首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mosquitoes are highly dependent on their olfactory system for, e.g. host location and identification of nectar-feeding and oviposition sites. Odours are detected by olfactory receptor neurons (ORNs) housed in hair-shaped structures, sensilla, on the antennae and maxillary palps. In order to unravel the function of the olfactory system in the yellow fever vector, Aedes aegypti, we performed single-sensillum recordings from trichoid sensilla on female antennae. These sensilla are divided into four distinct morphological types. Based on the response to a set of 16 odour compounds, we identified 18 different ORN types, housed in 10 sensillum types. The ORNs responded to behaviourally relevant olfactory cues, such as oviposition attractants and sweat-borne compounds, including 4-methylcyclohexanol and indole, respectively. Two ORNs housed in these sensilla, as well as two ORNs housed in an additional sensillum type, did not respond to any of the compounds tested. The ORNs housed in individual sensilla exhibited stereotypical pairing and displayed differences in signalling mode (excitatory and inhibitory) as well as in temporal response patterns. In addition to physiological characterization, we performed anterograde neurobiotin stainings of functionally identified ORNs in order to define the functional map among olfactory glomeruli in the primary olfactory centre, the antennal lobe. The targeted glomeruli were compared with an established 3D map. Our data showed that the ORN types sent their axons to defined antennal lobe glomeruli in a stereotypic pattern.  相似文献   

3.
The central projections of the cold receptor axons were examined by filling two types of cold receptive sensilla with cobalt lysine—a cold and hygroreceptive (C/H) sensillum and a cold receptive and olfactory (C/O) sensillum—on the antennae of the cockroach, Periplaneta americana L. When the dye filled a single C/H sensillum, four axons were stained. Three of these axons terminate in the ipsilateral antennal lobe, while the other branches in the ipsilateral dorsal lobe. One of the branches passed through the tritocerebrum to terminate in the suboesophageal ganglion, while the other branches end in the lobe. When a single C/O sensillum is dye filled, all axons of the four receptor neurons terminate exclusively in the ipsilateral antennal lobe. One axon from the C/H sensillum and one axon from the C/O sensillum terminate in a particular glomerulus in the ventroposterior region of the antennal lobe. Each of these axons also has a tuft in separate giomeruli situated just dorsal to the glomerulus in which both axons terminate. This set of three glomeruli have indistinct boundaries and appear to form a complex of glomeruli similar to the macroglomerular complex of male moths. Assuming modality-specific convergence of antennal afferents, these axons appear to belong to the cold receptor neurons, and the set of glomeruli appear to function in cold reception. Two other neurons stained from C/H sensilla always terminate in theglom-eruli distinct from the set of glomeruli mentioned earlier. These neurons are assigned to the pair of hygroreceptor neurons, and their glomeruli are thought to function in hygroreception. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The macroglomerular complex in the primary olfactory center of male moths receives information from numerous pheromone-detecting receptor neurons housed in specific sensilla located on the antennae. We investigated the functional organization of the three glomeruli constituting this complex in Helicoverpa assulta, a unique species among heliothine moths as concerns the composition of the pheromone blend. By tip recordings from the male-specific receptor neurons combined with cobalt-lysine stainings, the axon terminals in the brain were traced and subsequently reconstructed by camera lucida drawings. Some were also reconstructed in a digital form. The results showed that the sensilla could be classified into two functional types. A major category housed two colocalized receptor neurons, one responding to the primary pheromone component cis-9-hexadecenal and the other to the behavioral antagonists cis-9-tetradecenal and cis-9-hexadecenol. Cobalt-lysine applied to this sensillum type consistently resulted in two stained axons, each terminating in one of the two large subunits of the macroglomerular complex: the cumulus or the dorsomedial glomerulus. The second, less frequently appearing sensillum type contained a receptor neuron responding to the second pheromone component, cis-11-hexadecenal. Dye applied to this type resulted in stained axon projections in the ventral glomerulus. In an evolutionary context it is particularly interesting that differences of related heliothine species are reflected in the functional organization of the MGC compartments.  相似文献   

