首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcus oligofermentans is a novel strain of oral streptococcus that can specifically inhibit the growth of Streptococcus mutans. The aims of this study were to assess the growth of S. oligofermentans and the ability of S. oligofermentans to inhibit growth of Streptococcus mutans at different pH values. Growth inhibition was investigated in vitro using an interspecies competition assay. The 4‐aminoantipyine method was used to measure the initial production rate and the total yield of hydrogen peroxide in S. oligofermentans. S. oligofermentans grew best at pH 7.0 and showed the most pronounced inhibitory effect when it was inoculated earlier than S. mutans. In terms of the total yield and the initial production rate of hydrogen peroxide by S. oligofermentans, the effects of the different culture pH values were as follows: pH 7.0 > 6.5 > 6.0 > 7.5 > 5.5 = 8.0 (i.e. there was no significant difference between pH 5.5 and pH 8.0). Environmental pH and the sequence of inoculation significantly affected the ability of S. oligofermentans to inhibit the growth of S. mutans. The degree of inhibition may be attributed to the amount of hydrogen peroxide produced.  相似文献   

2.
Streptococcus anginosus and the closely related species Streptococcus constellatus and Streptococcus intermedius, are primarily commensals of the mucosa. The true pathogenic potential of this group has been under‐recognized for a long time because of difficulties in correct species identification as well as the commensal nature of these species. In recent years, streptococci of the S. anginosus group have been increasingly found as relevant microbial pathogens in abscesses and blood cultures and they play a pathogenic role in cystic fibrosis. Several international studies have shown a surprisingly high frequency of infections caused by the S. anginosus group. Recent studies and a genome‐wide comparative analysis suggested the presence of multiple putative virulence factors that are well‐known from other streptococcal species. However, very little is known about the molecular basis of pathogenicity in these bacteria. This review summarizes our current knowledge of pathogenicity factors and their regulation in S. anginosus.  相似文献   

3.
Bacteria residing in oral biofilms live in a state of dynamic equilibrium with one another. The intricate synergistic or antagonistic interactions between them are crucial for determining this balance. Using the six‐species Zürich “supragingival” biofilm model, this study aimed to investigate interactions regarding growth and localization of the constituent species. As control, an inoculum containing all six strains was used, whereas in each of the further five inocula one of the bacterial species was alternately absent, and in the last, both streptococci were absent. Biofilms were grown anaerobically on hydroxyapatite disks, and after 64 h they were harvested and quantified by culture analyses. For visualization, fluorescence in situ hybridization and confocal laser scanning microscopy were used. Compared with the control, no statistically significant difference of total colony‐forming units was observed in the absence of any of the biofilm species, except for Fusobacterium nucleatum, whose absence caused a significant decrease in total bacterial numbers. Absence of Streptococcus oralis resulted in a significant decrease in Actinomyces oris, and increase in Streptococcus mutans (< .001). Absence of A. oris, Veillonella dispar or S. mutans did not cause any changes. The structure of the biofilm with regards to the localization of the species did not result in observable changes. In summary, the most striking observation of the present study was that absence of S. oralis resulted in limited growth of commensal A. oris and overgrowth of S. mutans. These data establish highlight S. oralis as commensal keeper of homeostasis in the biofilm by antagonizing S. mutans, so preventing a caries‐favoring dysbiotic state.  相似文献   

4.
During dental caries, the dental biofilm modifies the composition of the hundreds of involved bacterial species. Changing environmental conditions influence competition. A pertinent model to exemplify the complex interplay of the microorganisms in the human dental biofilm is the competition between Streptococcus sanguinis and Streptococcus mutans. It has been reported that children and adults harbor greater numbers of S. sanguinis in the oral cavity, associated with caries‐free teeth. Conversely, S. mutans is predominant in individuals with a high number of carious lesions. Competition between both microorganisms stems from the production of H2O2 by S. sanguinis and mutacins, a type of bacteriocins, by S. mutans. There is limited evidence on how S. sanguinis survives its own H2O2 levels, or if it has other mechanisms that might aid in the competition against S. mutans, nonetheless. We performed a genomic and metabolic pathway comparison, coupled with a comprehensive literature review, to better understand the competition between these two species. Results indicated that S. sanguinis can outcompete S. mutans by the production of an enzyme capable of metabolizing H2O2. S. mutans, however, lacks the enzyme and is susceptible to the peroxide from S. sanguinis. In addition, S. sanguinis can generate energy through gluconeogenesis and seems to have evolved different communication mechanisms, indicating that novel proteins may be responsible for intra‐species communication.  相似文献   

