首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of various training modalities on blood volume   总被引:3,自引:0,他引:3  
It is controversially discussed whether soccer games should be played at moderate (2001–3000 m) and high altitudes (3001–5500 m) or should be restricted to near sea level and low altitude (501–2000 m) conditions. Athletes living at altitude are assumed to have a performance advantage compared with lowlanders. One advantage of altitude adaptation concerns the expansion of total hemoglobin mass (tHb-mass), which is strongly related to endurance performance at sea level. Cross-sectional studies show that elite athletes posses ∼35% higher tHb-mass than the normal population, which is further elevated by 14% in athletes native to altitude of 2600 m. Although the impact of this huge tHb-mass expansion on performance is not yet investigated for altitude conditions, lowland athletes seek for possibilities to increase tHb-mass to similar levels. At sea level tHb-mass is only moderately influenced by training and depends more on genetic predisposition. Altitude training in contrast, using either the conventional altitude training or the live high–train low (>14 h/day in hypoxia) protocol for 3–4 weeks above 2500 m leads to mean increases in tHb-mass of 6.5%. This increase is, however, not sufficient to close the gap in tHb-mass to elite athletes native to altitude, which may be in advantage when tHb-mass has the same strong influence on aerobic performance at altitude as it has on sea level.  相似文献   

2.
For decades altitude training has been used by endurance athletes and coaches to enhance sea-level performance. Whether altitude training does, in fact, enhance sea level performance and, if so, by what means has been the subject of a number of investigations. Data produced principally by Levine and Stray-Gundersen have shown that living for 4 weeks at 2500 m, while performing the more intense training sessions near sea level will provide an average improvement in sea level endurance performance (duration of competition: 7–20 min) of approximately 1.5%, ranging from no improvement to 6% improvement. This benefit lasts for at least 3 weeks on return to sea level. Two mechanisms have been shown to be associated with improvement in performance. One is an increase in red cell mass (∼8%) that results in an improved maximal oxygen uptake (∼5%). That must be combined with maintenance of training velocities and oxygen flux to realize the improvement in subsequent sea level performance. We find no evidence of changes in running economy or markers of anaerobic energy utilization. Our results have been obtained in runners ranging from collegiate to elite. Wehrlin et al. have recently confirmed these results in elite orienteers. While there are no specific studies addressing the use of living high, training low in football players, it is likely that an improvement in maximal oxygen uptake, all other factors equal, would enhance football performance. This benefit must be weighed against the time away (4 weeks) from home and competition necessary to gain these benefits.  相似文献   

3.
Objectives: Inter-individual variations in sea level performance after altitude training have been attributed, at least in part, to an inter-individual variability in hypoxia induced erythropoiesis. The aim of the present study was to examine whether the variability in the increase in total haemoglobin mass after training at moderate altitude could be predicted by the erythropoietin response after 4 h exposure to normobaric hypoxia at an ambient Po2 corresponding to the training altitude.

Methods: Erythropoietin levels were measured in 16 elite junior swimmers before and after 4 h exposure to normobaric hypoxia (Fio2 0.15, ~2500 m) as well as repeatedly during 3 week altitude training (2100–2300 m). Before and after the altitude training, total haemoglobin mass (CO rebreathing) and performance in a stepwise increasing swimming test were determined.

Results: The erythropoietin increase (10–185%) after 4 h exposure to normobaric hypoxia showed considerable inter-individual variation and was significantly (p<0.001) correlated with the acute erythropoietin increase during altitude training but not with the change in total haemoglobin mass (significant increase of ~6% on average). The change in sea level performance after altitude training was not related to the change in total haemoglobin mass.

Conclusions: The results of the present prospective study confirmed the wide inter-individual variability in erythropoietic response to altitude training in elite athletes. However, their erythropoietin response to acute altitude exposure might not identify those athletes who respond to altitude training with an increase in total haemoglobin mass.

