首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Opitz G/BBB syndrome is characterized by midline abnormalities such as hypertelorism, cleft palate, and hypospadias. This syndrome is heterogeneous with an X-linked recessive form caused by mutations in the MID1 gene at band Xp22.3. However, mutations in MID1 have only been identified in 47% of familial cases of X-linked Opitz G/BBB syndrome, and 13% of sporadic cases. We performed a phenotype-genotype analysis of a group of nine new patients with clinical characteristics commonly seen in Opitz G/BBB syndrome, and of previously reported patients. We identified a novel mutation in exon 9 of the MID1 gene, c.1941insTGAGTCATCATCC, leading to a premature termination codon at amino acid 514 in a patient with hypertelorism, apparently low-set ears, a short philtrum, bilateral cleft of lip and palate and hypospadias. This mutation affects the PRY domain of the C-terminus of the MID1 protein.  相似文献   

3.
4.
Mutations in the MID1 gene result in X-linked Opitz G/BBB syndrome (OS), a disorder that affects development of midline structures and comprises hypertelorism, cleft lip/palate, hypospadias, and laryngo-tracheo-esophageal abnormalities, and, at times, neurological, anal, and cardiac defects. MID1 gene abnormalities include missense, nonsense, and splicing mutations, small insertions, small deletions, and complex rearrangements. Here, we present a patient with Opitz G/BBB syndrome and a unique MID1 gene point mutation c.1703T相似文献   

5.
Opitz (or G/BBB) syndrome is a pleiotropic genetic disorder characterized by hypertelorism, hypospadias, and additional midline defects. This syndrome is heterogeneous with an X-linked (XLOS) and an autosomal dominant (ADOS) form. The gene implicated in the XLOS form, MID1, encodes a protein containing a RING-Bbox-Coiled-coil motif belonging to the tripartite motif (TRIM) family. To further clarify the molecular basis of XLOS, we have undertaken mutation analysis of the MID1 gene in patients with Opitz syndrome (OS). We found novel mutations in 11 of 63 male individuals referred to us as sporadic or familial X-linked OS cases. The mutations are scattered throughout the gene, although more are represented in the 3' region. By reviewing all the MID1-mutated OS patients so far described, we confirmed that hypertelorism and hypospadias are the most frequent manifestations, being present in almost every XLOS individual. However, it is clear that laryngo-tracheo-esophageal (LTE) defects are also common anomalies, being manifested by all MID1-mutated male patients. Congenital heart and anal abnormalities are less frequent than reported in literature. In addition, we can include limb defects in the OS clinical synopsis as we found a MID1-mutated patient showing syndactyly. The low frequency of mutations in MID1 and the high variability of the phenotype suggest the involvement of other genes in the OS phenotype.  相似文献   

6.
Midline 1 (MID1) is a microtubule‐associated ubiquitin ligase that regulates protein phosphatase 2A activity. Loss‐of‐function mutations in MID1 lead to the X‐linked Opitz G/BBB syndrome characterized by defective midline development during embryogenesis. Here, we show that MID1 is strongly upregulated in murine cytotoxic lymphocytes (CTLs), and that it controls TCR signaling, centrosome trafficking, and exocytosis of lytic granules. In accordance, we find that the killing capacity of MID1?/? CTLs is impaired. Transfection of MID1 into MID1?/? CTLs completely rescued lytic granule exocytosis, and vice versa, knockdown of MID1 inhibited exocytosis of lytic granules in WT CTLs, cementing a central role for MID1 in the regulation of granule exocytosis. Thus, MID1 orchestrates multiple events in CTL responses, adding a novel level of regulation to CTL activation and cytotoxicity.  相似文献   

7.
Mutations in the MID1 gene are responsible for the X-linked form of Opitz G/BBB syndrome (OS), a disorder that affects the development of midline structures. OS is characterized by hypertelorism, hypospadias, laryngo-tracheo-esophageal (LTE) abnormalities, and additional midline defects. Cardiac, anal, and neurological defects are also present. The expressivity of OS is highly variable, even within the same family. We reviewed all the MID1 mutations reported so far, in both familial and sporadic cases. The mutations are scattered along the entire length of the gene and consist of missense and nonsense mutations, insertions and deletions, either in-frame or causing frameshifts, and deletions of either single exons or the entire MID1 coding region. The variety of described mutations and the lack of a strict genotype-phenotype correlation confirm the previous suggestion of the OS phenotype being caused by a loss-of-function mechanism. However, although a specific mutation cannot entirely account for the observed phenotype, we observed preferential association between some types of mutation and specific clinical manifestations, e.g., brain anatomical defects and truncating mutations. This may suggest that the pathogenetic mechanism underlying the OS phenotype is more complex and may vary among the affected organs.  相似文献   

