conformal (3-D CRT) plans prepared for the same patients. Also for comparison, the IMRT and 3-D CRT plans were produced to simulate the treatment of the prostate gland only. To measure the dose to extrapelvic bone marrow, three thermoluminescent diode (TLD) chips were placed in the middle of the sternum region inside the Rando phantom. Results: For both the pelvic and prostate-only volumes, the IMRT plans were superior to 3-D CRT plans in reducing the high dose volume to the rectum, the bladder and the small bowel while maintaining acceptable coverage of the planning target volume (PTV). For the pelvic treatment group the IMRT plans, compared to 3-D CRT, reduced the high dose volume (> 20 Gy) to os coxae, which is the main contributor of dose to pelvic bone marrow, but increased the middle dose volume (10–20 Gy). No statistically significant differences were observed for lower dose volumes (< 5 Gy). For the prostate-only treatment the IMRT plan increased the high dose volume and slightly decreased the low dose volume of pelvic bone marrow. However, for both treatments the leakage dose to extrapelvic sites was higher by a factor of 2 in IMRT plans. Conclusion: There are significant differences in the dose-volume histograms of bone marrow doses from 3-D CRT and from IMRT. Pronounced dose inhomogeneity reduces the risk of leukemia compared to homogeneous radiation exposure of the bone marrow. The mean bone marrow dose is therefore not a useful criterion to judge plan quality, since scattered low doses to distant sites may be more critical than the high dose volumes receiving > 10 Gy. The number of monitor units needed to deliver an IMRT plan affects leakage dose and their incorporation into planning constraints should be considered.  相似文献   

14.
The aim of this study was to compare intensity-modulated radiation therapy (IMRT) with 3D conformal technique (3D-CRT), with respect to target coverage and irradiation of organs at risk for high dose postoperative radiotherapy (PORT) of the prostate fossa. 3D-CRT and IMRT treatment plans were compared with respect to dose to the rectum and bladder. The dosimetric comparison was carried out in 15 patients considering 2 different scenarios: (1) exclusive prostate fossa irradiation, and (2) pelvic node irradiation followed by a boost on the prostate fossa. In scenario (1), a 3D-CRT plan (box technique) and an IMRT plan were calculated and compared for each patient. In scenario (2), 3 treatment plans were calculated and compared for each patient: (a) 3D-CRT box technique for both pelvic (prophylactic nodal irradiation) and prostate fossa irradiation (3D-CRT only); (b) 3D-CRT box technique for pelvic irradiation followed by an IMRT boost to the prostatic fossa (hybrid 3D-CRT and IMRT); and (c) IMRT for both pelvic and prostate fossa irradiation (IMRT only). For exclusive prostate fossa irradiation, IMRT significantly reduced the dose to the rectum (lower Dmean, V50%, V75%, V90%, V100%, EUD, and NTCP) and the bladder (lower Dmean, V50%, V90%, EUD and NTCP). When prophylactic irradiation of the pelvis was also considered, plan C (IMRT only) performed better than plan B (hybrid 3D-CRT and IMRT) as respect to both rectum and bladder irradiation (reduction of Dmean, V50%, V75%, V90%, equivalent uniform dose [EUD], and normal tissue complication probability [NTCP]). Plan (b) (hybrid 3D-CRT and IMRT) performed better than plan (a) (3D-CRT only) with respect to dose to the rectum (lower Dmean, V75%, V90%, V100%, EUD, and NTCP) and the bladder (Dmean, EUD, and NTCP). Postoperative IMRT in prostate cancer significantly reduces rectum and bladder irradiation compared with 3D-CRT.  相似文献   

15.
To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMAT plans successfully achieved better target dose conformity, reduced the V20/30, and mean dose of the left kidney, as well as the V20/30 of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V20 of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.  相似文献   

16.
《Medical Dosimetry》2014,39(3):256-260
Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.  相似文献   