5.
Streptococcus mutans is generally considered to be the principal etiological agent for dental caries. Many of the proteins necessary for its colonization of the oral cavity and pathogenesis are exported to the cell surface or the extracellular matrix, a process that requires the assistance of the export machineries. Bioinformatic analysis revealed that the S. mutans genome contains a prsA gene, whose counterparts in other gram‐positive bacteria, including Bacillus and Lactococcus, encode functions involved in protein post‐export. In this study, we constructed a PrsA‐deficient derivative of S. mutans and demonstrated that the prsA mutant displayed an altered cell wall/membrane protein profile as well as cell‐surface‐related phenotypes, including auto‐aggregation, increased surface hydrophobicity and abnormal biofilm formation. Further analysis revealed that the disruption of the prsA gene resulted in reduced insoluble glucan production by cell surface localized glucosyltransferases, and mutacin as well as cell surface‐display of a heterologous expressed GFP fusion to the cell surface protein SpaP. Our study suggested that PrsA in S. mutans encodes functions similar to those identified in Bacillus, and so is likely to be involved in protein post‐export.  相似文献   

6.
7.
Adhesin‐mediated bacterial interspecies interactions are important elements in oral biofilm formation. They often occur on a species‐specific level, which could determine health or disease association of a biofilm community. Among the key players involved in these processes are the ubiquitous fusobacteria that have been recognized for their ability to interact with numerous different binding partners. Fusobacterial interactions with Streptococcus mutans, an important oral cariogenic pathogen, have previously been described but most studies focused on binding to non‐mutans streptococci and specific cognate adhesin pairs remain to be identified. Here, we demonstrated differential binding of oral fusobacteria to S. mutans. Screening of existing mutant derivatives indicated SpaP as the major S. mutans adhesin specific for binding to Fusobacterium nucleatum ssp. polymorphum but none of the other oral fusobacteria tested. We inactivated RadD, a known adhesin of F. nucleatum ssp. nucleatum for interaction with a number of gram‐positive species, in F. nucleatum ssp. polymorphum and used a Lactococcus lactis heterologous SpaP expression system to demonstrate SpaP interaction with RadD of F. nucleatum ssp. polymorphum. This is a novel function for SpaP, which has mainly been characterized as an adhesin for binding to host proteins including salivary glycoproteins. In conclusion, we describe an additional role for SpaP as adhesin in interspecies adherence with RadD‐SpaP as the interacting adhesin pair for binding between S. mutans and F. nucleatum ssp. polymorphum. Furthermore, S. mutans attachment to oral fusobacteria appears to involve species‐ and subspecies‐dependent adhesin interactions.  相似文献   

8.
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence‐stimulating peptide. Eight competence‐stimulating peptide‐dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran‐dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild‐type. GbpC is known to be involved in the dextran‐dependent aggregation of S. mutans. An SMU.940gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran‐dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran‐dependent aggregation and biofilm formation.  相似文献   

9.
Streptococcus mutans and Candida albicans are frequently co‐isolated from dental plaque of children with early childhood caries (ECC) and are only rarely found in children without ECC, suggesting that these species interact in a manner that contributes to the pathogenesis of ECC. Previous studies have demonstrated that glucans produced by S. mutans are crucial for promoting the formation of biofilm and cariogenicity with C. albicans; however, it is unclear how non‐glucan S. mutans biofilm factors contribute to increased biofilm formation in the presence of C. albicans. In this study we examined the role of S. mutans antigen I/II in two‐species biofilms with C. albicans, and determined that antigen I/II is important for the incorporation of C. albicans into the two‐species biofilm and is also required for increased acid production. The interaction is independent of the proteins Als1 and Als3, which are known streptococcal receptors of C. albicans. Moreover, antigen I/II is required for the colonization of both S. mutans and C. albicans during co‐infection of Drosophila melanogaster in vivo. Taken together, these results demonstrate that antigen I/II mediates the increase of C. albicans numbers and acid production in the two‐species biofilm, representing new activities associated with this known S. mutans adhesin.  相似文献   

