首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactoferrin (LF) plays various anti-inflammatory roles in inflammation experimentally induced by lipopolysaccharides (LPS). But the protective effects of LF on LPS-induced acute lung injury (ALI) have not been elucidated. In this study, we aimed to study the effects of LF on ALI caused by LPS in mice. At 1h before or after LPS injection, an intraperitoneal injection of LF (5mg/body) was administered. Lung specimens and the bronchoalveolar lavage fluid (BALF) were isolated for histopathological examinations and biochemical analyses 12h after LPS exposure. We found that both prophylactic and therapeutic administration of LF significantly decreased the W/D ratio of the lung and protein concentration in the BALF. LF significantly reduced the pulmonary myeloperoxidase activity and the number of total cells in the BALF 12h after LPS challenge. LF treatment markedly attenuated lung edema, alveolar hemorrhage and inflammatory cells infiltration. Moreover, LF also decreased the production of TNF-α and increased interleukin-10 in the BALF. These results firstly indicate that LF may protect against LPS-induced ALI in mice.  相似文献   

2.
Recent studies show that mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways are two pivotal roles contributing to the development of lipopolysaccharide (LPS)-induced acute lung injury (ALI). The present study aimed to investigate the protective effect of kaempferol (Kae), a naturally occurring flavonoid compound, on ALI and explore its possible mechanisms. Male BALB/c mice with ALI, induced by intranasal instillation of LPS, were treated or not with Kae (100mg/kg, intragastrically) 1h prior to LPS exposure. Kae treatment attenuated pulmonary edema of mice with ALI after LPS challenge, as it markedly decreased the lung W/D ratio of lung samples, protein concentration and the amounts of inflammatory cells in BALF. Similarly, LPS mediated overproduction of proinflammatory cytokines in BALF, including TNF-α, IL-1β and IL-6, was strongly reduced by Kae. Histological studies demonstrated that Kae substantially inhibited LPS-induced alveolar wall thickness, alveolar hemorrhage and leukocytes infiltration in lung tissue with evidence of reduced myeloperoxidase (MPO) activity. Kae also efficiently increased superoxide dismutase (SOD) activity of lung sample when compared with LPS group, which was obviously reduced by LPS administration. In addition, Western blot analysis indicated that the activation of MAPKs and NF-κB signaling pathways stimulated by LPS was significantly blocked by Kae. Taken together, our results suggest that Kae exhibits a protective effect on LPS-induced ALI via suppression of MAPKs and NF-κB signaling pathways, which may involve the inhibition of tissue oxidative injury and pulmonary inflammatory process.  相似文献   

3.
1. The present study was designed to determine whether pravastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, could attenuate acute lung injury (ALI) induced by lipopolysaccharide (LPS) in BALB/c mice. 2. Acute lung injury was induced successfully by intratracheal administraiton of LPS (3 microg/g) in BALB/c mice. Pravastatin (3, 10 and 30 mg/kg, i.p.) was administered to mice 24 h prior to and then again concomitant with LPS exposure. 3. Challenge with LPS alone produced a significant increase in lung index and the wet/dry weight ratio compared with control animals. Pulmonary microvascular leakage, as indicated by albumin content in the bronchoalveolar lavage fluid (BALF) and extravasation of Evans blue dye albumin into lung tissue, was apparently increased in LPS-exposed mice. Lipopolysaccharide exposure also produced a significant lung inflammatory response, reflected by myeloperoxidase activity and inflammatory cell counts in BALF. Furthermore, histological examination showed that mice exposed to LPS also exhibited prominent inflammatory cell infiltration and occasional alveolar haemorrhage. 4. Pravastatin (3, 10 or 30 mg/kg, i.p.) produced a significant reduction in multiple indices of LPS-induced pulmonary vascular leak and inflammatory cell infiltration into lung tissue. Elevated tumour necrosis factor (TNF)-alpha levels in lung tissue homogenates of ALI mice were significantly decreased after administration of 10 or 30 mg/kg pravastatin. 5. These findings confirm significant protection by pravastatin against LPS-induced lung vascular leak and inflammation and implicate a potential role for statins in the management of ALI. The inhibitory effect of pravastatin was associated with its effect in decreasing TNF-alpha.  相似文献   

