首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Statements regarding pleasantness, taste intensity or caloric content on a food label may influence the attention consumers pay to such characteristics during consumption. There is little research on the effects of selective attention on taste perception and associated brain activation in regular drinks. The aim of this study was to investigate the effect of selective attention on hedonics, intensity and caloric content on brain responses during tasting drinks. Using functional MRI brain responses of 27 women were measured while they paid attention to the intensity, pleasantness or caloric content of fruit juice, tomato juice and water. Brain activation during tasting largely overlapped between the three selective attention conditions and was found in the rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, anterior cingulate cortex and middle orbitofrontal cortex (OFC). Brain activation was higher during selective attention to taste intensity compared to calories in the right middle OFC and during selective attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral middle insula. Intensity ratings correlated with brain activation during selective attention to taste intensity in the anterior insula and lateral OFC. Our data suggest that not only the anterior insula but also the middle and lateral OFC are involved in evaluating taste intensity. Furthermore, selective attention to pleasantness engaged regions associated with food reward. Overall, our results indicate that selective attention to food properties can alter the activation of gustatory and reward regions. This may underlie effects of food labels on the consumption experience of consumers.  相似文献   

2.
The functional architecture of the central taste and olfactory systems in primates provides evidence that the convergence of taste and smell information onto single neurons is realized in the caudal orbitofrontal cortex (and immediately adjacent agranular insula). These higher-order association cortical areas thus support flavour processing. Much less is known, however, about homologous regions in the human cortex, or how taste-odour interactions, and thus flavour perception, are implemented in the human brain. We performed an event-related fMRI study to investigate where in the human brain these interactions between taste and odour stimuli (administered retronasally) may be realized. The brain regions that were activated by both taste and smell included parts of the caudal orbitofrontal cortex, amygdala, insular cortex and adjoining areas, and anterior cingulate cortex. It was shown that a small part of the anterior (putatively agranular) insula responds to unimodal taste and to unimodal olfactory stimuli, and that a part of the anterior frontal operculum is a unimodal taste area (putatively primary taste cortex) not activated by olfactory stimuli. Activations to combined olfactory and taste stimuli where there was little or no activation to either alone (providing positive evidence for interactions between the olfactory and taste inputs) were found in a lateral anterior part of the orbitofrontal cortex. Correlations with consonance ratings for the smell and taste combinations, and for their pleasantness, were found in a medial anterior part of the orbitofrontal cortex. These results provide evidence on the neural substrate for the convergence of taste and olfactory stimuli to produce flavour in humans, and where the pleasantness of flavour is represented in the human brain.  相似文献   

3.
The goal of the present study was to investigate whether the psychophysical evaluation of taste stimuli using magnitude estimation influences the pattern of cortical activation observed with neuroimaging. That is, whether different brain areas are involved in the magnitude estimation of pleasantness relative to the magnitude estimation of intensity. fMRI was utilized to examine the patterns of cortical activation involved in magnitude estimation of pleasantness and intensity during hunger in response to taste stimuli. During scanning, subjects were administered taste stimuli orally and were asked to evaluate the perceived pleasantness or intensity using the general Labeled Magnitude Scale (Green et al., Chem Senses, 21(3), 323-334, 1996; Bartoshuk et al., Physiol Behav, 82(1), 109-114, 2004). Image analysis was conducted using Analysis of Functional NeuroImage software. Magnitude estimation of intensity and pleasantness shared common activations in the insula, rolandic operculum, and the medio-dorsal nucleus of the thalamus. Globally, magnitude estimation of pleasantness produced significantly more activation than magnitude estimation of intensity. Areas differentially activated during magnitude estimation of pleasantness versus intensity included, e.g., the insula, the anterior cingulate gyrus, and putamen, suggesting that different brain areas were recruited when subjects made magnitude estimates of intensity and pleasantness. These findings demonstrate significant differences in brain activation during magnitude estimation of intensity and pleasantness to taste stimuli. An appreciation for the complexity of brain response to taste stimuli may facilitate a clearer understanding of the neural mechanisms underlying eating behavior and overconsumption.  相似文献   

