首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit.  相似文献   

2.
Mossy fiber sprouting into the inner molecular layer of the dentate gyrus is an important neuroplastic change found in animal models of temporal lobe epilepsy and in humans with this type of epilepsy. Recently, we reported in the perforant path stimulation model another neuroplastic change for dentate granule cells following seizures: hilar basal dendrites (HBDs). The present study determined whether status epilepticus-induced HBDs on dentate granule cells occur in the pilocarpine model of temporal lobe epilepsy and whether these dendrites are targeted by mossy fibers. Retrograde transport of biocytin following its ejection into stratum lucidum of CA3 was used to label granule cells for both light and electron microscopy. Granule cells with a heterogeneous morphology, including recurrent basal dendrites, and locations outside the granule cell layer were observed in control preparations. Preparations from both pilocarpine and kainate models of temporal lobe epilepsy also showed granule cells with HBDs. These dendrites branched and extended into the hilus of the dentate gyrus and were shown to be present on 5% of the granule cells in pilocarpine-treated rats with status epilepticus, whereas control rats had virtually none. Electron microscopy was used to determine whether HBDs were postsynaptic to axon terminals in the hilus, a site where mossy fiber collaterals are prevalent. Labeled granule cell axon terminals were found to form asymmetric synapses with labeled HBDs. Also, unlabeled, large mossy fiber boutons were presynaptic to HBDs of granule cells. These results indicate that HBDs are present in the pilocarpine model of temporal lobe epilepsy, confirm the presence of HBDs in the kainate model, and show that HBDs are postsynaptic to mossy fibers. These new mossy fiber synapses with HBDs may contribute to additional recurrent excitatory circuitry for granule cells.  相似文献   

3.
Previous studies have demonstrated formation of recurrent excitatory circuits between sprouted mossy fibers and granule cell dendrites in the inner molecular layer of the dentate gyrus (9, 28, 30). In addition, there is evidence that inhibitory nonprincipal cells also receive an input from sprouted mossy fibers (39). This study was undertaken to further characterize possible target cells for sprouted mossy fibers, using immunofluorescent staining for different calcium-binding proteins in combination with Timm histochemical staining for mossy fibers. Rats were injected intraperitoneally with kainic acid in order to induce epileptic convulsions and mossy fiber sprouting. After 2 months survival, hippocampal sections were immunostained for parvalbumin, calbindin D28k, or calretinin followed by Timm-staining. Under a fluorescent microscope, zinc-positive mossy fibers in epileptic rats were found to surround parvalbumin-containing neurons in the granule cell layer and to follow their dendrites, which extended toward the molecular layer. In addition, dendrites of calbindin D28k-containing cells were covered by multiple mossy fiber terminals in the inner molecular layer. However, the calretinin-containing cell bodies in the granule cell layer did not receive any contacts from the sprouted fibers. Electron microscopic analysis revealed that typical Timm-positive mossy fiber terminals established several asymmetrical synapses with the soma and dendrites of nonpyramidal cells within the granule cell layer. These results provide direct evidence that, in addition to recurrent excitatory connections, inhibitory circuitries, especially those responsible for the perisomatic feedback inhibition, are formed as a result of mossy fiber sprouting in experimental epilepsy.  相似文献   

