首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of opioid receptors in the periphery and centrally in the brain results in inhibition of gastric and other vagally mediated functions. The aim of this study was to examine the role of the endogenous opioid agonist endomorphin 1 (EM-1) in regulating synaptic transmission within the nucleus tractus solitarius (NTS), an integration site for autonomic functions. We performed whole cell patch-clamp recordings from coronal brain slices of the rat medulla. A subset of the neurons studied was prelabeled with a stomach injection of the transsynaptic retrograde virus expressing EGFP, PRV-152. Solitary tract stimulation resulted in constant latency excitatory postsynaptic currents (EPSCs) that were decreased in amplitude by EM-1 (0.01-10 microM). The paired-pulse ratio was increased with little change in input resistance, suggesting a presynaptic mechanism. Spontaneous EPSCs were decreased in both frequency and amplitude by EM-1, and miniature EPSCs were reduced in frequency but not amplitude, suggesting a presynaptic mechanism for the effect. Spontaneous inhibitory postsynaptic currents (IPSCs) were also reduced in frequency by EM-1, but the effect was blocked by TTX, suggesting activity at receptors on the somata of local inhibitory neurons. Synaptic input arising from local NTS neurons, which were activated by focal photolysis of caged glutamate, was inhibited by EM-1. The actions of EM-1 were similar to those of D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and were blocked by naltrexone, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), or D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). These results suggest that EM-1 acts at mu-opioid receptors to modulate viscerosensory input and specific components of local synaptic circuitry in the NTS.  相似文献   

2.
Shen KZ  Johnson SW 《Neuroscience》2008,151(4):1029-1033
The subthalamic nucleus (STN) plays a pivotal role in normal and abnormal motor function. We used patch pipettes to study effects of 5-HT on synaptic currents evoked in STN neurons by focal electrical stimulation of rat brain slices. 5-HT (10 microM) reduced glutamate-mediated excitatory postsynaptic currents (EPSCs) by 35+/-4%. However, a much higher concentration of 5-HT (100 microM) was required to inhibit GABA-mediated inhibitory postsynaptic currents (IPSCs) to a comparable extent. Concentration-response curves showed that the 5-HT inhibitory concentration 50% (IC50) for inhibition of IPSCs (20.2 microM) was more than fivefold greater than the IC50 for inhibition of EPSCs (3.4 microM). The 5-HT-induced reductions in EPSCs and IPSCs were accompanied by increases in paired-pulse ratios, indicating that 5-HT acts presynaptically to inhibit synaptic transmission. The 5-HT1B receptor antagonist NAS-181 significantly antagonized 5-HT-induced inhibitions of EPSCs and IPSCs. These studies show that 5-HT inhibits synaptic transmission in the STN by activating presynaptic 5-HT1B receptors.  相似文献   

3.
The action of the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) on gamma-aminobutyric acid-A (GABAA) receptor-mediated currents was studied in dissociated rat midbrain and hypothalamic cultures using whole-cell recording. Spontaneous synaptic activity consisted of excitatory (EPSCs) and inhibitory postsynaptic currents (IPSCs). Bicuculline (20 microM) blocked IPSCs and increased the frequency of EPSCs. CNQX (1 microM) reduced both EPSCs and IPSCs. In the presence of 0.3 microM tetrodotoxin (TTX), CNQX (1-20 microM) blocked miniature EPSCs and reduced IPSCs. In TTX, increasing K+ (20 mM) evoked EPSCs and IPSCs in a Ca-dependent manner. CNQX (10 microM) blocked evoked EPSCs and diminished evoked IPSCs similarly as miniature IPSCs. Muscimol-(0.2-5 microM) induced currents were dose-dependently reduced by CNQX (10-50 microM). It is concluded that CNQX reduces GABAA receptor-mediated inhibition primarily by reducing the excitatory drive in the evolving network, but, in addition, has a significant blocking effect on the GABAA receptor-channel complex.  相似文献   

