首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 825 毫秒
1.
The role of the endogenous cannabinoid system in drug addiction   总被引:1,自引:0,他引:1  
This review aims to present the more recent knowledge on the role of the endocannabinoid system in drug addiction. For a long time, dopamine has been consistently associated with the reinforcing effects of most drugs of abuse but, recently, pharmacological evidence points to the possibility that pharmacological management of the endocannabinoid system might not only block the direct reinforcing effect of cannabis, opioids, nicotine and ethanol, but also prevent the relapse to various drugs of abuse including opioids, cocaine, nicotine, alcohol and amphetamine. Preclinical and clinical studies suggest that the manipulation of the endocannabinoid system through the CB(1) receptor antagonist SR-141716A (rimonabant) might constitute a new therapeutical strategy for treating addiction across different classes of abused drugs.  相似文献   

2.
Endocannabinoids and drug dependence   总被引:3,自引:0,他引:3  
Drug dependence is a chronically relapsing disorder, manifested as an intense desire for the drug, with impaired ability to control the urges to take the drug, even at the expense of serious adverse consequences. These behavioral abnormalities develop gradually during repeated exposure to a drug of abuse, and can persist for months or years after discontinuation of use, suggesting that this addiction can be considered a form of drug-induced neural plasticity. Many neurotransmitters, including gamma-aminobutyric acid (GABA), glutamate, acetylcholine, dopamine, serotonin and endogenous opioid peptides, have been implicated in the effects of the various drugs of abuse. Dopamine has been consistently associated with the reinforcing effects of most of them. There is, in addition, a growing body of evidence that the endogenous cannabinoid system might participate in the motivational and dopamine-releasing effects of several drugs of abuse. This review will discuss the latest advances on the mechanisms of cannabinoid dependence and the possible role of the endocannabinoid system in the treatment of addiction, not only to marijuana but also to the other common illicit drugs.  相似文献   

3.
It is well known that stress is a significant risk factor for the development of drug addiction and addiction relapse. Remarkably, the cognitive processes involved in the effects of stress on addictive behavior remain poorly understood. Here it is proposed that stress-induced changes in the neural circuits controlling instrumental action provide a potential mechanism by which stress affects the development of addiction and relapse vulnerability. Instrumental action can be controlled by two anatomically distinct systems: a goal-directed system that involves learning of action-outcome associations, and a habit system that learns stimulus-response associations. The transition from initial voluntary drug use to subsequent involuntary, compulsive drug use represents a switch from goal-directed to habitual control of action. Recent evidence indicates that this switch from goal-directed to habit action can be prompted by stress and stress hormones. We argue (i) that acute stressors reinstate habitual responding to drug-related cues and thus trigger relapse to addictive behavior, and (ii) that prolonged or repeated stress may accelerate the transition from voluntary to involuntary drug use and thus promote the development of addiction. The suggested mechanism encompasses cognitive processes that may contribute to the effects of stress on addictive behavior and could have important implications for the treatment of addiction and the prevention of relapse.  相似文献   

4.
Stress- and drug-related cues are major factors contributing to high rates of relapse in addictive disorders. Brain imaging studies have begun to identify neural correlates of stress and drug cue-induced craving states. Findings indicate considerable overlap in neural circuits involved in processing stress and drug cues with activity in the corticostriatal limbic circuitry underlying both affective and reward processing. More recent efforts have begun to identify the relationships between neural activity during stress and drug cue exposure and drug relapse outcomes. Findings suggest medial prefrontal, anterior and posterior cingulate, striatal and posterior insula regions to be associated with relapse outcomes. Altered function in these brain regions is associated with stress-induced and drug cue-induced craving states and an increased susceptibility to relapse. Such alterations can serve as markers to identify relapse propensity and a more severe course of addiction. Efficacy of pharmacological and behavioral treatments that specifically target stress and cue-induced craving and arousal responses may also be assessed via alterations in these brain correlates. [Sinha R, Li C-SR. Imaging stress- and cue-induced drug and alcohol craving: association with relapse and clinical implications. Drug Alcohol Rev 2007;26:25 - 31]  相似文献   

