首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poor water-solubility is a common characteristic of drug candidates in pharmaceutical development pipelines today. Various processes have been developed to increase the solubility, dissolution rate and bioavailability of these active ingredients belonging to BCS II and IV classifications. Over the last decade, nano-crystal delivery forms and amorphous solid dispersions have become well established in commercially available products and industry literature. This article is a comparative analysis of these two methodologies primarily for orally delivered medicaments. The thermodynamic and kinetic theories relative to these technologies are presented along with marketed product evaluations and a survey of commercial relevant scientific literature.  相似文献   

2.
Electrospun nanofiber drug delivery systems have been studied using various techniques. Herein, we describe the fabrication of a drug-incorporating nanofiber. Drugs, such as proteins, peptide, antibodies, and small molecule drugs, can be loaded within or on the surface of nanofibers according to their properties. Hydrophobic drugs are directly dissolved with a polymer in an organic solvent before electrospinning. However, it is preferred to surface-immobilize bioactive molecules on nanofibers by physical absorption or chemical conjugation. Especially, chemically surface-immobilized proteins on a nanofiber mesh stimulate cell differentiation and proliferation. Using a dual electrospinning nozzle to create nanofiber sheet layers, which are stacked on top of one another, the initial burst release is reduced compared with solid nanofibers because of the layers. Furthermore, hybridization of electrospun nanofibers with nanoparticles, microspheres, and hydrogels is indirect drug loading method into the nanofibers. It is also possible to produce multi-drug delivery systems with timed programmed release.  相似文献   

3.
Electrospun nanofibers with a high surface area to volume ratio have received much attention because of their potential applications for biomedical devices, tissue engineering scaffolds, and drug delivery carriers. In order to develop electrospun nanofibers as useful nanobiomaterials, surfaces of electrospun nanofibers have been chemically functionalized for achieving sustained delivery through physical adsorption of diverse bioactive molecules. Surface modification of nanofibers includes plasma treatment, wet chemical method, surface graft polymerization, and co-electrospinning of surface active agents and polymers. A variety of bioactive molecules including anti-cancer drugs, enzymes, cytokines, and polysaccharides were entrapped within the interior or physically immobilized on the surface for controlled drug delivery. Surfaces of electrospun nanofibers were also chemically modified with immobilizing cell specific bioactive ligands to enhance cell adhesion, proliferation, and differentiation by mimicking morphology and biological functions of extracellular matrix. This review summarizes surface modification strategies of electrospun polymeric nanofibers for controlled drug delivery and tissue engineering.  相似文献   

4.
Sustained release capsule formulations based on three components, drug, water-soluble polymer, and water-insoluble fatty acid, were developed. Theophylline, acetaminophen, and glipizide, representing a wide spectrum of aqueous solubility, were used as model drugs. Povidone and hydroxypropyl cellulose were selected as water-soluble polymers. Stearic acid and lauric acid were selected as water-insoluble fatty acids. Fatty acid, polymer, and drug mixture was filled into size #0 gelatin capsules and heated for 2 h at 50 °C. The drug particles were trapped into molten fatty acid and released at a controlled rate through pores created by the water-soluble polymer when capsules were exposed to an aqueous dissolution medium. Manipulation of the formulation components enabled release rates of glipizide and theophylline capsules to be similar to commercial Glucotrol XL tablets and Theo-24 capsules, respectively. The capsules also exhibited satisfactory dissolution stability after exposure to 30 °C/60% relative humidity (RH) in open Petri dishes and to 40 °C/75% RH in closed high-density polyethylene bottles. A computational fluid dynamic-based model was developed to quantitatively describe the drug transport in the capsule matrix and the drug release process. The simulation results showed a diffusion-controlled release mechanism from these capsules.  相似文献   