  相似文献   

4.
High-altitude training. Aspects of haematological adaptation.   总被引:18,自引:0,他引:18  
Physical training at high altitude improves performance at high altitude. However, studies assessing performance improvements at sea level after training at higher altitudes have produced ambiguous and inconclusive results. Hypoxia-induced secondary polycythemia is a major contributor to increased work capacity at altitude. The common finding upon exposure to hypoxia is a transient increase in haemoglobin concentration and haematocrit because of a rapid decrease in plasma volume followed by an increase in erythropoiesis per se. Both nonathletes and elite endurance athletes have maximal reticulocytosis after about 8 to 10 days at moderate altitude. Training periods of 3 weeks at moderate altitudes result in individual increase of haemoglobin concentration of about 1 to 4%. A more accentuated increase in haemoglobin can be obtained with longer sojourns at moderate altitude. The normal erythropoietin reaction upon exposure to hypoxia comprises initially increased levels followed by a decrease after about 1 week. Thus, the maintenance of a high erythropoietin concentration is not a prerequisite for a sustained increase in erythrocyte formation at high altitude. The main pharmacological modulator of erythropoietin production seems to be adenosine. But modulators such as growth hormone and catecholamines may also potentiate the effect of hypoxia per se on erythropoietin production. On the other hand, there is a risk that the stress hormones may induce a relative depression of the bone marrow particularly in the early phase of altitude training when the adaptation is minimal and the stress reaction is most accentuated. The most important 'erythropoiesis-specific' nutrition factor is iron availability which can modulate erythropoiesis over a wide range in humans. Adequate iron stores are a necessity for haematological adaptation to hypoxia. However, at moderate altitude, there is a need for rapid mobilisation of iron and even if the stores are normal there is a risk that they cannot be mobilised fast enough for an optimal synthesis of haemoglobin. Data from healthy athletes training at moderate altitudes suggest a true increase in haemoglobin concentration of about 1% per week. Complete haematological adaptation occurred when sea level residents have similar haemoglobin concentrations at moderate altitude compared with residents. The normal difference in haemoglobin concentrations can be estimated to be about 12% between permanent residents at sea level and at 2500m above sea level. This difference indicates a necessary adaptation time of about 12 weeks. If the training period at moderate altitude must be shorter, several sojourns at short intervals are recommended. The important factor in haematological adaptation in athletes at moderate altitude is hypoxia.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Oxygen manipulation as an ergogenic aid   总被引:2,自引:0,他引:2  
The benefits of living and training at high altitude (HiHi) for an improved sea-level performance have been questioned because controlled studies have shown contradictory results. HiHi increases red blood cell mass (RCM), but training in hypoxia may be either an inadequate (low-intensity) or even harmful (to heart, muscle, and brain) stimulus. Recent studies indicate that the best approach to attain the benefits and overcome the problems of altitude training is to sleep at a natural or simulated moderate altitude and train at low altitude or sea level (HiLo). HiLo training increases RCM, as well as sea-level VO2max and performance (at least in responders), if certain prerequisites are fulfilled. The minimum dose seems to be more than 12 hours per day for over 3 weeks at an altitude or simulated altitude of 2100 to 2500 m. The effects of exposure to hypoxia seem to persist for a short period during the subsequent training or racing in normoxia.  相似文献   

6.
Altitude training has been used regularly for the past five decades by elite endurance athletes, with the goal of improving performance at sea level. The dominant paradigm is that the improved performance at sea level is due primarily to an accelerated erythropoietic response due to the reduced oxygen available at altitude, leading to an increase in red cell mass, maximal oxygen uptake, and competitive performance. Blood doping and exogenous use of erythropoietin demonstrate the unequivocal performance benefits of more red blood cells to an athlete, but it is perhaps revealing that long-term residence at high altitude does not increase hemoglobin concentration in Tibetans and Ethiopians compared with the polycythemia commonly observed in Andeans. This review also explores evidence of factors other than accelerated erythropoiesis that can contribute to improved athletic performance at sea level after living and/or training in natural or artificial hypoxia. We describe a range of studies that have demonstrated performance improvements after various forms of altitude exposures despite no increase in red cell mass. In addition, the multifactor cascade of responses induced by hypoxia includes angiogenesis, glucose transport, glycolysis, and pH regulation, each of which may partially explain improved endurance performance independent of a larger number of red blood cells. Specific beneficial nonhematological factors include improved muscle efficiency probably at a mitochondrial level, greater muscle buffering, and the ability to tolerate lactic acid production. Future research should examine both hematological and nonhematological mechanisms of adaptation to hypoxia that might enhance the performance of elite athletes at sea level.  相似文献   