5.
Drug addiction is a brain disease with complex genetic, psychological and social factors. The dopaminergic system of the brain plays a central role in natural reward and motivation and is the main neural substrate for the actions of abusive drugs. The analysis of mice with mutations in their dopamine receptor genes has provided new information regarding the influence of individual dopamine receptors on drug actions. The use of genetic manipulation of dopamine receptors, and related intracellular signaling molecules, in mice will help to enhance our understanding of the molecular and cellular mechanisms underlying compulsive drug-seeking and drug-taking behaviors, reasons for relapse into drug addiction and persistent neuronal changes in response to repeated drug use. These studies will provide new insights for improved therapeutic strategies for the prevention and treatment of drug addiction.  相似文献   

6.
How does stress increase risk of drug abuse and relapse?   总被引:36,自引:25,他引:11  
Sinha R 《Psychopharmacology》2001,158(4):343-359
RATIONALE: The notion that stress leads to drug abuse in vulnerable individuals and relapse in addicts is not new. Most major theories of addiction postulate that stress plays an important role in increasing drug use and relapse. Several animal studies and some human laboratory studies have shown that stress exposure enhances drug self-administration. Although clinical observations suggest that exposure to stress increases drug use, and are associated with craving and relapse in addicts, human research in this area is largely correlational and at times contradictory. OBJECTIVE: Given the growing preclinical evidence that supports the key role of stress in substance abuse, careful examination of this research area in humans is warranted. This paper examines empirical evidence on how stress may increase the vulnerability to drug abuse, and explores whether chronic drug abuse alters the stress response and coping in addicts, thereby increasing the likelihood of drug seeking and relapse. Unanswered questions on the association between stress and substance abuse in humans are identified. CONCLUSION: Preclinical research has shown that stress, in addition to drug itself, plays a key role in perpetuating drug abuse and relapse. However, the mechanisms underlying this association in humans remain unclear. A greater understanding of how stress may perpetuate drug abuse will likely have a significant impact on both prevention and treatment development in the field of addiction.  相似文献   

7.
Endocannabinoid regulation of relapse mechanisms.   总被引:2,自引:0,他引:2  
Addiction involves a complex neuropharmacologic behavioural cycle, in which positive reinforcement exerted by the drug and the negative state of withdrawal drive the user to extremes to obtain the drug. Comprehensive studies have established that relapse is the most common outcome of recovery programs treating addictive behaviours. Several types of anticraving medication are available nowadays, such as naltrexone for the treatment of alcoholism, bupropion for nicotine, methadone or buprenorphine for heroin. This review focuses on recent behavioural data providing a rationale for an endocannabinoid mechanism underlying reinstatement of compulsive drug seeking. Studies supporting the contention that reinstatement of extinguished drug self-administration behaviour may be generated by cannabinoid CB1 receptor agonists and attenuated, if not blocked, by CB1 receptor antagonists, are here reviewed. In support to these findings, conditioned place preference studies substantiate the involvement of the endocannabinoid system in recidivism mechanisms by demonstrating that motivation to relapse can be triggered by CB1 receptor activation while blockade of such receptors may prevent reinstatement of place conditioning induced by either drug primings or drug-associated cues. Finally, biochemical studies evaluating changes in endocannabinoid levels, CB1 receptor density and CB1 mRNA expression during re-exposure to drug following extinction are also examined. Taken together, the evidence available has important implications in the understanding and treatment of relapsing episodes in patients undergoing detoxification.  相似文献   

8.
The role of impulsive behavior in drug abuse   总被引:2,自引:1,他引:1  
BACKGROUND: Impulsivity is a multifaceted construct that has recently been recognized as a factor contributing to enhanced vulnerability to drug abuse. OBJECTIVES: In the present review, we focus on two facets of impulsivity (and tasks that measure them): (1) impulsive choice (delay discounting task) and (2) inhibitory failure (go/no-go, stop signal reaction time, and five-choice serial reaction time tasks). We also describe how performance on each of these tasks is associated with drug-related behavior during phases of drug abuse that capture the essential features of addiction (acquisition, escalation, and reinstatement of drug-seeking after drug access has terminated). Three hypotheses (H) regarding the relationship between impulsivity and drug abuse are discussed: (1) increased levels of impulsivity lead to drug abuse (H1), (2) drugs of abuse increase impulsivity (H2), and (3) impulsivity and drug abuse are associated through a common third factor (H3). CONCLUSION: Impulsivity expressed as impulsive choice or inhibitory failure plays a role in several key transition phases of drug abuse. There is evidence to support all three nonexclusive hypotheses. Increased levels of impulsivity lead to acquisition of drug abuse (H1) and subsequent escalation or dysregulation of drug intake. Drugs of abuse may increase impulsivity (H2), which is an additional contributor to escalation/dysregulation. Abstinence, relapse, and treatment may be influenced by both H1 and H2. In addition, there is a relationship between impulsivity and other drug abuse vulnerability factors, such as sex, hormonal status, reactivity to nondrug rewards, and early environmental experiences that may impact drug intake during all phases of addiction (H3). Relating drug abuse and impulsivity in phases of addiction via these three hypotheses provides a heuristic model from which future experimental questions can be addressed.  相似文献   