8.
The Opitz GBBB syndrome (OS) is characterized in part by widely spaced inner ocular canthi and hypospadias. Recently, linkage analysis showed that the gene for the X-linked form to be located in an 18 cM region spanning Xp22. We have now conducted linkage analysis in a family previously published as having the BBB syndrome and found tight linkage to DXS7104 (Z=3.3, τ=0.0). Our data narrows the candidate region to 4 cM and should facilitate the identification and characterization of one of the genes involved in midline development.  相似文献   

9.
The X-linked form of Opitz syndrome (OS) affects midline structures and produces a characteristic, but heterogeneous, phenotype that may include severe mental retardation, hypertelorism, broad nasal bridge, widow's peak, cleft lip/cleft palate, congenital heart disease, laryngotracheal defects, and hypospadias. The MID1 gene was implicated in OS by linkage to Xp22. It encodes a 667 amino acid protein that contains a RING finger motif, two B-box zinc fingers, a coiled-coil, a fibronectin type III (FNIII) domain, and a B30.2 domain. Several mutations in MID1 are associated with severe OS. Here, we describe an intelligent male with a milder phenotype characterized by hypertelorism, broad nasal bridge, widow's peak, mild hypospadias, pectus excavatum, and a surgically corrected tracheo-esophageal fistula. He has an above average intelligence and no cleft lip/palate or heart disease. We identified a novel mutation in MID1 (P441L) which is in exon 8 and functionally associated with the FNIII domain. While OS phenotypes have been attributed to mutations in the C-terminal part of MID1, little is currently known about the structure-function relationships of MID1 mutations, and how they affect phenotype. We find from a literature review that missense mutations within the FNIII domain of MID1 are associated with a milder presentation of OS than missense mutations elsewhere in MID1. All truncating mutations (frameshift, insertions/deletions) lead to severe OS. We used homology analysis of the MID1 FNIII domain to investigate structure-function changes caused by our missense mutation. This and other missense mutations probably cause disruption of protein-protein interactions, either within MID1 or between MID1 and other proteins. We correlate these protein structure-function findings to the absence of CNS or palatal changes and conclude that the FNIII domain of the MID1 protein may be involved in midline differentiation after neural tube and palatal structures are completed.  相似文献   

10.
We describe two brothers with a unique pattern of malformations that includes coloboma (iris, optic nerve), high forehead, severe retrognathia, mental retardation, and agenesis of the corpus callosum (ACC). Both boys have low-set cupped ears with sensorineural hearing loss, normal phallus, pectus excavatum, scoliosis, and short stature. One brother had choanal atresia and cardiac defects consisting of ventricular septal defect (VSD) and patent ductus arteriosus (PDA) which resolved spontaneously. Differential diagnosis between a number of clinical entities was considered, however, because ACC and the distinctive facial features were reminiscent of FG syndrome, DNA was analyzed for markers linked to the FGS1 locus at Xq13-q21. Notably, the brothers were concordant for markers spanning this presumed FG region, and in both we have identified adjacent alterations (-57delT and T-55A) in the Alpha 4 gene located within this interval. Alpha 4 is a regulatory subunit of the major cellular phosphatase, PP2A, that has recently been shown to interact with MID1, the product of the gene mutated in X-linked Opitz GBBB syndrome. The double nucleotide change identified in this family was not observed in 410 control chromosomes, suggesting that it may be a pathogenetic change. Altered expression of Alpha 4, through either a change in translational efficiency, mRNA stability or splicing, could explain the clinical phenotype in these boys and the phenotypic overlap with Opitz GBBB syndrome.  相似文献   

11.
In this report, we describe the presence of a large, posterior scalp defect as another, hitherto nonreported symptom related to a defect in midline development in a 1-year-old boy with Opitz syndrome.  相似文献   