4.
Cranial visceral afferents enter the brain at the solitary tract nucleus (NTS). GABAergic neurons are scattered throughout the NTS, but their relation to solitary tract (ST) afferent pathways is imprecisely known. We hypothesized that most GABAergic NTS neurons would be connected only indirectly to the ST. We identified GABAergic neurons in brain stem horizontal slices using transgenic mice in which enhanced green fluorescent protein (EGFP) expression was linked to glutamic acid decarboxylase expression (GAD(+)). Finely graded electrical shocks to ST recruit ST-synchronized synaptic events with all-or-none thresholds and individual waveforms did not change with greater suprathreshold intensities--evidence consistent with initiation by single afferent axons. Most (approximately 70%) GAD(+) neurons received ST-evoked excitatory postsynaptic currents (EPSCs) that had minimally variant latencies (jitter, SD of latency <200 micros) and waveforms consistent with single, direct ST connections (i.e., monosynaptic). Increasing stimulus intensity evoked additional ST-synchronized synaptic responses with jitters >200 micros including inhibitory postsynaptic currents (IPSCs), indicating indirect connections (polysynaptic). Shocks of suprathreshold intensity delivered adjacent (50-300 microm) to the ST failed to excite non-ST inputs to second-order neurons, suggesting a paucity of axons passing near to ST that connected to these neurons. Despite expectations, we found similar ST synaptic patterns in GAD(+) and unlabeled neurons. Generally, ST information that arrived indirectly had small amplitudes (EPSCs and IPSCs) and frequency-dependent failures that reached >50% for IPSCs to bursts of stimuli. This ST afferent pathway organization is strongly use-dependent--a property that may tune signal propagation within and beyond NTS.  相似文献   

5.
Henderson Z  Jones GA 《Neuroscience》2005,132(3):789-800
GABA(B) receptors are believed to play a role in rhythmic activity in the mammalian brain. The aim of our study was to examine the presynaptic and postsynaptic locations of these receptors in the medial septal diagonal band area (MS/DB), an area known to pace the hippocampus theta rhythm. Whole-cell patch recordings were made from parasagittal MS/DB slices obtained from the 16-25 day rat. Neurons were classified into GABAergic and cholinergic subtypes according to previous electrophysiological criteria. Bath application of the GABA(B) receptor agonist baclofen in the presence of tetrodotoxin, and brief tetanic fiber stimulation in the presence of ionotropic receptor antagonists, provided evidence for the presence of postsynaptic GABA(B) receptor transmission to GABAergic but not cholinergic neurons. Bath application of baclofen, at concentrations too low to elicit postsynaptic activity in MS/DB neurons, significantly reduced the amplitudes of stimulus-evoked ionotropic receptor inhibitory postsynaptic potentials (IPSPs) and excitatory postsynaptic potentials (EPSPs) and the paired pulse depression of these evoked potentials. Baclofen also significantly reduced the frequencies but not the amplitudes of miniature inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs), indicating the presence of presynaptic GABA(B) receptors on GABAergic and glutamatergic terminals in the MS/DB. Baclofen, also at a concentration too low to elicit postsynaptic activity, reduced the frequencies and amplitudes of spontaneous IPSCs and EPSCs recorded in the presence of 200-400 nM kainate. Rhythmic compound IPSCs at theta frequencies were recorded under these conditions in some neurons, and these rhythmic compound IPSCs were disrupted by the activation but not by the inhibition of GABA(B) receptors. These results suggest that GABA(B) receptors modulate rather than generate rhythmic activity in the MS/DB, and that this modulatory effect occurs via receptors located on presynaptic terminals.  相似文献   

6.
Neurons in the paraventricular nucleus (PVN) that project to the brain stem and spinal cord are important for autonomic regulation. The excitability of preautonomic PVN neurons is controlled by the noradrenergic input from the brain stem. In this study, we determined the role of alpha(2) adrenergic receptors in the regulation of excitatory and inhibitory synaptic inputs to spinally projecting PVN neurons. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were recorded using whole cell voltage-clamp techniques on PVN neurons labeled by a retrograde fluorescence tracer injected into the thoracic spinal cord of rats. Bath application of 5-20 muM clonidine, an alpha(2) receptor agonist, significantly reduced the amplitude of evoked GABAergic IPSCs in a dose-dependent manner. Also, 10 microM clonidine significantly decreased the frequency (from 2.68 +/- 0.41 to 1.22 +/- 0.40 Hz) but not the amplitude of miniature IPSCs (mIPSCs), and this effect was blocked by the alpha(2) receptor antagonist yohimbine. Furthermore, clonidine increased the paired-pulse ratio of evoked IPSCs from 1.25 +/- 0.05 to 1.61 +/- 0.08 (P < 0.05). On the other hand, clonidine had little effect on evoked glutamatergic EPSCs, mEPSCs, and the paired-pulse ratio of evoked EPSCs in most labeled cells examined. Additionally, immunofluorescence labeling revealed that the alpha(2A) receptor and GABA immunoreactivities were co-localized in close apposition to labeled PVN neurons. Collectively, these data suggest that stimulation of alpha(2) adrenergic receptors primarily attenuates GABAergic inputs to PVN output neurons to the spinal cord. The presynaptic alpha(2) receptors function as heteroreceptors to modulate synaptic GABA release and contribute to the hypothalamic regulation of sympathetic outflow.  相似文献   