5.
The formation of ommatidia in the compound eyes and sensilla on the antennae of the honeybee was followed and the development of their sensory neurons was traced using an antiserum against taurine as a marker. Taurine-like immunoreactivity (Tau-IR) is expressed in sensory neurons of several modalities, namely visual, olfactory, gustatory, and mechanosensory. Staining intensity is very high in the larva and in the first half of the pupal stage and gradually decreases towards the end of metamorphosis. In the photoreceptor cells of the compound eyes, Tau-IR can be detected from the fifth larval instar onwards, prior to differentiation of other components of the ommatidium. Already in the midstage larvae, when the antennal primordia of the adult still lie within the peripodial cavity, a few presumably mechanosensory neurons are labelled in the pedicellus of the developing antenna. The majority of the antennal sensory neurons which are located on the flagellum start to exhibit Tau-IR upon pupation, long before any cuticular specializations such as sensory hairs or plates are detectable. All known types of antennal sensilla were identified and it could be shown that all of them are innervated by Tau-IR sensory neurons. Thus, taurine immunocytochemistry can be applied as a useful label for developing sensory neurons. Functional implications of taurine during development are discussed. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The neuronal connections in the central gustatory system of the crucian carp were examined by means of degeneration and HRP methods. Cell morphology in the primary gustatory lobes was studied in Golgi-impregnated material. Medium-sized neurons of the facial lobe emit axons which project to the secondary gustatory nucleus. The nucleus intermedius facialis of Herrick ('05) projects bilaterally. Large neurons send axons through the spinal trigeminal tract to terminate in the spinal trigeminal nucleus and in the medial funicular nucleus. In the vagal lobe, second-order neurons for the ascending projections are located in the superficial part of the sensory zone. These neurons project exclusively to the ipsilateral secondary gustatory nucleus. Neurons located in the deeper part of the sensory zone send axons to the motor zone and to the brainstem reticular formation to form short reflex arcs. The glossopharyngeal lobe has similar neuronal connections to the vagal sensory zone. Both facial and vagal lobes receive afferent projections from the following central structures: nucleus posterioris thalami, nucleus diffusus lobi inferioris, optic tectum, motor nucleus of the trigeminal nerve, medullary reticular formation, and the gray matter of the upper spinal cord. The facial lobe has an additional afferent from the mesencephalic reticular formation. The major sources to the medullary gustatory lobes are the nucleus posterioris thalami and nucleus diffusus lobi inferioris. Each type of neuron classified by morphology and location in the facial, glossopharyngeal, and vagal lobes was correlated with its particular destination. Topographic projections were demonstrated in the secondary and tertiary gustatory centers.  相似文献   

7.
In order to study the function of specific neural circuits, we generated UAS-Channelrhodopsin2 (ChR2) transgenic Drosophila and established a ChR2-based system that enables specific activation of targeted neurons in larval and adult fruit flies with blue light illumination, under the control of a newly designed light source that provides fully programmable stimulation patterns. We showed that stimulating selectively the nociceptor of larvae expressing ChR2 elicited light-induced 'pain' response, confined freely behaving larvae in defined area and directed larva migration along a preset route. In freely behaving adult flies, rapid photoactivation of targeted gustatory sensory neurons, dopaminergic modulatory neurons and motor neurons triggered the proboscis extension response, escaping reflex and changes in the locomotion pattern, respectively, with precise temporal control. This non-invasive method for remote control of animal behaviors also provides a potential tool for conducting 'gain of function' studies toward understanding how animal behaviors are controlled by neural activity.  相似文献   

8.
9.
The antennules of decapod crustaceans are covered with thousands of chemosensilla that mediate odor discrimination and orientation behaviors. Most studies on chemoreception in decapods have focused on the prominent aesthetasc sensilla. However, previous behavioral studies on lobsters following selective sensillar ablation have revealed that input from nonaesthetasc antennular chemosensilla is sufficient for many odor-mediated behaviors. Our earlier examination of the setal types on the antennules of the Caribbean spiny lobster Panulirus argus revealed three types of nonaesthetasc chemosensilla. The most abundant and widely distributed of these is the hooded sensillum. The present study describes the detailed ultrastructure of antennular hooded sensilla and the physiological response properties of their receptor neurons. Light and scanning and transmission electron microscopy were used to examine structural characteristics, and electrophysiology was used to examine single-unit responses elicited by focal chemical and mechanical stimulation of antennular hooded sensilla. Hooded sensilla have a porous cuticle and are innervated by 9-10 chemosensory and 3 mechanosensory neurons whose dendrites project to the distal end of the sensillum. Hooded sensillar chemosensory neurons responded to waterborne chemicals, were responsive to only one of the six tested single compounds, and had different specificities. Hooded sensillar mechanosensory neurons were not spontaneously active. They had low sensitivity in that they responded to tactile but not waterborne vibrations, and they responded to sensillar deflection with phasic bursts of activity. These results support the idea that hooded sensilla are bimodal chemo-mechanosensilla and are receptors in an antennular chemosensory pathway that parallels the well-described aesthetasc chemosensory pathway.  相似文献   