4.
Acute lung injury (ALI) is a clinical syndrome characterized by respiratory failure and acute inflammatory response. Myeloid differentiation protein 2 (MD2) has been reported to play a pivotal role in the recognition of LPS and LPS-mediates inflammatory response. There have been no clinically effective therapeutic drugs for ALI. L6H9, an inhibitor of MD2, showed anti-inflammatory effects and cardiac protective activity. However, its effect on ALI has not been elucidated. In this study, intratracheal instillation of LPS was employed to induce ALI in rats. L6H9 pretreatment attenuates LPS-induced pathological variations in lung tissue and pulmonary edema. LPS instillation enhanced lung microvascular permeability, thereby causing inflammatory cells flow into bronchoalveolar lavage fluid (BALF). However, L6H9 inhibited the LPS-induced upregulation of total protein concentration and the number of inflammatory cells in BALF. In the meantime, macrophages infiltration in lung tissue induced by LPS was also mitigated by L6H9 treatment. Furthermore, L6H9 suppressed LPS-induced inflammatory cytokines expression in BALF, serum, and lung tissue. It is noteworthy that LPS-induced MD2/TLR4 complex formation was inhibited by L6H9 in lung tissue. On the whole, these results show that L6H9 can attenuate LPS-induced ALI in vivo by targeting MD2. Our study provide new candidate for the treatment of ALI.  相似文献   

5.
Acute lung injury (ALI) is a serious clinical syndrome with a high rate of mortality. In this study, the effects of apocynin, a NADPH-oxidase (NOX) inhibitor on lipopolysaccharide (LPS)-induced ALI in rats were investigated. Male Sprague–Dawley rats were treated with apocynin (10 mg/kg) intraperitoneally (i.p.) 1 h before LPS injection (10 mg/kg, i.p.). The results revealed that apocynin attenuated LPS-induced ALI as it decreased total protein content, lactate dehydrogenase (LDH) activity and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid (BALF), In addition, apocynin significantly increased superoxide dismutase (SOD) and reduced glutathione (GSH) activities with significant decrease in the lung malondialdehyde (MDA) content as compared to LPS group in lung tissue and decreased pulmonary artery contraction induced by LPS. It also upregulated mRNA expression of inhibitory protein kappaB-alpha (NFκBia) and downregulated mRNA expression of Toll-Like receptor 4 (TLR4) and decreased inflammation observed in lung tissues.Collectively, these results demonstrate the protective effects of apocynin against the LPS-induced ALI in rats through its antioxidant and antiinflammatory effect that may be attributed to the decrease in mRNA expression of TLR4 and increasing that of NFκBia.  相似文献   

6.
7.
BACKGROUND AND PURPOSE: Intravenous administration of recombinant human activated protein C (rhAPC) is known to reduce lipopolysaccharide (LPS)-induced pulmonary inflammation by attenuating neutrophil chemotaxis towards the alveolar compartment. Ideally, one would administer rhAPC in pulmonary inflammation at the site of infection to minimize the risk of systemic bleeding complications. In this study, we therefore assessed the effect of inhaled rhAPC in a murine model of acute lung injury. EXPERIMENTAL APPROACH: Mice were exposed to LPS (0.5 mg kg(-1): intranasally) to induce acute lung injury. 30 minutes before and 3 hours after LPS exposure mice were subjected to vehicle or rhAPC inhalation (25 or 100 microg per mouse in each nebulization). In order to establish whether rhAPC inhalation affects neutrophil recruitment, neutrophil migration was determined in vitro using a trans-well migration assay. KEY RESULTS: rhAPC inhalation dose-dependently decreased LPS-induced coagulation and inflammation markers in bronchoalveolar lavage fluid (BALF), reduced protein leakage into the alveolar space and improved lung function. In contrast, rhAPC did not prevent LPS-induced neutrophil recruitment into the alveolar space.Neutrophil migration in vitro towards FCS or interleukin (IL)-8 was significantly inhibited by pretreatment with rhAPC (0.01-10 microg ml(-1)], whereas rhAPC (10 microg ml(-1)) added to the chemoattractant (modelling for topical rhAPC administration) did not affect neutrophil migration towards FCS or IL-8. CONCLUSIONS AND IMPLICATIONS: rhAPC inhalation significantly diminished LPS-induced pulmonary inflammation. The benefit of inhaled rhAPC appeared not to involve attenuation of neutrophil recruitment, in contrast to its effects after intravenous administration.  相似文献   