4.
Temporal synchrony between odor and taste plays an important role in flavor perception. When we investigate temporal synchrony between odor and taste, it is necessary to pay attention not only to physical simultaneity of the presentation of olfactory and gustatory stimuli, but also to the perceptual simultaneity between the two stimuli. In this study, we examined short-latency brain activity underlying synchrony perception for olfactory–gustatory combinations. While five female participants performed a simultaneity judgment (SJ) task using soy sauce odor and salt solution, single-channel event-related potentials (ERPs) were recorded at the position of Cz. In each trial, the participant was asked whether olfactory and gustatory stimuli were perceived simultaneously or successively. Based on the judgment responses acquired from participants (i.e., simultaneous or successive), ERP data were classified into two datasets. The means of ERPs from each participant were calculated for each type of judgment response, considering the onset of olfactory or gustatory stimuli (OERPs or GERPs, respectively) as the starting point. The latencies of the P1 component of GERPs were very similar between simultaneous and successive judgment responses, whereas the P1 amplitudes differed significantly. These results indicated that neural activity affecting SJ for an olfactory–gustatory combination is generated during a period of about 130 ms from the onset of gustatory stimulus. Thus, olfactory and gustatory information processing related to flavor perception (more specially, synchrony perception between odor and taste) might be initiated at a relatively early stage of the central pathway.  相似文献   

5.
Excessive intake of dietary salt (sodium chloride) may increase the risk of chronic diseases. Accordingly, various strategies to reduce salt intake have been conducted. This study aimed to investigate whether a salty‐congruent odor can enhance saltiness on the basis of psychophysical (Experiment 1) and neuroanatomical levels (Experiment 2). In Experiment 1, after receiving one of six stimulus conditions: three odor conditions (odorless air, congruent, or incongruent odor) by two concentrations (low or high) of either salty or sweet taste solution, participants were asked to rate taste intensity and pleasantness. In Experiment 2, participants received the same stimuli during the functional magnetic resonance imaging scan. In Experiment 1, compared with an incongruent odor and/or odorless air, a congruent odor enhanced not only taste intensity but also either pleasantness of sweetness or unpleasantness of saltiness. In Experiment 2, a salty‐congruent combination of odor and taste produced significantly higher neuronal activations in brain regions associated with odor–taste integration (e.g., insula, frontal operculum, anterior cingulate cortex, and orbitofrontal cortex) than an incongruent combination and/or odorless air with taste solution. In addition, the congruent odor‐induced saltiness enhancement was more pronounced in the low‐concentrated tastant than in the high‐concentrated one. In conclusion, this study demonstrates the congruent odor‐induced saltiness enhancement on the basis of psychophysical and neuroanatomical results. These findings support an alternative strategy to reduce excessive salt intake by adding salty‐congruent aroma to sodium reduced food. However, there are open questions regarding the salty‐congruent odor‐induced taste unpleasantness. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
How does selective attention to affect influence sensory processing? In an fMRI investigation, when subjects were instructed to remember and rate the pleasantness of a taste stimulus, 0.1 m monosodium glutamate, activations were greater in the medial orbitofrontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the taste. When the subjects were instructed to remember and rate the intensity, activations were greater in the insular taste cortex. An interaction analysis showed that this dissociation of taste processing, depending on whether attention to pleasantness or intensity was relevant, was highly significant (P < 0.0002). Thus, depending on the context in which tastes are presented and whether affect is relevant, the brain responds to a taste differently. These findings show that, when attention is paid to affective value, the brain systems engaged to represent the sensory stimulus of taste are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus, depending on whether the cognitive demand is for affect‐related vs. more sensory‐related processing, may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of taste but also of other sensory stimuli.  相似文献   