7.
It is well known that altitude training stimulates erythropoiesis, but only few data are available concerning the direct altitude effect on red blood cell volume (RCV) in world class endurance athletes during exposure to continued hypoxia. The purpose of this study was to evaluate the impact of three weeks of traditional altitude training at 2050 m on total hemoglobin mass (tHb), RCV and erythropoietic activity in highly-trained endurance athletes. Total hemoglobin mass, RCV, plasma volume (PV), and blood volume (BV) from 6 males and 4 females, all members of a world class biathlon team, were determined on days 1 and 20 during their stay at altitude as well as 16 days after returning to sea-level conditions (800 m, only males) by using the CO-rebreathing method. In males tHb (14.0 +/- 0.2 to 15.3 +/- 1.0 g/kg, p < 0.05) and RCV (38.9 +/- 1.5 to 43.5 +/- 3.9 ml/kg, p < 0.05) increased at altitude and returned to near sea-level values 16 days after descent. Similarly in females, tHb (13.0 +/- 1.0 to 14.2 +/- 1.3 g/kg, p < 0.05) and RCV (37.3 +/- 3.3 to 42.2 +/- 4.1 ml/kg, p < 0.05) increased. Compared to their sea-level values, the BV of male and female athletes showed a tendency to increase at the end of the altitude training period, whereas PV was not altered. In male athletes, plasma erythropoietin concentration increased up to day 4 at altitude (11.8 +/- 5.0 to 20.8 +/- 6.0 mU/ml, p < 0.05) and the plasma concentration of the soluble transferrin receptor was elevated by about 11 % during the second part of the altitude training period, both parameters indicating enhanced erythropoietic activity. In conclusion, we show for the first time that a three-week traditional altitude training increases erythropoietic activity even in world class endurance athletes leading to elevated tHb and RCV. Considering the relatively fast return of tHb and RCV to sea-level values after hypoxic exposure, our data suggest to precisely schedule training at altitude and competition at sea level.  相似文献   

8.
Intermittent hypoxic training (IHT) refers to the discontinuous use of normobaric or hypobaric hypoxia, in an attempt to reproduce some of the key features of altitude acclimatization, with the ultimate goal to improve sea-level athletic performance. In general, IHT can be divided into two different strategies: (1) providing hypoxia at rest with the primary goal being to stimulate altitude acclimatization or (2) providing hypoxia during exercise, with the primary goal being to enhance the training stimulus. Each approach has many different possible application strategies, with the essential variable among them being the "dose" of hypoxia necessary to achieve the desired effect. One approach, called living high-training low, has been shown to improve sea-level endurance performance. This strategy combines altitude acclimatization (2500 m) with low altitude training to ensure high-quality training. The opposite strategy, living low-training high, has also been proposed by some investigators. The primacy of the altitude acclimatization effect in IHT is demonstrated by the following facts: (1) living high-training low clearly improves performance in athletes of all abilities, (2) the mechanism of this improvement is primarily an increase in erythropoietin, leading to increased red cell mass, V(O2max), and running performance, and (3) rather than intensifying the training stimulus, training at altitude or under hypoxia leads to the opposite effect - reduced speeds, reduced power output, reduced oxygen flux - and therefore is not likely to provide any advantage for a well-trained athlete.  相似文献   