5.
To improve the bioavailability of a poorly water-soluble drug, RP 69698 (1), solid dispersion formulations were investigated in beagle dogs. The formulations were prepared by a melting method with water-soluble carriers in which 1 is highly soluble. When incorporated into a solid dispersion formulation composed of polyethylene glycol (PEG) 3350, Transcutol and Labrasol, the bioavailability of 1 was determined to be 11.8%. This represented about 2-fold improvement over 6% bioavailability observed previously with an aqueous suspension of the drug in 0.5% methylcellulose. When the formulation contained only Labrasol, in which 1 was completely solubilized, the bioavailability of 1 was 12.9%. Addition of a surfactant, polysorbate 80, at a strength of 10% to the dispersion with PEG 3350 and Labrasol as carriers increased the bioavailability of 1 from 11.8 to 27.6%. This result was attributed to the ability of the surfactant to increase the wettability and spreadability of the drug in a solubilized state once released in the gastrointestinal medium. Increase in the concentration of the surfactant did not further increase the bioavailability of 1. DSC and powder XRD data demonstrated that the major fraction of drug was dissolved in the carrier. A possible explanation for the maximum achievable bioavailability of about 25% with solid dispersion preparation may be that once released, a significant fraction of drug may precipitate in the GI tract. Re-solubilization of the precipitated drug for the absorption is likely to be difficult due to its very low aqueous solubility.  相似文献   

6.
Drug delivery strategies for poorly water-soluble drugs   总被引:1,自引:0,他引:1  
The drug candidates coming from combinatorial chemistry research and/or the drugs selected from biologically based high-throughput screening are quite often very lipophilic, as these drug candidates exert their pharmacological action at or in biological membranes or membrane-associated proteins. This challenges drug delivery institutions in industry or academia to develop carrier systems for the optimal oral and parenteral administration of these drugs. To mention only a few of the challenges for this class of drugs: their oral bioavailability is poor and highly variable, and carrier development for parenteral administration is faced with problems, including the massive use of surface-active excipients for solubilisation. Formulation specialists are confronted with an even higher level of difficulties when these drugs have to be delivered site specifically. This article addresses the emerging formulation designs for delivering of poorly water-soluble drugs.  相似文献   

7.
8.
Abstract

The purpose of this study was to design and characterise an oral mucoadhesive micellar drug carrier. In this regard, a mucoadhesive hydrophobic cationic aminocellulose was easily synthesised under mild homogeneous conditions with high yield. The cellulose derivative resulted in strongly improved mucoadhesive properties but was pH dependent. Furthermore, the hydrophobic anticancer drug camptothecin was successfully encapsulated into the mucoadhesive cellulose derivative micelles with spherical shape stability of 233?nm in diameter and low particle size distribution. The CPT-loaded nanocarriers provided high encapsulation efficiency about 86.4%. In vitro release, CPT-loaded cellulose derivative micelles showed a reduction in release rate compared with physically pure CPT solution. The release results also indicated that a sustained release of CPT to >80% over 4?d for pH 6.8 and 7.4. Therefore, mucoadhesive hydrophobic cationic aminocellulose micelles seem to be a promising carrier for various pharmaceutical applications especially for poorly water-soluble drug delivery system.  相似文献   

9.
Polymeric micelles for delivery of poorly water-soluble compounds   总被引:15,自引:0,他引:15  
Amphiphilic polymers assemble into nanoscopic supramolecular core-shell structures, termed polymeric micelles, which are under extensive study for drug delivery. There are several reasons for this growing interest. Polymeric micelles maybe safe for parenteral administration relative to existing solubilizing agents (for instance, Cremophor EL), permitting an increase in the dose of potent yet toxic and poorly water soluble compounds. Polymeric micelles solubilize important poorly water-soluble compounds, such as amphotericin B (AmB), propofol, paclitaxel, and photosensitizers. A major factor in drug solubilization is the compatibility of a drug and a core of a polymeric micelle. In this context, we may consider Pluronics, poly(ethylene glycol) (PEG)-phospholipid conjugates, PEG-b-poly(ester)s, and PEG-b-poly(L-amino acid)s for drug delivery. Polymeric micelles may circulate for prolonged periods in blood, evade host defenses, and gradually release drug. Thus, they may show a preferential accumulation at sites of disease such as solid tumors. Polymeric micelles inhibit p-glycoprotein at drug-resistant tumors, gastrointestinal tract, and blood/brain barrier, perhaps providing a way to overcome drug resistance in cancer and increase drug absorption from the gut and drug absorption into the brain. Lastly, polymeric micelles may reduce the self-aggregation of polyene antibiotics, key membrane-acting drugs used to combat life-threatening systemic fungal diseases. In this way, they may reduce its dose-limiting toxicity without a loss of antifungal activity.  相似文献   