9.
Neurobiology of craving, conditioned reward and relapse   总被引:11,自引:0,他引:11  
Chronic vulnerability to relapse is a formidable challenge for the treatment of drug addiction. The neurobiological basis of relapse and its prevention has, therefore, attracted major attention in addiction research. Current conceptualizations of addiction recognize craving as a central driving force for ongoing drug use, as well as for relapse following abstinence. Progress has been made in understanding experiential factors, neurocircuitry components and signaling mechanisms that mediate conditioned drug-seeking behaviour, craving and long-lasting susceptibility to relapse. Importantly, stress contributes to drug craving, and there is evidence for overlap between the neural and neuroendocrine mechanisms implicated in drug desire evoked by drug cues and stress. Recent research has substantially advanced our understanding of the neurobiological factors responsible for drug craving and relapse, with promising therapeutic implications.  相似文献   

10.
A lot of evidence indicate that endocannabinoids and cannabinoid CB(1) receptors are implicated in drug addiction. In the present study, we investigated the effect of the cannabinoid CB(1) receptor antagonist/partial agonist rimonabant on the cocaine-maintained reinforcement and relapse to cocaine seeking as well as on the cocaine challenge-induced hyperactivity in sensitized rats and on discriminative stimulus effects of cocaine in rats. We found that endocannabinoids were not involved in maintenance of cocaine reinforcement and its subjective effects since pharmacological blockade of cannabinoid CB(1) receptors altered neither self-administration nor discriminative stimulus effects of cocaine. On the other hand, withdrawal from repeated access or exposure to cocaine and then a reinstatement of cocaine-seeking behavior or a sensitized locomotor response to a single cocaine challenge, respectively, was potently reduced by pretreatment with rimonabant. The latter observations may show that repeated cocaine treatment and the drug withdrawal produce--apart from behavioral effects--also different neural consequences in the endocannabinoid systems in rats.  相似文献   

11.
Research is beginning to outline a role for the endocannabinoid system in cocaine addiction. Human and animal studies indicate that exogenous cannabinoids modulate the acute rewarding effects of cocaine. These studies, however, cannot directly investigate the necessity of endocannabinoid transmission in cocaine addiction. Studies that do offer a direct assessment show that neither pharmacological antagonism nor deletion of the CB1 receptor alters the acute rewarding effects of cocaine. In contrast, CB1 receptors appear to be involved in the association of cocaine reward with environmental cues and reinstatement of cocaine self-administration. Together, these results point to CB1 receptor antagonists as potential anti-craving compounds in the treatment of cocaine addiction. Given the limitations of human population studies, animal research may be useful in discerning causal inferences between cannabis and cocaine use. While animal research suggests cannabis use may precipitate cocaine relapse, cross-sensitization between cannabinoids and cocaine has not been demonstrated and CB1 receptors do not mediate behavioral sensitization to cocaine. The effect of acute or chronic cocaine on endocannabinoid transmission in reward-related areas of the brain is relatively under-researched. Acute cocaine administration increases anandamide levels in the striatum, an effect that is mediated by dopamine D2-like receptors. Conversely, chronic cocaine exposure has no effect on anandamide, but decreases 2-arachidonylglycerol levels in the limbic forebrain. This review highlights research indicating that the endocannabinoid system may subserve certain aspects of cocaine addiction and suggests avenues for future investigation.  相似文献   