4.
In complex partial epilepsy and in animal models of epilepsy, hippocampal mossy fibers appear to develop recurrent collaterals, that invade the dentate molecular layer. Mossy fiber collaterals have been proposed to subserve recurrent excitation by forming granule cell-granule cell synapses. This hypothesis was tested by visualizing dentate granule cells and their mossy fibers after terminal uptake and retrograde transport of biocytin. Labeling studies were performed with transverse slices of the caudal rat hippocampal formation prepared 2.6–l70.0 weeks after pilocarpine-induced or kainic acid-induced status epilepticus. Light microscopy demonstrated the progressive growth of recurrent mossy fibers into the molecular layer; the densest innervation was observed in slices from pilocarpine-treated rats that had survived 10 weeks or longer after status epilepticus. Thin mossy fiber collaterals originated predominantly from deep within the hilar region, crossed the granule cell body layer, and formed an axonal plexus oriented parallel to the cell body layer within the inner one-third of the molecular layer. When sprouting was most robust, some recurrent mossy fibers at the apex of the dentate gyrus reached the outer two-thirds of the molecular layer. The distribution and density of mossy fiber-like Timm staining correlated with the biocytin labeling. When viewed with the electron microscope, the inner one-third of the dentate molecular layer contained numerous mossy fiber boutons. In some instances, biocytin-labeled mossy fiber boutons were engaged in synaptic contact with biocytin-labeled granule cell dendrites. Granule cell dendrites did not develop large complex spines (“thorny excrescences”) at the site of synapse formation, and they did not appear to have been permanently damaged by seizure activity. These results establish the validity of Timm staining as a marker for mossy fiber sprouting and support the view that status epilepticus provokes the formation of a novel recurrent excitatory circuit in the dentate gyrus. Retrograde labeling with biocytin showed that the recurrent mossy fiber projection often occupies a considerably greater fraction of the dendritic region than previous studies had suggested. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Electrophysiologically identified and intracellularly biocytin-labeled mossy cells in the dentate hilus of the rat were studied using electron microscopy and postembedding immunogold techniques. Ultrathin sections containing a labeled mossy cell or its axon collaterals were reacted with antisera against the excitatory neurotransmitter glutamate and against the inhibitory neurotransmitter γ-aminobutyric acid (GABA). From single- and double-immunolabeled preparations, we found that 1) mossy cell axon terminals made asymmetric contacts onto postsynaptic targets in the hilus and stratum moleculare of the dentate gyrus and showed immunoreactivity primarily for glutamate, but never for GABA; 2) in the hilus, glutamate-positive mossy cell axon terminals targeted GABA-positive dendritic shafts of hilar interneurons and GABA-negative dendritic spines; and 3) in the inner molecular layer, the mossy cell axon formed asymmetric synapses with dendritic spines associated with GABA-negative (presumably granule cell) dendrites. The results of this study support the view that excitatory (glutamatergic) mossy cell terminals contact GABAergic interneurons and non-GABAergic neurons in the hilar region and GABA-negative granule cells in the stratum moleculare. This pattern of connectivity is consistent with the hypothesis that mossy cells provide excitatory feedback to granule cells in a dentate gyrus associational network and also activate local hilar inhibitory elements. Hippocampus 1997;7:559–570. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Hippocampal mossy fibers, axons of dentate granule cells, converge in the dentate hilus and run through a narrow area called the stratum lucidum to synapse with hilar and CA3 neurons. In the hippocampal formation of temporal lobe epilepsy patients, however, this stereotyped pattern of projection is often collapsed; the mossy fibers branch out of the dentate hilus and abnormally innervate the dentate inner molecular layer, a phenomenon that is termed mossy fiber sprouting. Experimental studies have replicated this sprouting in animal models of temporal lobe epilepsy, including kindling and pharmacological treatment with convulsants. Because these axon collaterals form recurrent excitatory inputs into dendrites of granule cells, the circuit reorganization is assumed to cause epileptiform activity in the hippocampus, whereas some recent studies indicate that the sprouting is not necessarily associated with early-life seizures. Here we review the mechanisms of mossy fiber sprouting and consider its potential contribution to epileptogenesis. Based on recent findings, we propose that the sprouting can be regarded as a result of disruption of the molecular mechanisms underlying the axon guidance. We finally focus on the possibility that prevention of the abnormal sprouting might be a new strategy for medical treatment with temporal lobe epilepsy.  相似文献   

7.
Little is known about the morphological characteristics and intracellular electrophysiological properties of neurons in the primate hippocampus and dentate gyrus. We have therefore begun a program of studies using intracellular recording and biocytin labeling in hippocampal slices from macaque monkeys. In the current study, we investigated mossy cells and proximal CA3 pyramidal cells. As in rats, macaque mossy cells display fundamentally different traits than proximal CA3 pyramidal cells. Interestingly, macaque mossy cells and CA3 pyramidal neurons display some morphological differences from those in rats. Macaque monkey mossy cells extend more dendrites into the molecular layer of the dentate gyrus, have more elaborate thorny excrescences on their proximal dendrites, and project more axon collaterals into the CA3 region. In macaques, three types of proximal CA3 pyramidal cells are found: classical pyramidal cells, neurons with their dendrites confined to the CA3 pyramidal cell layer, and a previously undescribed cell type, the "dentate" CA3 pyramidal cell, whose apical dendrites extend into and ramify within the hilus, granule cell layer, and molecular layer of the dentate gyrus. The basic electrophysiological properties of mossy cells and proximal CA3 cells are similar to those reported for the rodent. Mossy cells have a higher frequency of large amplitude spontaneous depolarizing postsynaptic potentials, and proximal CA3 pyramidal cells are more likely to discharge bursts of action potentials. Although mossy cells and CA3 pyramidal cells in macaque monkeys display many morphological and electrophysiological features described in rodents, these findings highlight significant species differences, with more heterogeneity and the potential for richer interconnections in the primate hippocampus.  相似文献   