10.
The utility of nanofibrous electrospun composite scaffolds has greatly expanded over the last decade, so that they now serve as viable drug delivery vehicles for a host of different biomedical applications. The material properties of electrospun scaffolds are extremely advantageous for drug delivery, in which site-specificity and lower overall medicinal dosages lead to a potential industry-altering mechanism of delivering therapeutics. Different drugs used to predominantly treat infections and cancers can easily be incorporated and released at therapeutic dosages. Further, the inherent high porosity of these electrospun scaffolds allows for a more precisely controlled degradation which is tunable by polymer composition and fiber morphology, leading to sustained drug release. This review examines the current research and breakthrough discoveries that have elevated electrospun scaffolds to a cutting-edge technology that will dramatically alter the landscape of drug delivery.  相似文献   

11.
The utility of nanofibrous electrospun composite scaffolds has greatly expanded over the last decade, so that they now serve as viable drug delivery vehicles for a host of different biomedical applications. The material properties of electrospun scaffolds are extremely advantageous for drug delivery, in which site-specificity and lower overall medicinal dosages lead to a potential industry-altering mechanism of delivering therapeutics. Different drugs used to predominantly treat infections and cancers can easily be incorporated and released at therapeutic dosages. Further, the inherent high porosity of these electrospun scaffolds allows for a more precisely controlled degradation which is tunable by polymer composition and fiber morphology, leading to sustained drug release. This review examines the current research and breakthrough discoveries that have elevated electrospun scaffolds to a cutting-edge technology that will dramatically alter the landscape of drug delivery.  相似文献   

12.
We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG), to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND). Mesoporous silica nanospheres (MSNs) were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs), IND loaded AP-MSNs (IND-AP-MSNs) were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs) were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.  相似文献   

13.
Polymeric micelles consisting of amphiphilic block copolymers have emerged as a promising carrier of various drugs, but unfortunately show a limited potential for encapsulating (solubilizing) such drugs. In this study, hybrid nanoparticles consisting of monomethoxypolyethyleneglycol-polylactide block copolymer (PEG-PLA) and oleic acid calcium salt were prepared to enhance the solubilization of poorly water-soluble drugs. Micelles made of a mixture of sodium oleate and PEG-PLA at various ratios were used as the template for preparation of the nanoparticles. These mixed micelles could efficiently solubilize poorly water-soluble drugs in aqueous media, when compared with polymeric micelles made of PEG-PLA alone. Addition of calcium to the mixed micelles induced the formation of oleic acid calcium salt, resulting in hybrid nanoparticles. These hybrid nanoparticles had a high colloidal stability, neutral zeta potential, and high drug entrapment efficiency. Drugs entrapped in nanoparticles made at a high PEG-PLA ratio were protected from enzymatic degradation in serum, while drugs entrapped in the mixed micelles were not, indicating that the hybrid nanoparticles show good drug retention. These results suggested that such hybrid nanoparticles may be used to expand the availability of poorly water-soluble drugs for various therapeutic applications.  相似文献   

14.
15.
Introduction: Amorphous solid dispersions (ASDs) are one of the key formulation technologies that aid the development of poorly soluble candidates. However, their dynamic behaviors, including dissolution and crystallization processes, are still full of mystery. Further understanding of these processes should enhance their wider use.

Areas covered: The first part of this review describes the current understanding of the dissolution of ASDs, where phase separation behavior is frequently involved and attempts to develop appropriate dissolution tests to achieve an in vitroin vivo correlation are examined. The second part of this review discusses crystallization of the drug molecule with the eventual aim of establishing an accelerated testing protocol for predicting its physical stability.