8.
Acute lung injury (ALI) in critically ill patients remains the leading cause of mortality and morbidity. Lipopolysaccharide (LPS) is a key mediator of lung injury. This study investigates the protective effects and mechanisms of luteolin in intratracheal instillation of LPS (100 μg)-induced ALI in mice. Pretreatment of mice with 70 μmol/kg luteolin significantly restores LPS-induced decrease in oxygen pressure and increase in carbon dioxide in arterial blood. The histopathological study established 70 μmol/kg luteolin pretreatment markedly attenuates lung histopathological changes, such as haemorrhaging, interstitial edema, and infiltration of polymorphonuclear neutrophils (PMNs) into the lung parenchyma and alveolar spaces. Sufficient evidence for luteolin (35 and 70 μmol/kg) suppresses activation and infiltration of PMNs is obtained in expression of surface marker CD11b and Ly6G on cells in bronchoalveolar lavage fluid (BALF) cells and myeloperoxidase activity in lung tissue. Furthermore, luteolin reduces the activity of catalase and superoxide dismutase, and the level of oxidative damage, and lipid peroxidation, in lung tissue. In addition, the secretion of TNF-α, KC, and ICAM-1 in the BALF after LPS challenge are also inhibited by luteolin. Moreover, luteolin reduced LPS-induced activation of MAPK and NFκB pathways. Therefore, luteolin is a potential protective antagonists for LPS-induced ALI in mice.  相似文献   

9.
The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO2/NO3) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO2/NO3 levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-α, TGF-β1 and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells infiltration and hence ROS generation and regulate cytokine effects.  相似文献   

10.
Acute respiratory distress syndrome (ARDS) is a devastating disorder that is characterized by increased vascular endothelial permeability and inflammation. Unfortunately, no effective treatment beyond supportive care is available for ARDS. Astilbin, a flavonoid compound isolated from Rhizoma Smilacis Glabrae, has been used for anti-hepatic, anti-arthritic, and anti-renal injury treatments. This study examined the effects of Astilbin on pulmonary inflammatory activation and endothelial cell barrier dysfunction caused by Gram-negative bacterial endotoxin lipopolysaccharide (LPS). Endothelial cells from human umbilical veins or male Kunming mice were pretreated with Astilbin 24 h before LPS stimulation. Results showed that Astilbin significantly attenuated the pulmonary histopathological changes and neutrophil infiltration 6 h after the LPS challenge. Astilbin suppressed the activities of myeloperoxidase and malondialdehyde, as well as the expression of tumor necrosis factor-α and interleukin-6 in vivo and in vitro. As indices of pulmonary edema, lung wet-to-dry weight ratios, were markedly decreased by Astilbin pretreatment. Western blot analysis also showed that Astilbin inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathways in lung tissues. Furthermore, Astilbin significantly inhibited the activity of heparanase and reduced the production of heparan sulfate in the blood serum as determined by ELISA. These findings indicated that Astilbin can alleviate LPS-induced ARDS, which potentially contributed to the suppression of MAPK pathway activation and the degradation of endothelial glycocalyx.  相似文献   

11.

Aim:

To study the effects of tanshinone IIA (TIIA) on lipopolysaccharide (LPS)-induced acute lung injury in mice and the underlying mechanisms.

Methods:

Mice were injected with LPS (10 mg/kg, ip), then treated with TIIA (10 mg/kg, ip). Seven hours after LPS injection, the lungs were collected for histological study. Protein, LDH, TNF-α and IL-1β levels in bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) activity in lungs were measured. Cell apoptosis and Bcl-2, caspase-3, NF-κB and HIF-1α expression in lungs were assayed.