8.
Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31–61 days earlier were video‐monitored for spontaneous, convulsive seizures 9 hr/day every day for 24–36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1‐immunocytochemistry, GluR2‐immunocytochemistry, Timm stain, glial fibrillary acidic protein‐immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin‐immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin‐positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy.  相似文献   

9.
One potential mechanism of temporal lobe epilepsy is recurrent excitation of dentate granule cells through aberrant sprouting of their axons (mossy fibers), which is found in many patients and animal models. However, correlations between the extent of mossy fiber sprouting and seizure frequency are weak. Additional potential sources of granule cell recurrent excitation that would not have been detected by markers of mossy fiber sprouting in previous studies include surviving mossy cells and proximal CA3 pyramidal cells. To test those possibilities in hippocampal slices from epileptic pilocarpine-treated rats, laser-scanning glutamate uncaging was used to randomly and focally activate neurons in the granule cell layer, hilus, and proximal CA3 pyramidal cell layer while measuring evoked EPSCs in normotopic granule cells. Consistent with mossy fiber sprouting, a higher proportion of glutamate-uncaging spots in the granule cell layer evoked EPSCs in epileptic rats compared with controls. In addition, stimulation spots in the hilus and proximal CA3 pyramidal cell layer were more likely to evoke EPSCs in epileptic rats, despite significant neuron loss in those regions. Furthermore, synaptic strength of recurrent excitatory inputs to granule cells from CA3 pyramidal cells and other granule cells was increased in epileptic rats. These findings reveal substantial levels of excessive, recurrent, excitatory synaptic input to granule cells from neurons in the hilus and proximal CA3 field. The aberrant development of these additional positive-feedback circuits might contribute to epileptogenesis in temporal lobe epilepsy.  相似文献   

10.
Intragranular and supragranular mossy fibers arise from granule cells and are present in the dentate gyrus of hippocampi from kindled and epileptic animals. The intragranular fibers often appear as fibers perpendicular to the long axis of the granule cell layer at periodic intervals. Rats and gerbils were analyzed to determine whether such mossy fibers are also associated with nongranule cells (including the basket cells), which send their apical dendrites through this layer with a periodicity similar to that of mossy fibers. The results for rats and both epileptic and nonepileptic gerbils show that many intragranular mossy fibers are apposed to the surfaces of the somata and apical dendrites of basket cells where they form asymmetric synapses. This plexus of mossy fiber axons appears to follow the dendrites of these neurons into the inner molecular layer. Based on previous data indicating that basket cells are GABAergic inhibitory neurons, the present findings in normal rats and both types of gerbils suggest that intragranular and supragranular mossy fibers provide additional circuitry for feedback inhibition to granule cells. It is possible that under pathological conditions, such as denervation or kindling, these fibers sprout and form synapses with granule cells.  相似文献   

11.
This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. Thus, this animal model allowed us to address the effects of BDNF in the dentate gyrus after seizures, as well as the actions of BDNF on mossy fiber transmission after reorganization. In slices with sprouting, BDNF bath application enhanced responses recorded in the inner molecular layer to mossy fiber stimulation. Spontaneous bursts of granule cells occurred, and these were apparently generated at the site of the sprouted axon plexus. These effects were not accompanied by major changes in perforant path-evoked responses or paired-pulse inhibition, occurred only after prolonged (30-60 min) exposure to BDNF, and were blocked by K252a. The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.  相似文献   

12.
Hippocampal slices were obtained from hippocampi of patients with temporal lobe epilepsy or from patients with mass lesions located in the temporal lobe. Hippocampal slices were kept alive in a slice chamber and the anterograde tracer neurobiotin was iontophoretically injected into the granule cell layer of the dentate gyrus. Single injections resulted in the labeling of small groups of granule cells. The axonal arbor of these cells could be partially reconstructed and single mossy fibers could be followed from the soma to the inner molecular layer of the sclerotic dentate gyrus. Electron microscopy revealed asymmetric mossy fiber synapses on spiny neurons in the inner molecular layer, presumably granule cells. These data demonstrate that in vitro anterograde tracing can be employed to study the local connectivity of the human brain at the light and electron microscopic level.  相似文献   