12.
Cannabis is the most commonly abused illegal drug in the world and its main psychoactive ingredient, delta-9-tetrahydrocannabinol (THC), produces rewarding effects in humans and non-human primates. Over the last several decades, an endogenous system comprised of cannabinoid receptors, endogenous ligands for these receptors and enzymes responsible for the synthesis and degradation of these endogenous cannabinoid ligands has been discovered and partly characterized. Experimental findings strongly suggest a major involvement of the endocannabinoid system in general brain reward functions and drug abuse. First, natural and synthetic cannabinoids and endocannabinoids can produce rewarding effects in humans and laboratory animals. Second, activation or blockade of the endogenous cannabinoid system has been shown to modulate the rewarding effects of non-cannabinoid psychoactive drugs. Third, most abused drugs alter brain levels of endocannabinoids in the brain. In addition to reward functions, the endocannabinoid cannabinoid system appears to be involved in the ability of drugs and drug-related cues to reinstate drug-seeking behavior in animal models of relapse. Altogether, evidence points to the endocannadinoid system as a promising target for the development of medications for the treatment of drug abuse.  相似文献   

13.
Cocaine addiction in human addicts is characterized by a high rate of relapse following successful detoxification. Relapse to drug taking/seeking can be precipitated by several stimuli including, but not limited to, re-exposure to cocaine itself. In order to understand the mechanisms underlying cocaine craving, a substantial effort has been devoted to elucidating the anatomical and neurochemical bases underlying cocaine priming-induced reinstatement, an animal model of relapse. Here, we review evidence that changes in dopaminergic and glutamatergic transmission in limbic/basal ganglia circuits of interconnected nuclei including the medial prefrontal cortex, nucleus accumbens, ventral pallidum, amygdala, hippocampus, orbitofrontal cortex, neostriatum and thalamus underlie cocaine priming-induced reinstatement of cocaine seeking. Maladaptive changes in the processing of motivationally relevant stimuli by these circuits following cocaine self-administration result in drug craving and compulsive drug seeking upon re-exposure to cocaine.  相似文献   

14.
行为敏化动物模型在药物依赖性评价中的应用   总被引:12,自引:4,他引:12  
药物滥用和成瘾呈上升趋势。它既是一个严重的社会问题 ,又是一个非常重要的医学问题。因此 ,对作用于中枢神经系统的药物进行依赖性评价具有十分重要的意义。研究资料表明药物敏化与药物滥用和成瘾具有密切的关系 ,依赖性药物致敏化的药理学特性越来越受到重视。本文介绍了行为敏化动物模型建立的方法 ,阐述了行为敏化形成和表达的神经生物学机制 ,着重探讨了行为敏化动物模型在药物依赖性评价中的作用。  相似文献   

15.
Several studies show that the nociceptin receptor NOP plays a role in the regulation of reward and motivation pathways related to substance abuse. Administration of the NOP's natural peptide ligand, Nociceptin/Orphanin FQ (N/OFQ) or synthetic agonist Ro 64-6198 has been shown to block rewarding effects of cocaine, morphine, amphetamines and alcohol, in various behavioral models of drug reward and reinforcement, such as conditioned place preference and drug self-administration. Administration of N/OFQ has been shown to reduce drug-stimulated levels of dopamine in mesolimbic pathways. The NOP-N/OFQ system has been particularly well examined in the development of alcohol abuse in animal models. Furthermore, the efficacy of the mixed-action opioid buprenorphine, in attenuating alcohol consumption in human addicts and in alcohol-preferring animal models, at higher doses, has been attributed to its partial agonist activity at the NOP receptor. These studies suggest that NOP receptor agonists may have potential as drug abuse medications. However, the pathophysiology of addiction is complex and drug addiction pharmacotherapy needs to address the various phases of substance addiction (craving, withdrawal, relapse). Further studies are needed to clearly establish how NOP agonists may attenuate the drug addiction process and provide therapeutic benefit. Addiction to multiple abused drugs (polydrug addiction) is now commonplace and presents a treatment challenge, given the limited pharmacotherapies currently approved. Polydrug addiction may not be adequately treated by a single agent with a single mechanism of action. As with the case of buprenorphine, a mixed-action profile of NOP/opioid activity may provide a more effective drug to treat addiction to various abused substances and/or polydrug addiction.  相似文献   