7.
1. Effects of hypothalamic stimulation on activity of dorsomedial medulla neurons that responded to subdiaphragmatic vagal stimulation were investigated in urethan-anesthetized rats. 2. Extracellular recordings were made from 231 neurons in the nucleus of the tractus solitarius (NTS) that fired repetitively in response to single-pulse subdiaphragmatic vagal stimulation and from 320 neurons in the dorsal motor nucleus of the vagal nerve (DMV) that responded antidromically to subdiaphragmatic vagal stimulation. The mean latencies of responses to subdiaphragmatic vagal stimulation were 90.3 +/- 17.1 ms (mean +/- SD) for NTS neurons, and 90.8 +/- 11.2 ms for DMV neurons. This indicated that both afferent and efferent subdiaphragmatic vagal fibers were thin and unmyelinated and had a conduction velocity of approximately 1 m/s. 3. In extracellular recordings from 320 DMV neurons, marked inhibition preceded the antidromic response and subdiaphragmatic vagal stimulation evoked orthodromic spikes in only a few neurons. 4. Intracellular recordings from 66 DMV neurons revealed inhibitory postsynaptic potentials (IPSPs) before the antidromic responses. These IPSPs suppressed spontaneous firing and prevented excitatory postsynaptic potentials (EPSPs) from generating action potentials. 5. Stimulation in all hypothalamic loci studied, the ventromedial hypothalamic nucleus (VMH), the lateral hypothalamic area (LHA), and the paraventricular nucleus (PVN), induced responses with similar characteristics of excitation alone or excitation followed by inhibition in most NTS and DMV neurons. 6. No reciprocal effect of VMH and LHA stimulation was observed on NTS and DMV neurons. 7. Intracellular recordings from DMV neurons revealed monosynaptic EPSPs in response to stimulation of the VMH, the LHA, and the PVN. 8. PVN stimulation evoked significantly more responses in NTS and DMV neurons than VMH stimulation and more responses in DMV neurons than LHA stimulation. This suggests a difference in the number of connections between each hypothalamic site and the dorsomedial medulla. 9. The same dorsomedial medulla neurons were tested with VMH and LHA stimulation. The respective mean latencies of the antidromic and the orthodromic NTS neuron responses were 37.3 +/- 3.2 and 39.6 +/- 12.9 ms for VMH stimulation and 29.8 +/- 5.3 and 31.8 +/- 8.7 ms for LHA stimulation. The mean latencies of the orthodromic DMV neuron responses were 39.4 +/- 8.3 ms for VMH stimulation and 31.1 +/- 5.2 ms for LHA stimulation. The estimated conduction velocity from the VMH to the dorsomedial medulla was approximately 0.25 m/s and from the LHA it was approximately 0.33 m/s, which was significantly faster.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Developmental cortical malformations are common in patients with intractable epilepsy; however, mechanisms contributing to this epileptogenesis are currently poorly understood. We previously characterized hyperexcitability in a rat model that mimics the histopathology of human 4-layered microgyria. Here we examined inhibitory and excitatory postsynaptic currents in this model to identify functional alterations that might contribute to epileptogenesis associated with microgyria. We recorded isolated whole cell excitatory postsynaptic currents and GABA(A) receptor-mediated inhibitory currents (EPSCs and IPSCs) from layer V pyramidal neurons in the region previously shown to be epileptogenic (paramicrogyral area) and in homotopic control cortex. Epileptiform-like activity could be evoked in 60% of paramicrogyral (PMG) cells by local stimulation. The peak conductance of both spontaneous and evoked IPSCs was significantly larger in all PMG cells compared with controls. This difference in amplitude was not present after blockade of ionotropic glutamatergic currents or for miniature (m)IPSCs, suggesting that it was due to the excitatory afferent activity driving inhibitory neurons. This conclusion was supported by the finding that glutamate receptor antagonist application resulted in a significantly greater reduction in spontaneous IPSC frequency in one PMG cell group (PMG(E)) compared with control cells. The frequency of both spontaneous and miniature EPSCs was significantly greater in all PMG cells, suggesting that pyramidal neurons adjacent to a microgyrus receive more excitatory input than do those in control cortex. These findings suggest that there is an increase in numbers of functional excitatory synapses on both interneurons and pyramidal cells in the PMG cortex perhaps due to hyperinnervation by cortical afferents originally destined for the microgyrus proper.  相似文献   