10.
11.
12.
There is growing interest in the use of probiotic bifidobacteria for enhancement of the therapy, and in the prevention, of oral microbial diseases. However, the results of clinical studies assessing the effects of bifidobacteria on the oral microbiota are controversial, and the mechanisms of actions of probiotics in the oral cavity remain largely unknown. In addition, very little is known about the role of commensal bifidobacteria in oral health. Our aim was to study the integration of the probiotic Bifidobacterium animalis subsp. lactis Bb12 and of oral Bifidobacterium dentium and Bifidobacterium longum isolates in supragingival and subgingival biofilm models and their effects on other bacteria in biofilms in vitro using two different in vitro biofilms and agar‐overlay assays. All bifidobacteria integrated well into the subgingival biofilms composed of Porphyromonas gingivalis, Actinomyces naeslundii, and Fusobacterium nucleatum and decreased significantly only the number of P. gingivalis in the biofilms. The integration of bifidobacteria into the supragingival biofilms containing Streptococcus mutans and A. naeslundii was less efficient, and bifidobacteria did not affect the number of S. mutans in biofilms. Therefore, our results suggest that bifidobacteria may have a positive effect on subgingival biofilm and thereby potential in enhancing gingival health; however, their effect on supragingival biofilm may be limited.  相似文献   

13.
14.
15.
Csn2 is an important protein of the CRISPR‐Cas system. The physiological function of this protein and its regulatory role in Streptococcus mutans, as the primary causative agent of human dental caries, is still unclear. In this study, we investigated whether csn2 deletion would affect S. mutans physiology and virulence gene expression. We used microscopic imaging, acid killing assays, pH drop, biofilm formation, and exopolysaccharide (EPS) production tests to determine whether csn2 deletion influenced S. mutans colony morphology, acid tolerance/production, and glucan formation abilities. Comparisons were made between quantitative Real‐Time Polymerase Chain Reaction (qRT‐PCR) data from the UA159 and csn2 deletion strain to determine the impact of csn2 knockout on S. mutans gene expression. The results showed that deletion of S. mutans csn2 changed its colony morphotype and made it more sensitive to acid. The expression levels of aciduricity genes, including leuA, leuB, leuC, and leuD, were significantly down‐regulated. Acid adaptation restored the aciduricity of csn2 mutant and enhanced the ability to synthesize EPS. The expression levels of EPS synthesis‐related genes, including gtfC and gtfD, were significantly up‐regulated after acid adaptation. In summary, deletion of S. mutans csn2 exerted multiple effects on the virulence traits of this pathogen, including acid tolerance and EPS formation, and that these alterations could partially be attributed to changes in gene expression upon loss of csn2. Understanding the function of csn2 in S. mutans might lead to novel strategies to prevent or treat imbalances in oral microbiota that may favor diseases.  相似文献   

16.
17.
The commensal oral microbial flora has evolved with the human host to support colonization of the various intraoral sites without triggering a significant immune response. In exchange, the commensal microbes provide critical protection against invading pathogens. The intrinsic ability of the oral flora to create a symbiotic microbial community with the host can be disturbed, selecting for the overgrowth of a dysbiotic community that can result in dental diseases, such as caries and periodontitis. Although the mechanisms of molecular pathogenesis in oral diseases are well characterized, much less is known about the molecular mechanisms used by the commensal flora to maintain oral health. Here we focus on the commensal species Streptococcus sanguinis, which is found in abundance in the early oral biofilm and is strongly correlated with oral health. Streptococcus sanguinis exhibits a variety of features that make it ideally suited as a model organism to explore the molecular basis for commensalism. As such, this review will describe our current mechanistic understanding of S. sanguinis commensalism and speculate upon its molecular traits that may be exploitable to maintain or restore oral health under conditions that would otherwise lead to disease.  相似文献   