Results:

LPS caused marked histological changes in lungs, accompanied by significantly increased lung W/D ratio, protein content and LDH level in BALF, and Evans blue leakage. LPS markedly increased neutrophil infiltration in lungs and inflammatory cytokines in BALF. Furthermore, LPS induced cell apoptosis in lungs, as evidenced by increased TUNEL-positive cells, decreased Bcl-2 content and increased cleaved caspase-3 content. Moreover, LPS significantly increased the expression of NF-κB and HIF-1α in lungs. Treatment of LPS-injected mice with TIIA significantly alleviated these pathological changes in lungs.

Conclusion:

TIIA alleviates LPS-induced acute lung injury in mice by suppressing inflammatory responses and apoptosis, which is mediated via inhibition of the NF-κB and HIF-1α pathways.  相似文献   

12.
sRAGE对脂多糖介导的小鼠急性肺损伤的保护作用   总被引:1,自引:0,他引:1  
目的探讨可溶性晚期糖基化终末产物受体(sRAGE)对脂多糖(LPS)介导的小鼠急性肺损伤(ALI)的保护作用。方法向小鼠气管内滴注LPS建立ALI模型,造模后1h sRAGE组腹腔注射100μg sRAGE,于24 h留取标本,检测各组动物支气管肺泡灌洗液(BALF)中白细胞及中性粒细胞数量、蛋白浓度和肿瘤坏死因子(TNF)α-水平,并对肺组织进行病理学观察。结果LPS滴注24 h后,BALF中白细胞总数和中性粒细胞数量显著增加,蛋白含量升高,TNFα-释放增多,肺组织出现典型的ALI病理损害,sRAGE干预显著降低了BALF中白细胞及中性粒细胞数量、蛋白含量和TNFα-水平,减轻了LPS引起的肺组织病理改变。结论应用sRAGE阻止RAGE信号通过抑制LPS引起的肺内中性粒细胞聚集、肺毛细血管渗出、炎症因子TNFα-释放,对ALI发挥保护作用。  相似文献   

13.
Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been reported to have potent anti-inflammatory properties. However, the effect of taraxasterol on lipopolysaccharide (LPS)-induced mice acute lung injury has not been investigated. The aims of this study were to investigate whether taraxasterol could ameliorate the inflammation response in LPS-induced acute lung injury and to clarify the possible mechanism. Male BALB/c mice were pretreated with taraxasterol 1 h before intranasal instillation of LPS. 7 h after LPS administration, the myeloperoxidase (MPO) in lung tissues, lung wet/dry ratio and inflammatory cells in the bronchoalveolar lavage fluid (BALF) were detected. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) in the BALF were measured by ELISA. The extent of phosphorylation of IκB-α, p65 NF-κB, p46–p54 JNK, p42–p44 ERK, and p38 were determined by western blotting. The results showed that taraxasterol attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), lung wet/dry ratio, and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, western blotting results showed that taraxasterol inhibited the phosphorylation of IκB-α, p65 NF-κB, p46–p54 JNK, p42–p44 ERK, and p38 caused by LPS. Our data suggest that anti-inflammatory effects of taraxasterol against the LPS-induced ALI may be due to its ability of inhibition of the NF-κB and MAPK signaling pathways.  相似文献   

14.
Endotoxemia leads to the induction of inducible nitric oxide synthase (NOS-2) and increased expression of numerous inflammatory mediators contributing to endotoxin-induced acute lung injury. We tested the hypothesis that supplementation of nitric oxide (NO) by the novel NO donor S-nitroso human serum albumin (S-NO-HSA) given after lipopolysaccharide (LPS) challenge may reduce NOS-2 expression, lung inflammation and acute lung injury. Rats were divided into four groups: sham-operated (no treatment), LPS, LPS+HSA (human serum albumin), and LPS+S-NO-HSA. LPS was administered intravenously (20 mg kg(-1)) resulting in acute lung injury and a high mortality rate within 6 h (>90%). LPS-induced lung injury was characterized by an increased lung edema (lung wet/dry weight ratio), pulmonary neutrophil infiltration (myeloperoxidase activity, MPO) as well as a robust inflammatory response [increased expression of intercellular adhesion molecule-1 (ICAM-1), NOS-2, and cyclooxygenase-2 (COX-2)]. Infusion of S-NO-HSA or HSA was started 2 h after LPS and continued for 4 h (total dose of 72 mg kg(-1)) at a rate of 300 mug kg(-1) min(-1). S-NO-HSA but not HSA prolonged survival of endotoxemic rats, reduced the hypotensive response to LPS, minimized LPS-induced lung edema and injury, normalized MPO activity as well as diminished lung expression of pro-inflammatory molecules such as ICAM-1, NOS-2, and COX-2. Continuous supplementation of NO by S-NO-HSA after LPS challenge prevents induction of NOS-2, provides significant protection of endotoxin-induced acute lung injury, and prevents early mortality in endotoxic shock in rats. Our results suggest a potential therapeutic role for S-NO-HSA in endotoxemia.  相似文献   