13.
The distribution of enkephalin-like immunoreactivity in the hippocampal formation of the rat was analyzed. Two specific projection systems are described. The first emerges from the hilus of the dentate gyrus and appears to terminate with notably large boutons on the proximal apical and, to a lesser extent, basal dendrites of hippocampal regio inferior pyramidal cells. This projection corresponds in source, position, and character to the hippocampal mossy fiber system. The second axonal population enters the temporal hippocampal formation from the medial wall of the subicular complex and follows the hippocampal fissure to occupy stratum lacunosum-moleculare of the hippocampus proper and the distal third of the dentate gyrus molecular layer; this pattern corresponds to the distribution of afferent input from the lateral entorhinal cortex and/or perirhinal area. Lesions of the hilus or retrohippocampal area caused a selective depletion of immunoreactivity in the mossy fiber fields and molecular layers of the dentate gyrus, respectively. Enkephalin-like immunoreactivity was found within the somata of three types of hippocampal neurons: (1) granule cells of the dentate gyrus, (2) occasional pyramidal shaped cells of field CA1 stratum pyramidale, and (3) varied scattered interneurons. Of this last group, two types of interneurons were consistently seen. The first occupy the border between stratum radiatum and stratum lacunosum-moleculare and extend processes at right angles to the long axis of the pyramidal cell dendrites, whereas the second lie within stratum radiatum of field CA1 and extend processes in alignment with the long axis of the pyramidal cell dendrites. Cells containing enkephalin-like immunoreacactivity were also observed in the subiculum and retrohippocampal region, most notably including layers II and III of the lateral entorhinal cortex-perirhinal area—the probable source of extrinsic immunoreactive input to the hippocampal formation. Intraventricular colchicine treatment intensified the immunoreactive staining of some hippocampal neurons but did not reveal any cell types not seen to be labeled in untreated rats.  相似文献   

14.
Neurogenesis in the hippocampal dentate gyrus persists throughout life and is increased by seizures. The dentate granule cell (DGC) layer is often abnormal in human and experimental temporal lobe epilepsy, with dispersion of the layer and the appearance of ectopic granule neurons in the hilus. We tested the hypothesis that these abnormalities result from aberrant DGC neurogenesis after seizure-induced injury. Bromodeoxyuridine labeling, in situ hybridization, and immunohistochemistry were used to identify proliferating progenitors and mature DGCs in the adult rat pilocarpine temporal lobe epilepsy model. We also examined dentate gyri from epileptic human hippocampal surgical specimens. Prox-1 immunohistochemistry and pulse-chase bromodeoxyuridine labeling showed that progenitors migrate aberrantly to the hilus and molecular layer after prolonged seizures and differentiate into ectopic DGCs in rat. Neuroblast marker expression indicated the delayed appearance of chainlike progenitor cell formations extending into the hilus and molecular layer, suggesting that seizures alter migratory behavior of DGC precursors. Ectopic putative DGCs also were found in the hilus and molecular layer of epileptic human dentate gyrus. These findings indicate that seizure-induced abnormalities of neuroblast migration lead to abnormal integration of newborn DGCs in the epileptic adult hippocampus, and implicate aberrant neurogenesis in the development or progression of recurrent seizures.  相似文献   