17.
目的 比较三维适形放疗(3D-CRT)与5野、7野调强适形放疗(IMRT)的剂量分布,以探讨IMRT对直肠癌术前放疗的价值。方法 对10例术前新辅助放化疗直肠癌患者,分别设计3D- CRT、5野IMRT、7野IMRT计划,应用剂量体积直方图(DVH),比较3种治疗计划的靶区适形度指数(CI)、不均匀性指数(HI)和正常器官受量。结果 适形度指数(CI)7野IMRT计划>5野IMRT>3D- CRT,不均匀性指数(HI)5野IMRT计划>7野IMRT>3D- CRT。5野、7野IMRT计划比3D- CRT均可以减少高剂量照射小肠、膀胱、股骨头体积,7野IMRT计划比5野可以减少高剂量照射的骨髓和膀胱的体积。结论 直肠癌术前放疗中IMRT计划在靶区剂量适形度方面均优于3D- CRT计划,对正常组织的保护也存在明显的优势。7野IMRT计划较5野IMRT计划技术有更好的剂量适形度与剂量均匀性。  相似文献   

18.
19.

Purpose

The goal of the present work was to assess the potential advantage of intensity-modulated radiotherapy (IMRT) over three-dimensional conformal radiotherapy (3D-CRT) planning in pelvic Ewing’s sarcoma.

Patients and methods

A total of 8 patients with Ewing sarcoma of the pelvis undergoing radiotherapy were analyzed. Plans for 3D-CRT and IMRT were calculated for each patient. Dose coverage of the planning target volume (PTV), conformity and homogeneity indices, as well as further parameters were evaluated.

Results

The average dose coverage values for PTV were comparable in 3D-CRT and IMRT plans. Both techniques had a PTV coverage of V95 >?98?% in all patients. Whereas the IMRT plans achieved a higher conformity index compared to the 3D-CRT plans (conformity index 0.79?±?0.12 vs. 0.54?±?0.19, p?=?0.012), the dose distribution across the target volumes was less homogeneous with IMRT planning than with 3D-CRT planning. This difference was statistically significant (homogeneity index 0.11?±?0.03 vs. 0.07?±?0.0, p?=?0.035). For the bowel, Dmean and D1%, as well as V2 to V60 were reduced in IMRT plans. For the bladder and the rectum, there was no significant difference in Dmean. However, the percentages of volumes receiving at least doses of 30, 40, 45, and 50 Gy (V30 to V50) were lower for the rectum in IMRT plans. The volume of normal tissue receiving at least 2 Gy (V2) was significantly higher in IMRT plans compared with 3D-CRT, whereas at high dose levels (V30) it was significantly lower.

Conclusion

Compared to 3D-CRT, IMRT showed significantly better results regarding dose conformity (p?=?0.012) and bowel sparing at dose levels above 30 Gy (p?=?0.012). Thus, dose escalation in the radiotherapy of pelvic Ewing’s sarcoma can be more easily achieved using IMRT.  相似文献   

20.
The purpose of this study was to assess the efficacy and toxicity of intensity-modulated radiation therapy (IMRT) in the treatment of gastric cancer. Seven patients with gastric cancer were treated with IMRT. Six patients (all Stage III) received post-operative chemoradiotherapy with concurrent 5-fluorouracil and leucovorin. One received planned pre-operative radiation, though did not proceed to surgery. All patients were planned to receive 50.4 Gy in 1.8 Gy fractions. IMRT planning was compared with opposed anterior-posterior: posterior-anterior (AP/PA) and 3-field conventional three-dimensional plans. When compared with either AP/PA or 3-field plans, IMRT significantly reduced the volume exceeding the threshold dose of the liver and at least one kidney. Target coverage with IMRT was excellent, with 98+/-1% of the target receiving >or=100% of the dose. Compared with AP/PA and 3-field plans, IMRT plans had a greater percentage of target receiving the prescribed dose, but also a greater volume receiving >110% of the dose. IMRT was well tolerated; no patients developed acute gastrointestinal toxicity greater than grade 2. All seven experienced grade 2 nausea, three had grade 2 diarrhoea and two had grade 2 oesophagitis. Weight loss ranged from 0-12% (mean 6.1% and median 5.8%). IMRT in the treatment of gastric malignancies reduces the mean and above threshold doses to critical normal tissues. In an initial cohort of seven patients, 50.4 Gy delivered by IMRT is well tolerated and safe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号