9.
Cannabinoids bind central type 1 receptors (CB1R) and modify autonomic functions, including feeding and anti-emetic behaviours, when administered peripherally or into the dorsal vagal complex. Western blots and immunohistochemistry indicated the expression of CB1R in the rat dorsal vagal complex, and tissue polymerase chain reaction confirmed that CB1R message was made within the region. To identify a cellular substrate for the central autonomic effects of cannabinoids, whole-cell patch-clamp recordings were made in brainstem slices to determine the effects of CB1R activation on synaptic transmission to neurones of the dorsal motor nucleus of the vagus (DMV). A subset of these neurones was identified as gastric related after being labelled retrogradely from the stomach. The CB1R agonists WIN55,212-2 and anandamide decreased the frequency of spontaneous excitatory or inhibitory postsynaptic currents in a concentration-related fashion, an effect that persisted in the presence of tetrodotoxin. Paired pulse ratios of electrically evoked postsynaptic currents were also increased by WIN55,212-2. The effects of  WIN55,212-2 were sensitive to the selective CB1R antagonist AM251. Cannabinoid agonist effects on synaptic input originating from neurones in the nucleus tractus solitarius (NTS) were determined by evoking activity in the NTS with local glutamate application. Excitatory and inhibitory synaptic inputs arising from the NTS were attenuated by WIN55,212-2. Our results indicate that cannabinoids inhibit transfer of synaptic information to the DMV, including that arising from the NTS, in part by acting at receptors located on presynaptic terminals contacting DMV neurones. Inhibition of synaptic input to DMV neurones is likely to contribute to the suppression of visceral motor responses by cannabinoids.  相似文献   

10.
1. The effect of a selective mu opioid agonist, [N-MePhe3-D-Pro4]morphiceptin (PL017), on synaptic transmission in the dentate gyrus was examined in hippocampal slices. Synaptic currents were evoked by stimulation of the outer molecular layer and recorded from granule cells using whole-cell voltage-clamp techniques. 2. Monosynaptic inhibitory postsynaptic currents (IPSCs) were evoked in the presence of D(-)-2-amino-5-phosphonovaleric acid (D-APV), and N-methyl-D-aspartate (NMDA) receptor antagonist, and 6,7-dinitroquinoxaline-2,3-dione (DNQX), a non-NMDA type of glutamate receptor antagonist. The IPSCs consisted of a gamma-aminobutyric acid (GABA)A receptor-mediated early component and a GABAB receptor-mediated late component. 3. Bath application of PL017 (0.3-3 microM) induced a dose-dependent reduction in the amplitude of both early IPSCs (21-56%) and late IPSCs (43-81%). These effects could be reversed by the opiate antagonist naloxone (1 microM) or prevented by the selective mu antagonist beta-funaltrexamine hydrochloride (10 microM). 4. NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) were revealed in the presence of DNQX and the GABAA antagonist bicuculline methiodide. PL017 (3 microM) caused a 35% reduction in the amplitude of NMDA EPSCs. NMDA receptor-mediated population EPSPs recorded extracellularly were also inhibited by 3 microM PL017 to a similar degree. 5. Non-NMDA receptor-mediated EPSCs were demonstrated in the presence of D-APV and bicuculline methiodide. The amplitude of non-NMDA EPSCs was not affected by PL017.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibular reflexes. In 16-day embryos, the application of glutamate receptor antagonists abolished the postsynaptic responses generated on vestibular-nerve stimulation, but spontaneous synaptic activity was largely unaffected. Here, spontaneous synaptic activity was characterized in principal cells from brain slices at E16 using whole cell voltage-clamp recordings. With KCl electrodes, the frequency of spontaneous inward currents was 3.1 Hz at -60 mV, and the reversal potential was +4 mV. Cs-gluconate pipette solution allowed the discrimination of glycine/GABA(A) versus glutamate receptor-mediated events according to their different reversal potentials. The ratio for spontaneous excitatory to inhibitory events was about 1:4. Seventy-four percent of the outward events were GABA(A), whereas 26% were glycine receptor-mediated events. Both pre- and postsynaptic GABA(B) receptor effects were shown, with presynaptic GABA(B) receptors inhibiting 40% of spontaneous excitatory postsynaptic currents (sEPSCs) and 53% of spontaneous inhibitory postsynaptic currents (sIPSCs). With TTX, the frequency decreased approximately 50% for EPSCs and 23% for IPSCs. These data indicate that the spontaneous synaptic activity recorded in the principal cells at E16 is primarily inhibitory, action potential-independent, and based on the activation of GABA(A) receptors that can be modulated by presynaptic GABA(B) receptors.  相似文献   