7.
We used functional magnetic resonance imaging to test the hypothesis that the nature of the neural response to taste varies as a function of the task the subject is asked to perform. Subjects received sweet, sour, salty and tasteless solutions passively and while evaluating stimulus presence, pleasantness and identity. Within the insula and overlying operculum the location of maximal response to taste vs. tasteless varied as a function of task; however, the primary taste cortex (anterior dorsal insula/frontal operculum – AIFO), as well as a more ventral region of anterior insula, responded to taste vs. tasteless irrespective of task. Although the response here did not depend upon task, preferential connectivity between AIFO and the amygdala (bilaterally) was observed when subjects tasted passively compared with when they performed a task. This suggests that information transfer between AIFO and the amygdala is maximal during implicit processing of taste. In contrast, a region of the left lateral orbitofrontal cortex (OFC) responded preferentially to taste and to tasteless when subjects evaluated pleasantness, and was preferentially connected to earlier gustatory relays (caudomedial OFC and AIFO) when a taste was present. This suggests that processing in the lateral OFC organizes the retrieval of gustatory information from earlier relays in the service of computing perceived pleasantness. These findings show that neural encoding of taste varies as a function of task beyond that of the initial cortical representation.  相似文献   

8.
The aim of the present study was to investigate whether pupillary responses to odorous stimuli reflect their intensity or hedonic tone. A total of 21 healthy subjects participated in the study. Using a computer-controlled olfactometer, subjects received intranasal stimuli including odors of rose (PEA; 2 concentrations), lemon and rotten eggs, plus the trigeminal irritant CO2 (also at two concentrations). Changes in the pupil diameter were obtained ipsilaterally to the side of stimulus presentation. Both trigeminal and olfactory stimulation produced an increase in pupillary diameter. Latencies for pupillary reaction were fastest for the higher concentration of CO2 and slowest after the presentation of PEA at the low concentration. Response amplitudes were largest in response to stimulation with CO2 at the high concentration, while they were smallest in response to odorous stimulation with PEA. Response latencies decreased with increasing stimulus intensity. No such correlation was found for hedonic ratings and pupillary reactions. Thus, the change in the pupillary diameter indicates differences between stimulus modalities and stimulus strength, but not pleasantness or unpleasantness of the odors.  相似文献   

9.
OBJECTIVE: Preclinical studies indicate that dopaminergic transmission in the basal ganglia may be involved in processing of both pleasant and unpleasant stimuli. Given this, the aim of the present study was to assess taste responses to sweet, bitter, sour, and salty substances in patients with Parkinson's disease (PD). METHODS: Rated intensity and pleasantness of filter paper discs soaked in sucrose (10-60%), quinine (0.025-0.5%), citric acid (0.25-4.0%), or sodium chloride (1.25-20%) solutions was evaluated in 30 patients with PD and in 33 healthy controls. Paper discs soaked in deionised water served as control stimuli. In addition, reactivity to 100 ml samples of chocolate and vanilla milk was assessed in both groups. Taste detection thresholds were assessed by means of electrogustometry. Sociodemographic and neuropsychiatric data, including cigarette smoking, alcohol consumption, tea and coffee drinking, depressive symptoms, and cognitive functioning were collected. RESULTS: In general, perceived intensity, pleasantness, and identification of the sucrose, quinine, citric acid, or sodium chloride samples did not differ between the PD patients and controls. Intensity ratings of the filter papers soaked in 0.025% quinine were significantly higher in the PD patients compared with the control group. No inter-group differences were found in taste responses to chocolate and vanilla milk. Electrogustometric thresholds were significantly (p = 0.001) more sensitive in the PD patients. CONCLUSIONS: PD is not associated with any major alterations in responses to pleasant or unpleasant taste stimuli. Patients with PD may present enhanced taste acuity in terms of electrogustometric threshold.  相似文献   