15.
NADPH oxidase (NOX) plays an important role in inflammatory response by producing reactive oxygen species (ROS). The inhibition of NOX has been shown to induce anti‐inflammatory effects in a few experimental models. The aim of this study was to investigate the effects of diphenyleneiodonium (DPI), a NOX inhibitor, on lipopolysaccharide (LPS)‐induced acute lung injury (ALI) in a rat model. Sprague‐Dawley rats were intraperitoneally administered by DPI (5 mg/kg) 30 minutes after intratracheal instillation of LPS (3 mg/kg). After 6 hours, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The NOX activity in lung tissue was significantly increased in LPS‐treated rats. It was significantly attenuated by DPI. DPI‐treated rats showed significant reduction in the intracellular ROS, the number of inflammatory cells, and cytokines (TNF‐α and IL‐6) in BALF compared with LPS‐treated rats. In lung tissue, DPI‐treated rats showed significantly decreased malondialdehyde content and increased activity of glutathione peroxidase and superoxide dismutase compared with LPS‐treated rats. Lung injury score, myeloperoxidase activity, and inducible nitric oxide synthase expression were significantly decreased in DPI‐treated rats compared with LPS‐treated animals. Western blotting analysis demonstrated that DPI significantly suppressed LPS‐induced activation of NF‐κB and ERK1/2 and SAPK/JNK in MAPK pathway. Our results suggest that DPI may have protective effects on LPS‐induced ALI thorough anti‐oxidative and anti‐inflammatory effects which may be due to inactivation of the NF‐κB, ERK1/2, and SAPK/JNK pathway. These results suggest the therapeutic potential of DPI as an anti‐inflammatory agent in ALI.  相似文献   

16.
1. The adult respiratory distress syndrome (ARDS) is an acute lung inflammation developed after direct or indirect contact with pathogenic agents. In the present study, a mouse model was developed to mimic this condition using aerosolized bacterial lipopolysaccharide (LPS) and to investigate the mechanisms involved in the lung inflammatory response. 2. Inhalation of LPS led to a time and dose-dependent increase in tumour necrosis factor-alpha (TNF-alpha) production and neutrophil recruitment into the bronchoalveolar lavage fluid (BALF) of Balb/c mice. Under the same conditions, neutrophil infiltration was also found in the BALF of the LPS-sensitive mouse strain C3H/HeN, but was absent in the LPS-resistant strain C3H/HeJ. Intranasal administration of murine recombinant TNF-alpha also triggered neutrophil recruitment. 3. One hour after inhalation of LPS, half of the maximal level of TNF-alpha was measured in the BALF, but only a few neutrophils were detected at this time. The peak TNF-alpha concentration was reached at 3 h, when the neutrophil amount started to increase. At 24 h, maximal neutrophil number was found in the BALF and TNF-alpha was no longer present. 4. Pretreatment of mice under different experimental conditions demonstrated that: (a) cycloheximide almost completely blocks both neutrophil recruitment and TNF-alpha production; (b) anti TNF-alpha antibodies block neutrophil recruitment; (c) indomethacin or aspirin enhance by two fold neutrophil recruitment; (d) indomethacin significantly increases TNF-alpha production 1 h after inhalation of LPS; (e) dibutyryl cyclic AMP and prostaglandin E2 (PGE2) block both neutrophil recruitment and TNF-alpha production. 5. It is concluded that aerosolized LPS in mice triggers an acute lung inflammation which can be used as a potential model of inhalational ARDS and that, strategies leading to the elevation of cyclic AMP levels in vivo can be effective in modulating LPS-induced TNF-alpha synthesis and neutrophil recruitment.  相似文献   