10.
The antennae of most insects move actively and detect the physical and chemical composition of objects encountered by using their associated tactile sensors. Positional information is required for these sensory modalities to interpret the physical environment. Although we have a good understanding of antennal olfactory pathways, little is known about the destinations of antennal mechanosensory and contact chemosensory (gustatory) receptor neurons in the central nervous system. The cockroach Periplaneta is equipped with a pair of long, thin antennae, which are covered in bristles. The distal portions of each antenna possess about 6,500 bimodal bristles that house one tactile sensory and one to four contact chemosensory neurons. In this study, we investigated the morphologies of bimodal bristle receptor afferents by staining individual or populations of bristles. Unlike olfactory afferents, which project exclusively into the glomeruli in the ventral region of the deutocerebrum, both the presumptive mechanosensory and the contact chemosensory afferents projected into the posterior dorsal region of the deutocerebrum and the anterior region of the subesophageal ganglion. Each afferent showed multilayered segmentation and spatial occupation reflecting its three-dimensional position in the periphery. Presumptive contact chemosensory afferents, characterized by their thin axons and unique branching pattern, occupied more medioventral positions compared with the presumptive tactile afferents. Furthermore, projection fields of presumptive contact chemosensory afferents from single sensilla tended to be segregated from each other. These observations suggest that touch and taste positional information from the antenna is precisely represented in primary centers in a modality-specific manner.  相似文献   

11.
We have used a GAL4 enhancer-trap line coupled with an upstream activation sequence (UAS)-linked lacZ reporter construct to visualise and describe the central projections of proprioceptive sensory neurons of the thorax and abdomen in Drosophila. In the legs, lacZ expression is restricted to sensory neurons associated with hair plates, a subset of campaniform sensilla, and with the femoral chordotonal organ; whereas, in the wing, expression is seen only in subsets of campaniform sensilla. In the abdomen, expression is seen in Wheeler's organ and in a segmentally repeated array of internal sensory neurons that have not been previously described. The central projections from all of these neurons are described. The results confirm and expand upon our knowledge of the organisation of sensory neuropils in insects. The enhancer-trap technique provides a potentially powerful tool for describing the organisation of the central nervous system of Drosophila. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The temporal correspondence between neuroanatomical and neurophysiological development of peripheral and central gustatory neurons has suggested that morphological development of the first-order central gustatory relay, located in the rostral nucleus of the solitary tract (NST), may be dependent on afferent input from peripheral gustatory pathways. The objective of the present study was to determine the effects of perinatal receptor damage on development of gustatory recipient zones within the rostral and intermediate NST. Results show that damage induced to fungiform receptors of the anterior tongue at postnatal day 2 (P2) alters normal development of NST terminal fields associated with the chorda tympani nerve (CT) and greater superficial nerve (GSP), and that alterations in the CT/GSP terminal field persist in adulthood after peripheral gustatory receptors have regenerated. Damage induced to fungiform receptors at P2 does not alter the normal development of glossopharyngeal terminal fields in the intermediate NST. Receptor damage produced at P10 and P20 is without effect on normal development of the CT/GSP terminal field. Thus, fungiform receptor damage at P2 produces specific alterations in the development of NST terminal fields that receive projections from the facial-intermediate nerve, and receptor damage effects are only obtained during a critical period of postnatal development. P2 receptor damage has the overall effect of eliminating caudally directed migration of CT/GSP axons to additional projection neurons that establish connections with the second-order central gustatory relay located in the parabrachial nucleus (PBN). Behavioral studies were conducted to determine the functional consequences of early receptor damage. Results from behavioral studies show that bilateral damage to fungiform papillae at P2 alters normal adult preferences to low and intermediate concentrations of NaCl and sucrose tastes, yet aversions to citric acid and quinine HCl are not obviously affected. Therefore, anatomical alterations in the CT/GSP terminal field produced by P2 receptor damage are accompanied by specific changes in adult taste preference responses.  相似文献   