10.
Attention to stimuli associated with a rewarding outcome may be mediated by the incentive motivational properties that the stimulus acquires during conditioning. Other theories of attention state that the prediction error (the discrepancy between the expected and the actual outcome) during conditioning guides attention; once the outcome is fully predicted, attention should be abolished for the conditioned stimulus. The current study examined which of these mechanisms is dominant in conditioning when the outcome is highly rewarding. Allocation of attention to stimuli associated with cigarettes (the rewarding outcome) was tested in 16 smokers, who underwent a classical conditioning paradigm, where abstract visual stimuli were paired with a tobacco outcome. Stimuli were associated with 100% (stimulus A), 50% (stimulus B), or 0% (stimulus C) probability of receiving tobacco. Attention was measured using an eye-tracker device, and the appetitive value of the stimuli was measured with subjective pleasantness ratings during the conditioning process. Dwell time bias (duration of eye gaze) was greatest overall for the A stimulus, and increased over conditioning. Attention to stimulus A was dependent on the ratings of pleasantness that the stimulus evoked, and on the desire to smoke. These findings appear to support the theory that attention for conditioned stimuli is dominated by the incentive motivational qualities of the outcome they predict, and implicate a role for attention in the maintenance of addictive behaviours like smoking.  相似文献   

11.
A number of studies have related cholinergic activity to the mediation of learning and memory. However, the acetylcholine (ACh) participation has been recently implicated in the early stages of memory formation but not during retrieval. The aim of the present study is to evaluate ACh release in the insular cortex (IC) during presentation of different taste stimuli and during their re-exposition by means of the free-moving microdialysis technique. We evaluated the changes in ACh release when a novel taste, saccharin or quinine was presented to the rat and after several presentations of saccharin. Unilateral microdialysis was performed in the IC 1 h before and 1 h after the presentation of: (1) a familiar stimulus (water), (2) a novel taste (quinine), (3) another novel taste (saccharin), (4) a second presentation, (5) a third presentation, and (6) a fourth presentation of saccharin. The volume consumed by the animals was registered as a behavioral parameter. The ACh levels from the microdialysis fractions were analyzed by an HPLC-ED system. Biochemical results showed a significant increment in the cortical ACh release induced by a novel stimulus compared with the release observed during the presentation of a familiar stimulus. The ACh release observed after several presentations of the stimuli decreased to the same levels as those produced by the familiar taste, indicating an inverse relationship between familiarity and cortical ACh release. These results suggest that the cholinergic system plays an important role in the identification and characterization of different kinds of stimuli.  相似文献   

12.
Previous studies on sex differences in neural responses to noxious stimuli yielded mixed results. Both increased and decreased brain activation in several brain areas in women as compared to men has been reported. The current event-related functional magnetic resonance imaging study used a parametric design with different levels of the intensity of electrical stimulation in order to investigate sex differences in brain activation during pain processing. Four intensity levels, which were determined individually according to subjective ratings, ranging from stimulation below the stimulus detection threshold to moderately painful stimuli, were applied. Females experienced mild and moderate pain at lower stimulus intensity than males. Pronounced sex differences in brain activation were found in response to stimulation below the detection threshold and for the most intense pain stimuli in the medial prefrontal cortex (MPFC). Under both the conditions, women showed stronger activation in a region of the pregenual MPFC, which has been implicated in introspective, self-focused information processing. The results suggest that women, as compared to men, show increased self-related attention during anticipation of pain and in response to intense pain.  相似文献   

13.
Music has been associated with taste and shown to influence the dining experience. We asked whether sound that is associated with taste affects taste perception of food. In two studies (study 1: N = 20, 13 women; study 2: N = 20, 17 women), participants evaluated the taste of cinder toffee while listening to either of two soundscapes associated with sweet and bitter taste, respectively, or no sound. In study 1, participants rated the taste on a visual-analog scale (VAS) anchored with “bitter” and “sweet”, aiming to replicate a previous study (Crisinel et al., 2012 ). In contrast, four separate scales were used in study 2 to report the extent of bitter, sweet, sour, and salty taste to test whether taste qualities were influenced by sound differentially. Additionally, taste intensity and pleasantness were rated in both studies. Taste intensity was increased in the presence of a sound, while pleasantness was not affected. In study 1, sound shifted bitter-sweet ratings in the direction of the congruent sound, i.e. samples tasted sweeter with “sweet” sound and more bitter with “bitter” sound, replicating Crisinel et al.'s ( 2012 ) results. However, this effect was abolished when a “no-sound” control was included in the statistical model. Taste ratings in study 2 showed no effect of sound on any specific taste quality, suggesting that the influence of sound on taste in study 1 reflects an artifact of the scale rather than an actual shift in perception. Together, the data provide evidence for taste-sound correspondences without effects on taste-quality specific perception.  相似文献   