9.
Current trends in altitude training   总被引:16,自引:0,他引:16  
Recently, endurance athletes have used several novel approaches and modalities for altitude training including: (i) normobaric hypoxia via nitrogen dilution (hypoxic apartment); (ii) supplemental oxygen; (iii) hypoxic sleeping devices; and (iv) intermittent hypoxic exposure (IHE). A normobaric hypoxic apartment simulates an altitude environment equivalent to approximately 2000 to 3000m (6560 to 9840ft). Athletes who use a hypoxic apartment typically 'live and sleep high' in the hypoxic apartment for 8 to 18 hours a day, but complete their training at sea level, or approximate sea level conditions. Several studies suggest that using a hypoxic apartment in this manner produces beneficial changes in serum erythropoietin (EPO) levels, reticulocyte count and red blood cell (RBC) mass, which in turn may lead to improvements in postaltitude endurance performance. However, other studies failed to demonstrate significant changes in haematological indices as a result of using a hypoxic apartment. These discrepancies may be caused by differences in methodology, the hypoxic stimulus that athletes were exposed to and/or the training status of the athletes. Supplemental oxygen is used to simulate either normoxic (sea level) or hyperoxic conditions during high-intensity workouts at altitude. This method is a modification of the 'high-low' strategy, since athletes live in a natural terrestrial altitude environment but train at 'sea level' with the aid of supplemental oxygen. Limited data regarding the efficacy of hyperoxic training suggests that high-intensity workouts at moderate altitude (1860m/6100ft) and endurance perfor- mance at sea level may be enhanced when supplemental oxygen training is utilised at altitude over a duration of several weeks. Hypoxic sleeping devices include the Colorado Altitude Training (CAT) Hatch (hypobaric chamber) and Hypoxico Tent System (normobaric hypoxic system), both of which are designed to allow athletes to sleep high and train low. These devices simulate altitudes up to approximately 4575 m/15006 ft and 4270 m/14005 ft, respectively. Currently, no studies have been published on the efficacy of these devices on RBC production, maximal oxygen uptake and/or performance in elite athletes. IHE is based on the assumption that brief exposures to hypoxia (1.5 to 2.0 hours) are sufficient to stimulate the release of EPO, and ultimately bring about an increase in RBC concentration. Athletes typically use IHE while at rest, or in conjunction with a training session. Data regarding the effect of IHE on haematological indices and athletic performance are minimal and inconclusive.  相似文献   

10.
Analysis of ∼100 years of home-and-away South American World Cup matches illustrate that football competition at moderate/high altitude (>2000 m) favors the home team, although this is more than compensated by the likelihood of sea-level teams winning at home against the same opponents who have descended from altitude. Nevertheless, the home team advantage at altitudes above ∼2000 m may reflect that traditionally, teams from sea level or low altitude have not spent 1–2 weeks acclimatizing at altitude. Despite large differences between individuals, in the first few days at high altitude (e.g. La Paz, 3600 m) some players experience symptoms of acute mountain sickness (AMS) such as headache and disrupted sleep, and their maximum aerobic power (VO2max) is ∼25% reduced while their ventilation, heart rate and blood lactate during submaximal exercise are elevated. Simulated altitude for a few weeks before competition at altitude can be used to attain partial ventilatory acclimation and ameliorated symptoms of AMS. The variety of simulated altitude exposures usually created with enriched nitrogen mixtures of air include resting or exercising for a few hours per day or sleeping ∼8 h/night in hypoxia. Preparation for competition at moderate/high altitude by training at altitude is probably superior to simulated exposure; however, the optimal duration at moderate/high altitude is unclear. Preparing for 1–2 weeks at moderate/high altitude is a reasonable compromise between the benefits associated with overcoming AMS and partial restoration of VO2max vs the likelihood of detraining.  相似文献   