12.
The combination of complex congenital heart disease (double outlet right ventricle with pulmonary atresia, malalignment ventriculoseptal defect, right-sided aortic arch with left ductus arteriosus) and bladder exstrophy occurred in an infant with Opitz syndrome. Neither of these defects has previously been reported in association with Opitz syndrome. These malformations, which are midline defects, further characterize this syndrome as an impairment in midline development. The spectrum of congenital heart disease and genitourinary anomalies seen in Opitz syndrome is reviewed. Am. J. Med. Genet. 78:294–299, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Opitz syndrome (OS; MIM 145410 and MIM 300000) is a congenital midline malformation syndrome characterized by hypertelorism, hypospadias, cleft lip/palate, laryngotracheoesophageal (LTE) abnormalities, imperforate anus, developmental delay, and cardiac defects. The X-linked form (XLOS) is caused by mutations in the MID1 gene, which encodes a microtubule-associated RBCC protein. In this study, phenotypic manifestations of patients with and without MID1 mutations were compared to determine genotype-phenotype correlations. We detected 10 novel mutations, 5 in familial cases, 2 in sporadic cases, and 3 in families for whom it was not clear if they were familial or sporadic. The genotype and phenotype was compared for these 10 families, clinically diagnosed OS patients found not to have MID1 mutations, and 4 families in whom we have previously reported MID1 mutations. This combined data set includes clinical and mutation data on 70 patients. The XLOS patients with MID1 mutations were less severely affected than patients with MID1 mutations reported in previous studies, particularly in functionally significant neurologic, LTE, anal, and cardiac abnormalities. Minor anomalies were more prevalent in patients with MID1 mutations compared to those without mutations in this study. Female MID1 mutation carriers had milder phenotypes compared to male MID1 mutation carriers, with the most common manifestation being hypertelorism in both sexes. Most of the anomalies found in the patients of the present study do not correlate with the MID1 mutation type, with the possible exception of LTE malformations. This study demonstrates the wide spectrum of severity and manifestations of OS. It also shows that XLOS patients with MID1 mutations may be less severely affected than indicated in prior reports.  相似文献   

14.
FG syndrome is an X-linked multiple congenital anomalies (MCA) syndrome. It has been mapped to four distinct loci FGS1-4, through linkage analysis (Xq13, Xp22.3, and Xp11.4-p11.3) and based on the breakpoints of an X chromosome inversion (Xq11:Xq28), but so far no gene has been identified. We describe a boy with FG syndrome who has an inherited duplication at band Xq22.3 detected by comparative genomic hybridization microarray (Array-CGH). These duplication maps outside all four loci described so far for FG syndrome, representing therefore a new locus, which we propose to be called FGS5. MID2, a gene closely related to MID1, which is known to be mutated in Opitz G/BBB syndrome, maps within the duplicated segment of our patient. Since FG and Opitz G/BBB syndromes share many manifestations we considered MID2 a candidate gene for FG syndrome. We also discuss the involvement of other potential genes within the duplicated segment and its relationship with clinical symptoms of our patient, as well as the laboratory abnormalities found in his mother, a carrier of the duplication.  相似文献   

15.
Opitz G/BBB syndrome (OS) is a congenital midline malformation syndrome characterized by hypertelorism, hypospadias, cleft lip/palate, laryngotracheoesophageal abnormalities, imperforate anus, developmental delay and cardiac defects. The X-linked form is caused by mutations in the MID1 gene, while no gene has yet been identified for the autosomal dominant form. Here, we report on a 15-year-old boy who was referred for MID1 mutation analysis with findings typical of OS, including apparent hypertelorism, hypospadias, a history of feeding difficulties, dysphagia secondary to esophageal arteria lusoria, growth retardation and developmental delay. No MID1 mutation was found, but subsequent sub-megabase resolution array CGH unexpectedly documented a 2.34 Mb terminal 4p deletion, suggesting a diagnosis of WHS, and a duplication in Xp22.31. Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving terminal chromosome 4p deletions, in particular 4p16.3. WHS is characterized by typical facial appearance ("Greek helmet facies"), mental retardation, congenital hypotonia, and growth retardation. While the severity of developmental delay in this patient supports the diagnosis of WHS rather than OS, this case illustrates the striking similarities of clinical findings in seemingly unrelated syndromes, suggesting common or interacting pathways at the molecular and pathogenetic level. This is the first report of arteria lusoria (esophageal vascular ring) in a patient with WHS.  相似文献   