14.
Using positron emission tomography, we investigated whether regional brain activations differ as a function of attending to pleasant versus unpleasant components of odors. There were two experimental (attention to pleasantness and attention to unpleasantness) and one control (baseline) condition. The stimuli presented during the two experimental conditions were exactly the same (three binary mixtures, each consisting of one pleasant and one unpleasant compound), but the affective property to which participants?? attention was directed was different: They indicated with a mouse click whether each stimulus contained a pleasant (during attention to pleasantness) or unpleasant (during attention to unpleasantness) odor. During baseline, odorless stimuli were presented, and participants pressed the mouse button randomly after each one. Several brain regions were involved in both types of attention, and these included ventral striatum, right orbitofrontal cortex, and anterior cingulate cortex. Subtle differences were also revealed: Attending to pleasantness was associated preferentially with a sensory/perceptual network (piriform cortex and amygdala), whereas attending to unpleasantness engaged a component of the attentional (right parietal) network. Thus, we delineate neural substrates of attending to olfactory pleasantness and unpleasantness, some of which are common to both and others that are specific to pleasantness or to unpleasantness. Our results suggest that the view of the mesolimbic dopaminergic system as the reward network that responds selectively to positive reinforcers is somewhat limited: Our findings are more in keeping with a view of this set of structures as the salience system of the brain.  相似文献   

15.
Psychophysical assessment of the affective components of non-painful touch.   总被引:3,自引:0,他引:3  
G K Essick  A James  F P McGlone 《Neuroreport》1999,10(10):2083-2087
A novel psychophysical procedure for the evaluation of the affective components of touch was developed. A fabric material was stroked across the test site at a controlled direction and velocity, after which the subject provided a numerical estimate of pleasantness. Significant differences were detected for the sites tested (FACE vs ARM), the fabric materials used (VELVET, COTTON and PLASTIC MESH), and the velocity of motion (0.5, 5 and 50 cm/s). Attesting to their validity, estimates of pleasantness correlated negatively with estimates of unpleasantness obtained for the same stimuli. Moreover, subjects were reasonably consistent in their ratings upon stimulus replication. These findings demonstrate that the hedonic qualities of touch can be psychophysically evaluated, and that valid and reliable estimates are obtained.  相似文献   