11.
12.
Acute exposure to moderate altitude is likely to enhance cycling performance on flat terrain because the benefit of reduced aerodynamic drag outweighs the decrease in maximum aerobic power [maximal oxygen uptake (VO2max)]. In contrast, when the course is mountainous, cycling performance will be reduced at moderate altitude. Living and training at altitude, or living in an hypoxic environment (approximately 2500 m) but training near sea level, are popular practices among elite cyclists seeking enhanced performance at sea level. In an attempt to confirm or refute the efficacy of these practices, we reviewed studies conducted on highly-trained athletes and, where possible, on elite cyclists. To ensure relevance of the information to the conditions likely to be encountered by cyclists, we concentrated our literature survey on studies that have used 2- to 4-week exposures to moderate altitude (1500 to 3000 m). With acclimatisation there is strong evidence of decreased production or increased clearance of lactate in the muscle, moderate evidence of enhanced muscle buffering capacity (beta m) and tenuous evidence of improved mechanical efficiency (ME) of cycling. Our analysis of the relevant literature indicates that, in contrast to the existing paradigm, adaptation to natural or simulated moderate altitude does not stimulate red cell production sufficiently to increase red cell volume (RCV) and haemoglobin mass (Hb(mass)). Hypoxia does increase serum erthyropoietin levels but the next step in the erythropoietic cascade is not clearly established; there is only weak evidence of an increase in young red blood cells (reticulocytes). Moreover, the collective evidence from studies of highly-trained athletes indicates that adaptation to hypoxia is unlikely to enhance sea level VO2max. Such enhancement would be expected if RCV and Hb(mass) were elevated. The accumulated results of 5 different research groups that have used controlled study designs indicate that continuous living and training at moderate altitude does not improve sea level performance of high level athletes. However, recent studies from 3 independent laboratories have consistently shown small improvements after living in hypoxia and training near sea level. While other research groups have attributed the improved performance to increased RCV and VO2max, we cite evidence that changes at the muscle level (beta m and ME) could be the fundamental mechanism. While living at altitude but training near sea level may be optimal for enhancing the performance of competitive cyclists, much further research is required to confirm its benefit. If this benefit does exist, it probably varies between individuals and averages little more than 1%.  相似文献   

13.
Altitude training for the marathon   总被引:4,自引:0,他引:4  
For nearly 40 years, scientists and elite endurance athletes have been investigating the use of altitude in an effort to enhance exercise performance. While the results of many early studies on the use of altitude training for sea level performance enhancement have produced equivocal results, newer studies using the 'live high, train low' altitude training model have demonstrated significant improvements in red cell mass, maximal oxygen uptake, oxygen uptake at ventilatory threshold, and 3000m and 5000m race time. For the marathoner looking to add altitude training to their peak performance plans, residence at an altitude of 2000-2500m, a minimum of 20 hours per day, for 4 weeks, appears to hold the greatest potential for performance enhancement.Based on published mathematical models of marathon performance, a marathoner with a typical or average running economy who performed 'live high, train low' altitude training could experience an improvement of nearly 8.5 minutes (or approximately 5%) over the 26.2-mile race distance.  相似文献   

14.
The increase in oxygen transport elicited by several weeks of exposure to moderate to high altitude is used to increase physical performance when returning to sea level. However, many studies have shown that aerobic performance may not increase at sea level after a training block at high altitude. Subsequently, the concept of living high and training low was introduced in the early 1990s and was further modified to include simulated altitude using hypobaric or normobaric hypoxia. Review is given of the main studies that have used this procedure. Hematological changes are limited to insignificant or moderate increase in red cell mass, depending on the "dose" of hypoxia. Maximal aerobic performance is increased when the exposure to hypoxia is at least over 18 days. Submaximal performance and running economy have been found increased in several, but not all, studies. The tolerance (fatigue, sleep, immunological status, cardiac function) is good when the altitude or simulated altitude is not higher than 3000 m. Virtually no data are available about the effect of this procedure upon anaerobic performance. The wide spread of these techniques deserves further investigations.  相似文献   

15.
Two modalities of applying hypoxia at rest are reviewed in this paper: intermittent hypoxic exposure (IHE), which consists of hypoxic air for 5–6 min alternating with breathing room air for 4–5 min during sessions lasting 60–90 min, or prolonged hypoxic exposure (PHE) to normobaric or hypobaric hypoxia over up to 3 h/day. Hypoxia with IHE is usually in the range of 12–10%, corresponding to an altitude of about 4000–6000 m. Normobaric or hypobaric hypoxia with PHE corresponds to altitudes of 4000–5500 m. Five of six studies applying IHE and all four well-controlled studies using PHE could not show a significant improvement with these modalities of hypoxic exposure for sea level performance after 14–20 sessions of exposure, with the exception of swimmers in whom there might be a slight improvement by PHE in combination with a subsequent tapering. There is no direct or indirect evidence that IHE or PHE induce any significant physiological changes that might be associated with improving athletic performance at sea level. Therefore, IHE and PHE cannot be recommended for preparation of competitions held at sea level.  相似文献   