13.
The mushroom bodies of the honeybee are important neuropils for learning and memory. Therefore, knowledge about their input and output connections is essential to understanding how these neuropils function. A newly described input tract to the mushroom body is presented here, which is called the subesophageal-calycal tract (SCT) and connects the subesophageal ganglion with the calyces of the mushroom bodies. The neuronal somata of the SCT neurons lie in one cluster between the lobula of the optic lobe and a neuropil area that is formed from the fusion of the tritocerebrum and the subesophageal ganglion. Within the subesophageal ganglion, the dendritic fibers of SCT neurons overlap with terminals of sensory neurons from the proboscis. Therefore, we conclude that the SCT neurons might process gustatory and mechanosensory information from the proboscis. Individual SCT neurons receive unilateral input within the subesophageal ganglion and may connect to either the ipsilateral or the contralateral mushroom body. On their way to the mushroom bodies, the SCT neuron axons meet the roots of the antennocerebralis tracts (ACTs) and from this point follow the same path as the median ACT neurons for a short distance. Within the calyces, the SCT neurons innervate two separate areas, a small area within the dorsal collar just below the lip and a part of the basal ring. Double-labeling experiments show that the projections of the SCT neurons do not overlap with the projections of the olfactory projection neurons and visual projection neurons from the dorsal medulla. The possible function of the SCT neurons and the relation of the SCT to known input tracts of the mushroom bodies in other insects are discussed.  相似文献   

14.
GAL4-driven targeted expression of tetanus toxin light chain (UAS-TeTxLC) in a subset of chemosensory neurons of the larval antennomaxillary complex (AMC) and pharynx causes abnormal chemosensory behavior in Drosophila melanogaster. Consistent with strongest staining in the dorsal organ (DO), the presumed olfactory organ of the AMC, tetanus toxin-expressing larvae subjected to an olfactory preference assay show anosmic behavior to most volatile substances tested. Furthermore, we observed reduced responses to sodium chloride, fructose, and sucrose in gustatory plate assays. Surprisingly, the entire subset of labeled sensory neurons from the terminal (maxillary) organ (TO) of the AMC was found to project via the antennal nerve to the larval antennal lobe region. The maxillary nerve remained completely unstained. Hence, a subset of neurons from the TO builds an anatomical entity with projections from the DO. Our results suggest that the AMC contains both olfactory and gustatory sensilla, and that the DO is the main olfactory organ in larvae.  相似文献   