16.
Food perception is characterized by a transition from initially separate sensations of the olfactory and gustatory properties of the object toward their combined sensory experience during consumption. The holistic flavor experience, which occurs as the smell and taste merge, extends beyond the mere addition of the two chemosensory modalities, being usually perceived as more object‐like, intense and rewarding. To explore the cortical mechanisms which give rise to olfactory–gustatory binding during natural food consumption, brain activation during consumption of a pleasant familiar beverage was contrasted with presentation of its taste and orthonasal smell alone. Convergent activation to all presentation modes was observed in executive and chemosensory association areas. Flavor, but not orthonasal smell or taste alone, stimulated the frontal operculum, supporting previous accounts of its central role in the formation of the flavor percept. A functional dissociation was observed in the insula: the anterior portion was characterized by sensory convergence, while mid‐dorsal sections activated exclusively to the combined flavor stimulus. psycho‐physiological interaction analyses demonstrated increased neural coupling between the frontal operculum and the anterior insula during flavor presentation. Connectivity was also increased with the lateral entorhinal cortex, a relay to memory networks and central node for contextual modulation of olfactory processing. These findings suggest a central role of the insular cortex in the transition from mere detection of chemosensory convergence to a superadditive flavor representation. The increased connections between the frontal operculum and medial temporal memory structures during combined olfactory–gustatory stimulation point to a potential mechanism underlying the acquisition and modification of flavor preferences. Hum Brain Mapp 36:1662–1676, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
As the limits of stimuli presentation rates are explored in event-related fMRI design, there is a greater need to assess the implications of averaging raw fMRI data. Selective averaging assumes that the fMRI signal consists of task-dependent signal, random noise, and non-task dependent brain signal that can be modeled as random noise so that it tends to zero when averaged over a practical number of trials. We recorded a total of four fMRI data series from two normal subjects (subject 1, axially acquired; subject 2, coronally acquired) performing a simple visual event-related task and a water phantom with the same fMRI scanner imaging parameters. To determine which fraction of the fMRI data was deterministic as opposed to random, we created different data subsets by taking the odd or even time points of the full data sets. All data sets were first dimension-reduced with principal component analysis (PCA) and separated into 100 spatially independent components with independent component analysis (ICA). The mutual information between best-matching pairs of components selected from full data set-subset comparisons was plotted for each data set. Visual inspection suggested that 45-85 components were reproducible, and hence deterministic, accounting for 79-97% of the variance, respectively, in the raw data. The reproducible components exhibited much less trial-to-trial variability than the raw data from even the most activated voxel. Many (22-47) of reproducible components were significantly affected by stimulus presentation (P < 0.001). The most significantly-stimulus-correlated component was strongly time-locked to stimulus presentation and was directly stimulus correlated, corresponding to occipital brain regions. However, other spatially distinct task-related components demonstrated variable temporal relationships with the most significantly-stimulus-correlated component. Our results suggest that the majority of the variance in fMRI data is in fact deterministic, and support the notion that the data consist of differing components with differing temporal relationships to visual stimulation. They further suggest roles for restricting interpretations of the spatial extent of activation from event-related designs to a specific region of interest (ROI) and/or first separating the data into spatially independent components. Averaging the time courses of spatially independent components time-locked to stimulus presentation may prevent possible biases in the estimates of the spatial and temporal extent of stimulus-correlated activation and of trial-to-trial variability.  相似文献   

18.
Previous neuroimaging studies of the cortical representation of gustatory and olfactory stimuli have often delivered tastants to the mouth in very small quantities or stimulated olfaction orthonasally. In studies of retro-nasal olfaction, swallowing was generally delayed to reduce head motion artefacts. The present fMRI study aims to improve upon such methodological limitations to allow investigation of the cortical representation of flavour (taste and aroma combination) as it typically occurs during the consumption of liquid foods. For this purpose we used (1) a novel, automated, sprayed stimulus delivery system and a larger volume of liquid sample (containing sweet tastants and banana/pear aroma volatiles) to achieve more extensive stimulation of the oral cavity taste receptors, (2) a pseudo-natural delivery paradigm that included prompt swallowing after each sample delivery to obtain physiological retro-nasal olfactory stimulation, (3) fMRI acquisition with wide brain coverage and double-echo EPI to improve sensitivity. We validated our paradigm for the delivery of volatiles using atmospheric pressure chemical ionisation mass spectrometry. This showed that the main retro-nasal delivery of volatiles in the paradigm occurs immediately after the swallow. Several brain areas were found to be activated, including the insula, frontal operculum, rolandic operculum/parietal lobe, piriform, dorsolateral prefrontal cortex, anterior cingulate cortex, ventro-medial thalamus, hippocampus and medial orbitofrontal cortex.  相似文献   

19.

Background

Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times.

Methods

To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers.

Results

Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44).

Conclusion

Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli. Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal.  相似文献   

20.
The aim of this study was to investigate the topographical distribution of chemosensory event-related potentials in relation to stimulation with nicotine. The recognition thresholds of 3 different sensations elicited by nicotine (odor, burning, stinging) were determined. Subsequently, 3 concentrations of nicotine were applied which were just above mean threshold for each of the 3 sensations. Subjects rated the intensity of odor, burning, and stinging. Additionally, they tracked the time course of these sensations. Odor and stinging appeared immediately after stimulus onset. Burning started after several seconds. Intensity ratings of burning and stinging increased with rising stimulus concentrations, whereas the odorous sensation was strongest at medium concentrations. After low and medium stimuli largest mean amplitudes were parietally obtained, whereas following stimulation with the highest concentration, amplitudes peaked at Cz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号