16.
The present study investigated whether athletes can be classified as responders or non‐responders based on their individual change in total hemoglobin mass (tHb‐mass) following altitude training while also identifying the potential factors that may affect responsiveness to altitude exposure. Measurements were completed with 59 elite endurance athletes who participated in national team altitude training camps. Fifteen athletes participated in the altitude training camp at least twice. Total Hb‐mass using a CO rebreathing method and other blood markers were measured before and after a total of 82 altitude training camps (1350‐2500 m) in 59 athletes. In 46 (56%) altitude training camps, tHb‐mass increased. The amount of positive responses increased to 65% when only camps above 2000 m were considered. From the fifteen athletes who participated in altitude training camps at least twice, 27% always had positive tHb‐mass responses, 13% only negative responses, and 60% both positive and negative responses. Logistic regression analysis showed that altitude was the most significant factor explaining positive tHb‐mass response. Furthermore, male athletes had greater tHb‐mass response than female athletes. In endurance athletes, tHb‐mass is likely to increase after altitude training given that hypoxic stimulus is appropriate. However, great inter‐ and intra‐individual variability in tHb‐mass response does not support classification of an athlete permanently as a responder or non‐responder. This variability warrants efforts to control numerous factors affecting an athlete's response to each altitude training camp.  相似文献   

17.
Acclimatisation to environmental hypoxia initiates a series of metabolic and musculocardio-respiratory adaptations that influence oxygen transport and utilisation, or better still, being born and raised at altitude, is necessary to achieve optimal physical performance at altitude, scientific evidence to support the potentiating effects after return to sea level is at present equivocal. Despite this, elite athletes continue to spend considerable time and resources training at altitude, misled by subjective coaching opinion and the inconclusive findings of a large number of uncontrolled studies. Scientific investigation has focused on the optimisation of the theoretically beneficial aspects of altitude acclimatisation, which include increases in blood haemoglobin concentration, elevated buffering capacity, and improvements in the structural and biochemical properties of skeletal muscle. However, not all aspects of altitude acclimatisation are beneficial; cardiac output and blood flow to skeletal muscles decrease, and preliminary evidence has shown that hypoxia in itself is responsible for a depression of immune function and increased tissue damage mediated by oxidative stress. Future research needs to focus on these less beneficial aspects of altitude training, the implications of which pose a threat to both the fitness and the health of the elite competitor. Paul Bert was the first investigator to show that acclimatisation to a chronically reduced inspiratory partial pressure of oxygen (P1O2) invoked a series of central and peripheral adaptations that served to maintain adequate tissue oxygenation in healthy skeletal muscle, physiological adaptations that have been subsequently implicated in the improvement in exercise performance during altitude acclimatisation. However, it was not until half a century later that scientists suggested that the additive stimulus of environmental hypoxia could potentially compound the normal physiological adaptations to endurance training and accelerate performance improvements after return to sea level. This has stimulated an exponential increase in scientific research, and, since 1984, 22 major reviews have summarised the physiological implications of altitude training for both aerobic and anaerobic performance at altitude and after return to sea level. Of these reviews, only eight have specifically focused on physical performance changes after return to sea level, the most comprehensive of which was recently written by Wolski et al. Few reviews have considered the potentially less favourable physiological responses to moderate altitude exposure, which include decreases in absolute training intensity, decreased plasma volume, depression of haemopoiesis and increased haemolysis, increases in sympathetically mediated glycogen depletion at altitude, and increased respiratory muscle work after return to sea level. In addition, there is a risk of developing more serious medical complications at altitude, which include acute mountain sickness, pulmonary oedema, cardiac arrhythmias, and cerebral hypoxia. The possible implications of changes in immune function at altitude have also been largely ignored, despite accumulating evidence of hypoxia mediated immunosuppression. In general, altitude training has been shown to improve performance at altitude, whereas no unequivocal evidence exists to support the claim that performance at sea level is improved. Table 1 summarises the theoretical advantages and disadvantages of altitude training for sea level performance. This review summarises the physiological rationale for altitude training as a means of enhancing endurance performance after return to sea level. Factors that have been shown to affect the acclimatisation process and the subsequent implications for exercise performance at sea level will also be discussed. Studies were located using five major database searches, which included Medline, Embase, Science Citation Index, Sports Discus, and Sport, in  相似文献   