16.
We have used four gene probes specific for mouse chromosome 8, including adenine phosphoribosyltransferase (aprt), to demonstrate that the P19 teratocarcinoma stem cell line contains two disinct chromosome 8 homologs. One represents the common laboratory mouse C3H (Mus musculus domesticus) homolog while the second homolog was presumably contributed by a feralMus musculus musculus animal. Six cell lines with APRT heterozygous deficiencies were isolated from P19 subclones. A molecular analysis of these heterozygotes demonstrated that three arose by deletion of theMus musculus musculus aprt allele and three arose byaprt gene inactivation. APRT homozygous deficient cell lines were isolated from both classes of heterozygote; most contained little or no detectable APRT activity. When the heterozygous deficiency was due to deletion of theMus musculus musculus aprt allele, the most frequent event yielding homozygous deficient cell lines was associated with loss of heterozygosity for all tested markers on theMus musculus domesticus homolog indicating chromosome los. In contrast, when the initial event resulting in APRT heterozygous deficiency was gene inactivation, homozygotes arose predominantly from gene deletion or a second inactivation event. These results suggest a potential relationship between the first- and second-step events resulting in APRT deficiencies.  相似文献   

17.
Opitz syndrome (OS) is a genetically heterogeneous malformation disorder. Patients with OS may present with a variable array of malformations that are indicative of a disturbance of the primary midline developmental field. Mutations in the C-terminal half of MID1, an RBCC (RING, B-box and coiled-coil) protein, have recently been shown to underlie the X-linked form of OS. Here we show that the MID1 gene spans at least 400 kb, almost twice the distance originally reported and has a minimum of six mRNA isoforms as a result of the alternative use of 5' untranslated exons. In addition, our detailed mutational analysis of MID1 in a cohort of 15 patients with OS has resulted in the identification of seven novel mutations, two of which disrupt the N-terminus of the protein. The most severe of these (E115X) is predicted to truncate the protein before the B-box motifs. In a separate patient, a missense change (L626P) was found that also represents the most C-terminal alteration reported to date. As noted with other C-terminal mutations, GFP fusion constructs demonstrated that the L626P mutant formed cytoplasmic clumps in contrast to the microtubular distribution seen with the wild-type sequence. Notably, however, both N-terminal mutants showed no evidence of cytoplasmic aggregation, inferring that this feature is not pathognomonic for X-linked OS. These new data and the finding of linkage to MID1 in the absence of a demonstrable open reading frame mutation in a further family support the conclusion that X-linked OS results from loss of function of MID1.  相似文献   

18.
Apparent Opitz BBBG syndrome with a partial duplication of 5p   总被引:2,自引:0,他引:2  
We describe a patient with a paracentric inversion and partial duplication of chromosome 5p. In addition this patient presented with a malformation pattern consistent with Opitz BBBG syndrome. This implies that the gene responsible for this single gene defect may be located within this duplicated region.  相似文献   

19.
Southern blot analysis reveals two distinct adenine phosphoribosyltransferase (APRT)alleles in the P-19 mouse teratocarcinoma cell line. One allele is identical to that observed in common laboratory mouse strains (Mus musculus domesticus).The restriction enzyme site variations between the two alleles occur in sequences located both upstream and downstream of the APRTgene, but not within it. Although the P-19 cell line was established from a C3H strain embryo (Mus musculus domesticus),a sixth generation ancestor of this embryo was a feral mouse (Mus musculus musculus).The restriction pattern of the variant APRTallele in P-19 is identical to that of a feral-derived Mus musculus musculusanimal, establishing the origin of this allele in the P-19 cell line. A third, distinct APRTallele was found in a Mus spretusferal-derived mouse. Exploiting the differences between the two APRTalleles in the P-19 cell line, we have demonstrated their sequential loss in APRT-deficient clones.  相似文献   

20.
'The Mouse (Mus musculus) T Cell Receptor Delta Variable (TRDV), Diversity (TRDD) and Joining (TRDJ) Genes', the 15th report of the 'IMGT Locus in Focus' section, comprises 7 tables entitled: (1) 'Number of mouse (Mus musculus) germline TRDV genes at 14D1-D2 and potential repertoire'; (2) 'Mouse (Mus musculus) germline TRDV genes at 14D1-D2'; (3) 'Mouse (Mus musculus) TRDV allele table'; (4) 'Mouse (Mus musculus) germline TRDD genes and alleles'; (5) 'Mouse (Mus musculus) germline TRDJ genes'; (6) 'Mouse (Mus musculus) TRDJ allele table', and (7) 'Correspondence between the different mouse (Mus musculus) TRDV gene nomenclatures'. These tables are available at the IMGT Marie-Paule page from IMGT, the international ImMunoGeneTics database (http://imgt.cines. fr:8104) created by Marie-Paule Lefranc, Université Montpellier II, CNRS, Montpellier, France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号