15.
Synaptic connections and fine structural characteristics of neuropeptide Y-immunoreactive (NPY-i) neurons in the fascia dentata were studied using an antiserum against NPY. Normal and colchicine pretreated rats were examined to study the synaptic connections of NPY-i neurons in the normal fascia dentata. The perforant pathway and fimbria fornix were transected to label afferent fibers to NPY-positive cells. Horseradish peroxidase conjugated with wheat germ agglutinin (HRP-WGA) was injected into the contralateral hippocampus to study commissural projections of hippocampal NPY-i neurons, and to search for NPY-i synaptic contacts on immunonegative commissural cells. Since earlier reports have shown that at least half of the NPY-i neurons also contain somatostatin (SS), the distribution of NPY-i neurons in the hilar area was determined and compared with that of SS-i neurons. Four types of dentate NPY-i neurons were distinguished: Type 1: large multipolar cells in the deep hilus (9%). Type 2: medium-sized multipolar and fusiform hilar neurons with dendrites occasionally reaching the outer molecular layer (64%). Type 3: pyramidal shaped cells in the granule cell layer with long apical dendrites reaching the outer molecular layer (20%). Type 4: small multipolar NPY-i cells located in the molecular layer (7%). Our results indicate two overlapping but not identical cell populations of NPY-i and SS-i neurons. Light and electron microscopic analysis of the normal fascia dentata demonstrated that the majority of NPY-i terminals are located in the outer molecular layer of the dentate gyrus, where they establish symmetric synaptic contacts on dendritic shafts and occasionally on spines of granule cells. A moderate number of NPY-i synapses were also found on dendrites in the inner molecular layer and on the cell body of granule cells. Numerous symmetric NPY-i synapses were found on dendrites and somata of neurons in the hilar area. Some NPY-i dendrites in the hilar area received mossy axon collateral input. After transection of the perforant pathway degenerated axon terminals could be found in synaptic contact with NPY-i dendrites in the outer molecular layer. Commissurotomy revealed direct commissural input to NPY-i dendrites in the inner molecular layer and in the hilus. After injection of HRP-WGA into the contralateral hippocampus 2% of hilar NPY-i neurons were retrogradely labeled and symmetric NPY-i synapses were found on the cell bodies and dendrites of unstained HRP-WGA labeled neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Neurogenesis in the subgranular zone of the dentate gyrus persists throughout the lifespan of mammals, and the resulting newly born neurons are incorporated into existing hippocampal circuitry. Seizures increase the rate of neurogenesis in the adult rodent brain and result in granule cells in the dentate gyrus with basal dendrites. Using doublecortin (DCX) immunocytochemistry to label newly generated neurons the current study focuses on the electron microscopic features of DCX-labeled cell bodies and dendritic processes in the dentate gyrus of rats with pilocarpine-induced epilepsy. At the base of the granule cell layer clusters of cells that include up to six DCX-labeled cell bodies were observed. The cell bodies in these clusters lacked a one-to-one association with an astrocyte cell body and its processes, a relationship that is typical for newly born granule cells in control rats. Also, DCX-labeled basal dendrites in the hilus had immature synapses while those in control rats lacked synapses. These results indicate that increased neurogenesis after seizures alters the one-to-one relationship between astrocytes and DCX-labeled newly generated neurons at the base of the granule cell layer. The data also suggest that the synapses on DCX-labeled hilar basal dendrites contribute to the persistence of hilar basal dendrites on neurons born after pilocarpine-induced seizures.  相似文献   

17.
In the present study we describe the morphological characteristics of dentate granule cells in intracerebral allografts of the rat fascia dentata. Blocks of hippocampal tissue containing the fascia dentata were taken from late embryonic and newborn rats and transplanted to the hippocampal region of other newborn and young adult rats. After survival periods of several months the recipient brains were fixed by perfusion and serially sectioned on a Vibratome. Some sections were stained with thionin to determine the localization and general histological organization of the transplants, while others were Golgi stained with a modification of the section Golgi technique. Well-impregnated transplant granule cells were gold-toned and deimpregnated thus allowing a correlated, light and electron microscopic analysis of identified neurons to be done. At the light microscopic level the morphology of the dentate granule cells in the transplants was very similar to Golgi-impregnated, gold-toned granule cells in the fascia dentata of normal rats (controls). A few irregular, more obliquely curved dendrites occurred, but basal dendrites passing into the hilar region were never observed. Following an initial spine-free segment granule cell dendrites were densely covered with spines. The axon, the mossy fiber, originated as usual from the basal pole of the cell body. In the electron microscope, both small and larger complex spines (v and w types) were seen to emerge from the gold-toned dendrites of the identified granule cells. The thin unmyelinated granule cell axons gave rise to giant mossy fiber boutons in the dentate hilus, but in addition numerous aberrant mossy fiber terminals were found innermost in the dentate molecular layer just above the granule cell layer. The results demonstrate that dentate granule cells that have gone through the major part of their differentiation-after transplantation develop characteristic dendritic and axonal elements very similar to those of granule cells in the fascia dentata in situ. The minor changes observed correspond to the redistribution of intrinsic connections that results from the absence of major extrinsic afferents.  相似文献   