16.
The persistence of the motivational salience of drug-related environmental cues and contexts is one of the most problematic obstacles to successful treatment of drug addiction. Behavioral approaches to extinguishing the salience of drug-associated cues, such as cue exposure therapy, have generally produced disappointing results which have been attributed to, among other things, the context specificity of extinction and inadequate consolidation of extinction learning. Extinction of any behavior or conditioned response is a process of new and active learning, and increasing evidence suggests that glutamatergic neurotransmission, a key component of the neural plasticity that underlies normal learning and memory, is also involved in extinction learning. This review will summarize findings from both animal and human studies that suggest that pharmacological enhancement of glutamatergic neurotransmission facilitates extinction learning in the context of drug addiction. Pharmacological agents that have shown potential efficacy include NMDA partial agonists, mGluR5 receptor positive allosteric modulators, inhibitors of the GlyT1 glycine transporter, AMPA receptor potentiators, and activators of the cystine-glutamate exchanger. These classes of cognition-enhancing compounds could potentially serve as novel pharmacological adjuncts to cue exposure therapy to increase success rates in attenuating cue-induced drug craving and relapse.  相似文献   

17.
Abstract

Objective: Clinical evidence suggests a complex-per-haps correlative-relationship between stressful experiences and addiction. The goal of this review is to provide an overview of recent basic research linking stress and addiction, to indicate novel areas of study, and to suggest how data from basic research may influence clinical assessment and treatment of patients with stress-related disorders, substance abuse, or a history of both disorders.

Methods: Reviewed here are recent basic research (preclinical) articles available via PubMed (www.ncbi.nlm.nih.gov) with particular relevance to novel neural mechanisms underlying the putative stress/addiction relationship.

Findings: Three types of relationships between stress and addiction are identified and discussed: (1) Neural adaptations common to both chronic stress and chronic exposure to drugs of abuse; (2) The influence of stress on the rewarding or sensitizing aspects of drugs of abuse; and (3) The influence of stress on the relapse to drug taking after a drug-free period. Each relationship appears to involve alterations in dopaminergic and glutamatergic systems and their related second messenger pathways. However, brain regions that influence the brain's reward pathway, such as the hippocampus, and other novel aspects of neuroplasticity, such as adult neurogenesis, are also receiving attention.

Conclusions: A wealth of evidence shows that stress and addiction can produce similar adaptations in discrete brain regions, and that there is bidirectional influence of the experience of stress and drug exposure. These preclinical findings encourage further exploration of the neural mechanisms underlying stress and addiction with the hope that additional discoveries will aid treatment of patients with stress-related disorders and addiction, or comorbid diagnoses.  相似文献   

18.
The central problem in the treatment of cocaine and heroin addiction is high rates of relapse to drug use after periods of forced or self-imposed abstinence. Relapse can be modeled in laboratory animals a reinstatement procedure in which responding for drug is extinguished and then reinstated by acute exposure to the drug, drug cues, or stress. In this review, we first summarize data from recent (2003-2005) studies on the neural substrates involved in reinstatement of heroin and cocaine seeking. We also discuss the neural mechanisms underlying the progressive increase in cocaine seeking after withdrawal (incubation of cocaine craving). Finally, we provide an update on several novel candidate medications for relapse prevention suggested by recent preclinical studies, and we discuss the translation of findings from nonhuman laboratory studies to the clinical phenomenon of relapse.  相似文献   

19.
Dependence on cocaine is still a main unresolved medical and social concern, and in spite of research efforts, no pharmacological therapy against cocaine dependence is yet available. Recent studies have shown that the endocannabinoid system participates in specific stages and aspects of drug dependence in general, and some of this evidence suggests an involvement of the cannabinoid system in cocaine effects. For example, cocaine administration has been shown to alter brain endocannabinoid levels, and the endocannabinoid system has been involved in long-term modifications of brain processes that might play a role in neuro/behavioral effects of psychostimulant drugs like cocaine. Human studies show that marijuana dependence is frequently associated with cocaine dependence, and that the cannabinoid receptor CNR1 gene polymorphism might be related to cocaine addiction. This article will review the main papers in the field showing how a modulation of different components of the cannabinoid system might interact with some of the neurobiological/behavioral effects of cocaine related to its reinforcing effects, evaluated in preclinical models or in clinical settings. The goal of this review will be to provide insights into the complex picture of cocaine abuse and addiction, and to extrapolate from such endocannabinoid-cocaine interactions useful information to test the therapeutic potential of cannabinoid ligands and endocannabinoid-level enhancers against cocaine dependence for future preclinical/clinical trials.  相似文献   

20.
Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies for combating drug addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号