15.
The antennae of insects contain a vast array of sensory neurons that process olfactory, gustatory, mechanosensory, hygrosensory, and thermosensory information. Except those with multimodal functions, most sensory neurons use acetylcholine as a neurotransmitter. Using immunohistochemistry combined with retrograde staining of antennal sensory neurons in the cockroach Periplaneta americana, we found serotonin‐immunoreactive sensory neurons in the antenna. These were selectively distributed in chaetic and scolopidial sensilla and in the scape, the pedicel, and first 15 segments of the flagellum. In a chaetic sensillum, A single serotonin‐immunoreactive sensory neuron cohabited with up to four serotonin‐negative sensory neurons. Based on their morphological features, serotonin‐immunopositive and ‐negative sensory neurons might process mechanosensory and contact chemosensory modalities, respectively. Scolopidial sensilla constitute the chordotonal and Johnston's organs within the pedicel and process antennal vibrations. Immunoelectron microscopy clearly revealed that serotonin‐immunoreactivities selectively localize to a specific type of mechanosensory neuron, called type 1 sensory neuron. In a chordotonal scolopidial sensillum, a serotonin‐immunoreactive type 1 neuron always paired with a serotonin‐negative type 1 neuron. Conversely, serotonin‐immunopositive and ‐negative type 1 neurons were randomly distributed in Johnston's organ. In the deutocerebrum, serotonin‐immunoreactive sensory neuron axons formed three different sensory tracts and those from distinct types of sensilla terminated in distinct brain regions. Our findings indicate that a biogenic amine, serotonin, may act as a neurotransmitter in peripheral mechanosensory neurons. J. Comp. Neurol. 522:414–434, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The subesophageal zone (SEZ) of the Drosophila brain processes mechanosensory and gustatory sensory input from sensilla located on the head, mouth cavity and trunk. Motor output from the SEZ directly controls the movements involved in feeding behavior. In an accompanying paper (Hartenstein et al., 2017 ), we analyzed the systems of fiber tracts and secondary lineages to establish reliable criteria for defining boundaries between the four neuromeres of the SEZ, as well as discrete longitudinal neuropil domains within each SEZ neuromere. Here we use this anatomical framework to systematically map the sensory projections entering the SEZ throughout development. Our findings show continuity between larval and adult sensory neuropils. Gustatory axons from internal and external taste sensilla of the larva and adult form two closely related sensory projections, (a) the anterior central sensory center located deep in the ventromedial neuropil of the tritocerebrum and mandibular neuromere, and (b) the anterior ventral sensory center (AVSC), occupying a superficial layer within the ventromedial tritocerebrum. Additional, presumed mechanosensory terminal axons entering via the labial nerve define the ventromedial sensory center (VMSC) in the maxilla and labium. Mechanosensory afferents of the massive array of chordotonal organs (Johnston's organ) of the adult antenna project into the centrolateral neuropil column of the anterior SEZ, creating the antenno‐mechanosensory and motor center (AMMC). Dendritic projections of dye back‐filled motor neurons extend throughout a ventral layer of the SEZ, overlapping widely with the AVSC and VMSC. Our findings elucidate fundamental structural aspects of the developing sensory systems in Drosophila.  相似文献   

17.
Ants have well‐developed chemosensory systems for social lives. The goal of our study is to understand the functional organization of the ant chemosensory system based on caste‐ and sex‐specific differences. Here we describe the common and sex‐specific glomerular organizations in the primary olfactory center, the antennal lobe of the carpenter ant Camponotus japonicus. Differential labeling of the two antennal nerves revealed distinct glomerular clusters innervated by seven sensory tracts (T1–T7 from ventral to dorsal) in the antennal lobe. T7 innervated 10 glomeruli, nine of which received thick axon terminals almost exclusively from the ventral antennal nerve. Coelocapitular (hygro‐/thermoreceptive), coeloconic (thermoreceptive), and ampullaceal (CO2‐receptive) sensilla, closely appositioned in the flagellum, housed one or three large sensory neurons supplying thick axons exclusively to the ventral antennal nerve. These axons, therefore, were thought to project into T7 glomeruli in all three castes. Workers and virgin females had about 140 T6 glomeruli, whereas males completely lacked these glomeruli. Female‐specific basiconic sensilla (cuticular hydrocarbon‐receptive) contained over 130 sensory neurons and were completely lacking in males' antennae. These sensory neurons may project into T6 glomeruli in the antennal lobe of workers and virgin females. Serotonin‐immunopositive neurons innervated T1–T5 and T7 glomeruli but not T6 glomeruli in workers and virgin females. Because males had no equivalents to T6 glomeruli, serotonin‐immunopositive neurons appeared to innervate all glomeruli in the male's antennal lobe. T6 glomeruli in workers and virgin females are therefore female‐specific and may have functions related to female‐specific tasks in the colony rather than sexual behaviors. J. Comp. Neurol. 518:2186–2201, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Electrophysiological techniques were used to examine the organization of the spinobulbospinal micturition reflex pathway in the rat. Electrical stimulation of afferent axons in the pelvic nerve evoked a long latency (136 +/- 41 ms) response on bladder postganglionic nerves, whereas stimulation in the dorsal pontine tegmentum elicited shorter latency firing (72 +/- 25 ms) on these nerves. Transection of the pelvic nerve eliminated these responses. Firing on the bladder postganglionic nerves was evoked by stimulation in a relatively limited area of the pons within and close to the laterodorsal tegmental nucleus (LDT) and adjacent ventral periaqueductal gray. Stimulation at sites ventral to this excitatory area inhibited at latencies of 107 +/- 11 ms the asynchronous firing on the bladder postganglionic nerves elicited by bladder distension. Electrical stimulation of afferents in the pelvic nerve evoked short latency (13 +/- 3 ms) negative field potentials in the dorsal part of the periaqueductal gray as well as long latency (42 +/- 7 ms) field potentials in and adjacent to the LDT. The responses were not altered by neuromuscular blockade. Similar responses were elicited by stimulation of afferent axons in the bladder nerves. The sum of the latencies of the ascending and descending pathways between the LDT and the pelvic nerve (i.e. 72 ms plus 42 ms = 114 ms) is comparable although somewhat shorter (22 ms) than the latency of the entire micturition reflex. These results provide further evidence that the micturition reflex in the rat is mediated by a spinobulbospinal pathway which passes through the dorsal pontine tegmentum, and that neurons in the periaqueductal gray as well as the LDT may play as important role in the regulation of the micturition.  相似文献   