18.
目的:研究优秀女子皮艇运动员高原训练过程中BU、CK、Hb、Fe和T/C值的变化。方法:我国优秀女子皮艇运动员6名,在冬季训练初期安排11周的高原训练,其中在高原上(海拔2100m)训练8周。分别于高原前1周、高原中每周、高原后1周和2周测定BU、CK和Hb值;高原中2次大负荷训练课次日晨测定BU和CK值;分别在高原前1周、高原中第4周和高原后1周测定Fe、T和C值。结果:与高原训练前相比,优秀女子皮艇运动员在高原训练第1、2、3、5、6、7周时和高原后2周时的BU显著升高(P<0.01或P<0.05);高原训练第1、2、3、5、6、7周时和高原后2周时的CK显著升高(P<0.01或P<0.05);高原训练第1、3周时Hb显著升高(P<0.05),高原训练第4至第8周时Hb明显下降(P<0.05)。高原训练第3周BU值与两天前(第19日)大负荷训练课次日晨相比明显升高(P<0.05),CK值明显下降(P<0.01);高原训练第7周BU值与两天前(第47日)大负荷训练课次日晨相比明显下降(P<0.01),CK值明显下降(P<0.01)。与高原训练前相比,高原训练第4周和高原后1周时Fe值显著下降(P<0.01);高原后1周时T和T/C值明显下降(P<0.01);高原后1周时C值显著升高(P<0.01)。结论:优秀女子皮艇运动员高原训练期间血BU、CK、Hb和C明显升高,高原训练后Fe、Hb、血T和T/C值下降,表明高原训练能增加运动负荷对机体的刺激作用。  相似文献   

19.
Erythropoietin (EPO) and soluble transferrin receptor (sTfR) in serum have been proposed as indirect biomarkers for the detection of recombinant human EPO (rhEPO) misuse in sport. The purpose of the present study was to investigate the influence of different levels of physical fitness, sport, different training workload during the sport season, and endurance exercise in the concentrations of these serum biomarkers for their application into mathematical models to indirectly detect rhEPO misuse. Serum EPO and sTfR concentrations were measured in 96 elite athletes of various sports along the sport season, in 21 recreational athletes at baseline (non exercising) conditions and in 129 other recreational athletes before and after long-distance races (10 and 21 km). In elite athletes, hemoglobin concentrations and percentage of reticulocytes were also measured, and indirect detection models applied. In recreational athletes, for EPO and sTfR, significant differences were only observed after the 21-km race. In baseline conditions, no differences were observed between recreational and elite athletes for EPO and sTfR. In elite athletes, individual EPO and sTfR concentrations slightly changed over the sport season, with coefficients of variation (CV) of 26.1 % and 9.0 %, respectively. Hemoglobin and reticulocytes were influenced by sport, but their individual variation over the sport season was not physiologically relevant (CV of 3.7 % and 21.3 %, respectively). When applying mathematical models for detection of rhEPO administration, only one elite athlete obtained an individual model score above the established thresholds. Physical fitness, sport and different training workload during the sport season had no substantial effect on serum EPO and sTfR concentrations, except in recreational athletes after a 21-km race. Variations observed in mathematical models to detect EPO administration were mainly due to fluctuation in hemoglobin concentrations, commonly observed in elite athletes.  相似文献   

20.
The ergogenics of hypoxia training in athletes   总被引:1,自引:0,他引:1  
Hypoxia elicits hematopoiesis, which ultimately improves oxygen transport to peripheral tissues. In part because of this, altitude training has been used in the conditioning of elite endurance athletes for decades, despite equivocal evidence that such training benefits subsequent sea level performance. Recently, traditional live high-train high athletic conditioning has been implicated in a number of deleterious effects on training intensity, cardiac output, muscle composition, and fluid and metabolite balance —effects that largely offset hematopoietic benefits during sea level performance. Modifled live high-train low conditioning regimens appear to capture the beneficial hematopoietic effects of hypoxic training while avoiding many of the deleterious effects of training at altitude. Because of the logistical and financial barriers to living high and training low, various methods to simulate hypoxia have been developed and studied. The data from these studies suggest a threshold requirement for hypoxic exposure to meaningfully augment hematopoiesis, and presumably improve athletic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号