18.
The effects of sugar alcohols such as erythritol, xylitol, and sorbitol on periodontopathic biofilm are poorly understood, though they have often been reported to be non‐cariogenic sweeteners. In the present study, we evaluated the efficacy of sugar alcohols for inhibiting periodontopathic biofilm formation using a heterotypic biofilm model composed of an oral inhabitant Streptococcus gordonii and a periodontal pathogen Porphyromonas gingivalis. Confocal microscopic observations showed that the most effective reagent to reduce P. gingivalis accumulation onto an S. gordonii substratum was erythritol, as compared with xylitol and sorbitol. In addition, erythritol moderately suppressed S. gordonii monotypic biofilm formation. To examine the inhibitory effects of erythritol, we analyzed the metabolomic profiles of erythritol‐treated P. gingivalis and S. gordonii cells. Metabolome analyses using capillary electrophoresis time‐of‐flight mass spectrometry revealed that a number of nucleic intermediates and constituents of the extracellular matrix, such as nucleotide sugars, were decreased by erythritol in a dose‐dependent manner. Next, comparative analyses of metabolites of erythritol‐ and sorbitol‐treated cells were performed using both organisms to determine the erythritol‐specific effects. In P. gingivalis, all detected dipeptides, including Glu‐Glu, Ser‐Glu, Tyr‐Glu, Ala‐Ala and Thr‐Asp, were significantly decreased by erythritol, whereas they tended to be increased by sorbitol. Meanwhile, sorbitol promoted trehalose 6‐phosphate accumulation in S. gordonii cells. These results suggest that erythritol has inhibitory effects on dual species biofilm development via several pathways, including suppression of growth resulting from DNA and RNA depletion, attenuated extracellular matrix production, and alterations of dipeptide acquisition and amino acid metabolism.  相似文献   

19.
The oral cavity is a dynamic environment characterized by hundreds of bacterial species, saliva, and an influx of nutrients and metal ions such as copper. Although there is a physiologic level of copper in the saliva, the oral cavity is often challenged with an influx of copper ions. At high concentrations copper is toxic and must therefore be strictly regulated by pathogens for them to persist and cause disease. The cariogenic pathogen Streptococcus mutans manages excess copper using the copYAZ operon that encodes a negative DNA‐binding repressor (CopY), the P1‐ATPase copper exporter (CopA), and the copper chaperone (CopZ). These hypothetical roles of the copYAZ operon in regulation and copper transport to receptors led us to investigate their contribution to S. mutans virulence. Mutants defective in the copper chaperone CopZ, but not CopY or CopA, were impaired in biofilm formation and competitiveness against commensal streptococci. Characterization of the CopZ mutant biofilm revealed a decreased secretion of glucosyltransferases and reduced expression of mutacin genes. These data suggest that the function of copZ on biofilm and competitiveness is independent of copper resistance and CopZ is a global regulator for biofilm and other virulence factors. Further characterization of CopZ may lead to the identification of new biofilm pathways.  相似文献   

20.
The microbial factor is an important determinant in caries risk assessment. This study aimed to use detection, by PCR, of Scardovia wiggsiae, in combination with Streptococcus mutans, for the accurate prediction of caries risk in children. Detection of Lactobacillus, as a caries‐specific species, was also performed. Dental plaque, as well as infected dentine when available, was collected from children who were caries‐free (n = 30) or diagnosed with early childhood caries (n = 30), and the prevalence and abundance of S. wiggsiae and S. mutans were estimated using quantitative PCR. Lactobacillus was amplified by Lactobacillus genus‐specific primers and then sequenced. Both S. wiggsiae and S. mutans were concurrently detected in 19 children diagnosed with early childhood caries, but in none of the caries‐free children. The positive predictive value was 1 in children with S. wiggsiae‐ and S. mutans‐positive test results, compared with 0.58 when only S. mutans was detected and 0.9 when only S. wiggsiae was detected. The abundance of S. wiggsiae and S. mutans in infected dentine was higher than that in dental plaque from children. Diverse Lactobacillus species were observed in dental plaque but none appeared to be caries‐specific. In conclusion, the detection of S. wiggsiae in combination with S. mutans improves the positive predictive value and the specificity of the test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号