18.
Morphological data from humans with temporal lobe epilepsy and from animal models of epilepsy suggest that seizure-induced damage to dentate hilar neurons causes granule cells to sprout new axon collaterals that innervate other granule cells. This aberrant projection has been suggested to be an anatomical substrate for epileptogenesis. This hypothesis was tested in the present study with intra- and extracellular recordings from granule cells in hippocampal slices removed from rats 1-4 months after kainate treatment. In this animal model, hippocampal cell loss leads to sprouting of mossy fiber axons from the granule cells into the inner molecular layer of the dentate gyrus. Unexpectedly, when slices with mossy fiber sprouting were examined in normal medium, extracellular stimulation of the hilus or perforant path evoked relatively normal responses. However, in the presence of the GABAA-receptor antagonist, bicuculline, low-intensity hilar stimulation evoked delayed bursts of action potentials in about one-quarter of the slices. In one-third of the bicuculline-treated slices with mossy fiber sprouting, spontaneous bursts of synchronous spikes were superimposed on slow negative field potentials. Slices from normal rats or kainate-treated rats without mossy fiber sprouting never showed delayed bursts to weak hilar stimulation or spontaneous bursts in bicuculline. These data suggest that new local excitatory circuits may be suppressed normally, and then emerge functionally when synaptic inhibition is blocked. Therefore, after repeated seizures and excitotoxic damage in the hippocampus, synaptic reorganization of the mossy fibers is consistently associated with normal responses; however, in some preparations, the mossy fibers may form functional recurrent excitatory connections, but synaptic inhibition appears to mask these potentially epileptogenic alterations.  相似文献   

19.
Seizures evoked by kainic acid and a variety of experimental methods induce sprouting of the mossy fiber pathway in the dentate gyrus. In this study, the morphological features and spatial distribution of sprouted mossy fiber axons in the dorsal dentate gyrus of kainate-treated rats were directly shown in granule cells filled in vitro with biocytin and in vivo with the anterograde lectin tracer Phaseolus vulgaris leucoagglutinin (PHAL). Sprouted axon collaterals of biocytin-filled granule cells projected from the hilus of the dentate gyrus into the supragranular layer in both transverse and longitudinal directions in kainate-treated rats but were not observed in normal rats. The sprouted axon collaterals projected into the supragranular region for 600–700 μm along the septotemporal axis. Collaterals from granule cells in the infrapyramidal blade crossed the hilus and sprouted into the supragranular layer of the suprapyramidal blade. Sprouted axon segments in the supragranular layer had more terminal boutons per unit length than the axon segments in the hilus of both normal and kainate-treated rats but did not form giant boutons, which are characteristic of mossy fiber axons in the hilus and CA3. Mossy fiber axons in the hilus of kainate-treated rats had more small terminal boutons, fewer giant boutons, and there was a trend toward greater axon length compared with mossy fibers in the hilus of normal rats. With the additional length of supragranular sprouted collaterals, there was an overall increase in the length of mossy fiber axons in kainate-treated rats. The synaptic and axonal remodeling of the mossy fiber pathway could alter the functional properties of hippocampal circuitry by altering synaptic connectivity in local circuits within the hilus of the dentate gyrus and by increasing the divergence of the mossy fiber terminal field along the septotemporal axis. J. Comp. Neurol. 390:578–594, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
L Seress  L Mrzljak 《Brain research》1987,405(1):169-174
The aim of this study was to analyze the granule cell population of the dentate gyrus both in healthy rhesus monkeys and in humans free of mental and neurological disorders. Brains of neonatal and adult rhesus monkeys as well as brains of fetal, neonatal and adult humans were impregnated with Golgi methods. The results show that a significant population of granule cells have basal dendrites in primates. Some basal dendrites curve up into the molecular layer where they have similar morphology as the apical dendrites. In contrast, other basal dendrites protrude into the hilus and they are shorter, thinner and have only a few side branches. The frequency of granule cells with basal dendrites in the human dentate gyrus is twice as much as that of the rhesus monkey. Most of these human granule cells have their basal dendrites in the hilus. This observation confirms the fact that discrepancies occur in the normal morphology of individual neurons between the rodent and primate hippocampal formations. The results indicate that basal dendrites of granule cells are not pathological as previously suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号