Expert opinion: The phase separation behavior from the supersaturated state during the dissolution test must be understood, and its relevance to the oral absorption behavior needs to be clarified. Research efforts should focus on the differences between the phase behavior in in vitro and in vivo situations. Initiation time of the crystallization was shown to be predicted only from storage and glass transition temperatures. This finding should encourage the establishment of testing protocol of the physical stability of ASDs.  相似文献   


16.
Solid dispersions of a poorly water-soluble drug [REV 5901; alpha-pentyl-3-(2-quinolinylmethoxy)benzenemethanol; 1] in an amphiphilic vehicle [Gelucire 44/14; 2] and in polyethylene glycol (PEG) 1000, PEG 1450, and PEG 8000 were prepared. The vehicle 2 was a mixture of hydrogenated fatty acid esters with a mp of 44 degrees C, and had a HLB value of 14. Compound 1 was dissolved or dispersed in molten vehicles at elevated temperatures. The pulverization and compression of solid dispersions were avoided by encapsulating the hot solutions directly into hard gelatin capsules. At room temperature, the dispersions solidified forming plugs inside the capsules. On storage, greater than 180 mg of 1 remained dissolved per gram of vehicle, while the excess drug formed fine crystals (less than 20 micron). When mixed with water, the dissolved drug separated as a metastable liquid. Due to the surfactant property of 2, the oily form of 1 that separated from this vehicle formed an emulsified system with a globular size of less than 1 micron, while greater than 80% of 1 that separated from the other three formulations coalesced to form large oily masses. As a result of the large difference in surface area, the dissolution rate of 1 in simulated gastric fluid from capsules containing 2 was much higher than that of a PEG-based formulation. The bioavailability (AUC) of 1 in dogs from capsules containing 2 was also higher than that from PEG 1000-based capsules.  相似文献   

17.
The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (<150 nm) and the presence of PEG 3350 did not interfere with the process of self-microemulsification.  相似文献   

18.
INTRODUCTION: For poorly soluble compounds, a good bioavailability is typically needed to assess the therapeutic index and the suitability of the compound for technical development. In industry, the selection of the delivery technology is not only driven by technical targets, but also by constraints, such as production costs, time required for development and the intellectual property situation. AREAS COVERED: This review covers current developments in parenteral and oral delivery technologies and products for poorly water-soluble compounds, such as nano-suspensions, solid dispersions and liposomes. In addition, the use of biorelevant dissolution media to assess dissolution and solubility properties is described. Suggestions are also included to systematically address development hurdles typical of poorly water-soluble compounds intended for parenteral or oral administration. EXPERT OPINION: A holistic assessment is recommended to select the appropriate delivery technology by taking into account technical as well as intellectual property considerations. Therefore, first and foremost, a comprehensive physico-chemical characterization of poorly water-soluble compounds can provide the key for a successful selection and development outcome. In this context, the identified physical form of the compound in the formulation is used as a guide for a risk-benefit assessment of the selected oral delivery technology. The potential of nano-suspensions for intravenous administration is unclear. In the case of oral administration, nano-suspensions are mainly used to improve the oral absorption characteristics of micronized formulations. The development of an in situ instantaneous solubilization method, based on stable, standardized liposomes with low toxicity, opens new avenues to solubilize poorly water-soluble compounds.  相似文献   

19.
BackgroundThe mucoadhesive polymers play an important role in targeted and controlled drug delivery.ObjectivesThis study aimed to investigate the drug release behaviour and interpret the role of mucoadhesive polymers involved in the coating layer of mucoadhesive tablets for the sustained release of a poorly water-soluble drug.MethodsA solid dispersion of prednisolone and zein was used in the core tablets created with two mucoadhesive polymers, which included Carbopol 940 and hydroxypropyl methylcellulose K4M. In addition, the properties of a single-layer coating, created from the combination of zein and Kollicoat MAE 100P to delay release through the upper parts of the gastrointestinal tract, were investigated in the presence of the above mucoadhesive polymers; these properties included drug dissolution, mucoadhesion, surface morphology, swelling and erosion.ResultsThe mucoadhesive polymer concentrations and types were integrated not only into the core tablets through a swelling/erosion mechanism but also into the surface polymer coatings for controlled drug release. HPMC was preferred in the formulations due to the ability to form pores on the surface coating, allowing water uptake so that the coating could control drug release for a later stage via a swelling/erosion mechanism.ConclusionThe proposed mechanism determined in this project could be beneficial in the selection of polymers for applications targeting the colon with coated mucoadhesive tablets. Open in a separate windowGraphical abstract  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号