17.
Lipopolysaccharide (LPS), a component of the cell wall of Gram-negative bacteria, stimulates phagocytes to generate metabolites that play an important role in the pathogenesis of acute lung injury. In this study, the prophylactic effect of liposome-entrapped dexamethasone (L-DEX) was evaluated in an animal acute lung injury model. Rats were pretreated intratracheally with L-DEX or dexamethasone phosphate (DEX) at a dose of 800 microg dexamethasone/kg body weight; 1 hr later, pretreated animals were challenged i.v. with LPS (Escherichia coli 0111:B4, 1 mg/kg body weight) and killed 24 hr later. Challenge of saline-pretreated animals with LPS resulted in lung injury, as evidenced by increases in wet lung weight and decreases in lung angiotensin-converting enzyme and alkaline phosphatase activities, injury markers of pulmonary capillary endothelial and alveolar type II epithelial cells, respectively. Also, LPS injection resulted in significant increases in plasma phospholipase A(2), thromboxane B(2), and leukotriene B(4) concentrations. The LPS challenge also increased pulmonary myeloperoxidase and elastase activities as well as chloramine concentrations, suggestive of neutrophil infiltration and activation of the inflammatory response. Pretreatment of animals with L-DEX was significantly more effective than pretreatment with the free drug in reducing lung inflammation and other lung injuries, as indicated by the appropriate injury markers used in this study. Our results suggested that the pulmonary delivery of liposome-entrapped anti-inflammatory drugs such as dexamethasone improves prophylactic efficacy in counteracting LPS-induced lung injury.  相似文献   

18.
目的探讨应用重组可溶性晚期糖基化终末产物受体(sRAGE)对脂多糖(LPS)介导的急性肺损伤(ALI)小鼠肺内细胞因子水平的影响。方法健康雄性BALB/C小鼠随机分为磷酸盐缓冲液(PBS)组、LPS组和sRAGE组。LPS组和sRAGE组通过气管内滴注LPS(3mg/kg体质量)建立ALI模型,造模后1hsRAGE组腹腔注射100μg重组小鼠sRAGE,各组于24h留取标本,采用Bio-Plex悬浮芯片技术检测支气管肺泡灌洗液(BALF)中8种细胞因子含量,并计数炎症细胞数量和蛋白(TP)含量,对肺组织进行病理学评估。观察sRAGE干预对造模后4h肺组织核因子(NF)-κB P65DNA结合活性的影响。结果 LPS滴注24h后,BALF中8种细胞因子含量均显著升高,白细胞(WBC)总数和中性粒细胞(NEU)数量显著增加,TP含量升高,肺组织出现典型的ALI病理损害。sRAGE干预显著降低了BALF中肿瘤坏死因子(TNF)-α、巨噬细胞炎症蛋白(MIP)-1β和MIP-1α水平,减少了BALF中WBC、NEU数量及TP含量,减轻了LPS引起的肺组织病理改变,并对造模后4hLPS介导的肺内NF-κB活化有抑制作用。结论应用重组sRAGE阻止RAGE信号能调控LPS介导的肺内细胞因子的表达,这构成了sRAGE抑制肺内炎症的重要机制之一。  相似文献   

19.
20.
Diosgenin (Dio), a major active component of steroidal sapogenin of the traditional Chinese herb Dioscorea zingiberensis C.H.Wright, shows various activities including anti-inflammatory, anti-thrombotic activities, anti-cancer properties etc. In the present study, we found that diosgenin significantly suppressed the phosphorylation of lung NF-κB p50/p65 and MAPK/p38 in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice, when given orally at doses of 0.1, 1.0 and 10 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Moreover, diosgenin attenuated the lung histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells. In addition, diosgenin significantly decreased the lung wet to dry weight (W/D) ratio and nitrite/nitrate content at three doses, and also markedly inhibited LPS-induced body temperature decrease and nitrite/nitrate elevation in plasma. Besides, diosgenin could significantly suppress activation of NF-κB p65/p50, p38 and expression of inducible nitric oxide synthase (iNOS) in LPS-induced THP-1 cells. Our findings indicate the potential application of diosgenin for ALI treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号