19.
Reflexes in visceral preganglionic motility-regulating (MR) neurons which project in the lumbar splanchnic nerves were investigated in acutely spinalized cats. Some neurons were analyzed before and after spinalization. The stimuli used were mechanical stimulation of mucosal skin of the anus and of perianal (perigenital) hairy skin, and distension and contraction of urinary bladder and colon. Most MR neurons exhibited a reflex pattern which consists of the following components: excitation upon bladder distension, inhibition or no effect upon colon distension and excitation (or, rarely, no effect) upon anal stimulation. This is the reflex pattern of MR1 neurons. Some neurons were excited by anal stimulation but not affected from the colon and urinary bladder. Some were inhibited by anal and perianal stimulation but otherwise exhibited the reflex patterns of the MR1 neurons. Analysis of the reflexes before and after spinalization showed that, in particular, inhibition elicited by anal, perianal and bladder stimulation was abolished; inhibition elicited from the colon was enhanced after spinalization. It is concluded that the reflexes elicited in preganglionic lumbar visceral neurons by the natural stimuli probably use spinal pathways, with the afferent input occurring at the sacral spinal cord. These spinal reflex pathways are probably controlled by descending inhibitory and excitatory spinal systems from the supraspinal neuraxis.  相似文献   

20.
Recordings were made from myenteric neurons of the guinea-pig ileum during reflexes evoked by mechanical stimulation of the mucosa. Impaled neurons were injected with dye (Lucifer yellow or biocytin), and their shapes were determined. All neurons were 5-12 mm from the stimulus, a brush stroke that deformed the mucosal villi. Neurons were classified as S-neurons or AH-neurons (Hirst et al., 1974). About 40% of S-neurons oral to a stimulus responded with bursts of fast EPSPs (average frequency, 15-40 Hz); these neurons were in ascending reflex pathways. About 60% of S-neurons anal to a stimulus responded with similar bursts of fast EPSPs or slow depolarizations; these neurons were in descending pathways. Only 2 of 48 AH-neurons responded, both in descending pathways. Most S-neurons in either ascending or descending pathways received inputs from at least 2 or 3 other neurons. Action potentials evoked during a response averaged 3-10 Hz in frequency, with occasional bursts at up to 100 Hz. The speed of conduction along the reflex pathways was about 0.5 m/sec. All S-neurons were uniaxonal, but they differed in size, dendritic morphology, and projections. The axons of S-neurons injected with biocytin were followed up to 7 mm within the myenteric plexus. Three S-neurons projected to the tertiary plexus and were probably longitudinal muscle motor neurons; 2 of these were in descending pathways. Five S-neurons projected along the intestine and had varicose collaterals in some ganglia. These neurons were probably interneurons; 3 were descending and 2 ascending, and all responded in the appropriate reflex pathway. Many S-neurons had short axons that entered the circular muscle and were probably circular muscle motor neurons. Others projected several millimeters along the intestine before entering the circular muscle or fading beyond detection. From this study, we have been able to deduce the circuits mediating ascending and descending mucosa-to-muscle reflexes. It is concluded that AH-neurons are primary sensory neurons and S-neurons are interneurons and muscle motor neurons in the circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号