12.
A whole cell patch-clamp study was carried out in slices obtained from young rat brain to elucidate the roles of somatostatin in the modulation of synaptic transmission onto cholinergic neurons in the basal forebrain (BF), a region that contains cholinergic and GABAergic corticopetal neurons and somatostatin (SS)-containing local circuit neurons. Cholinergic neurons within the BF were identified by in vivo prelabeling with Cy3 IgG. Because in many cases SS is contained in GABAergic neurons in the CNS, we investigated whether exogenously applied SS can influence GABAergic transmission onto cholinergic neurons. Bath application of somatostatin (1 muM) reduced the amplitude of the evoked GABAergic inhibitory presynaptic currents (IPSCs) in cholinergic neurons. SS also reduced the frequency of miniature IPSCs (mIPSCs) without affecting their amplitude distribution. SS-induced effect on the mIPSC frequency was significantly larger in the solution containing 7.2 mM Ca(2+) than in the standard (2.4 mM Ca(2+)) external solution. Similar effects were observed in the case of non-NMDA glutamatergic excitatory postsynaptic currents (EPSCs). SS inhibited the amplitude of evoked EPSCs and reduced the frequency of miniature EPSCs dependent on the external Ca(2+) concentration with no effect on their amplitude distribution. Pharmacological analyses using SS-receptor subtype-specific drugs suggest that SS-induced action of the IPSCs is mediated mostly by the sst(2) subtype, whereas sst subtypes mediating SS-induced inhibition of EPSCs are mainly sst(1) or sst(4). These findings suggest that SS presynaptically inhibits both GABA and glutamate release onto BF cholinergic neurons in a Ca(2+)-dependent way, and that SS-induced effect on IPSCs and EPSCs are mediated by different sst subtypes.  相似文献   

13.
To know a functional role of inhibitory synaptic responses in transmitting noxious and innoxious information from the periphery to the rat spinal dorsal horn, we examined inhibitory postsynaptic currents (IPSCs) elicited in substantia gelatinosa (SG) neurons by mechanical stimuli applied to the skin using the newly developed in vivo patch-clamp technique. In the majority (80%) of SG neurons examined, a brush stimulus applied to the ipsilateral hind limb produced a barrage of IPSCs that persisted during the stimulus, while a pinch stimulus evoked IPSCs only at its beginning and end. The pinch-evoked IPSCs may have been caused by a touch that occurs at the on/off time of the pinch. The evoked IPSCs were blocked by either a glycine-receptor antagonist, strychnine (4 microM), or a GABA(A)-receptor antagonist, bicuculline (20 microM). All SG neurons examined received inhibitory inputs from a wide area throughout the thigh and lower leg. When IPSCs were examined together with excitatory postsynaptic currents (EPSCs) in the same neurons, a brush evoked a persistent activity of both IPSCs and EPSCs during the stimulus while a pinch evoked such an activity of EPSCs but not IPSCs. It is suggested that innoxious mechanical stimuli activate a GABAergic or glycinergic circuitry in the spinal dorsal horn. This inhibitory transmission may play an important role in the modulation of noxious information in the SG.  相似文献   

14.
Hypocretin 2 (orexin B) is a hypothalamic neuropeptide thought to be involved in regulating energy homeostasis, autonomic function, arousal, and sensory processing. Neural circuits in the caudal nucleus tractus solitarius (NTS) integrate viscerosensory inputs, and are therefore implicated in aspects of all these functions. We tested the hypothesis that hypocretin 2 modulates fast synaptic activity in caudal NTS areas that are generally associated with visceral sensation from cardiorespiratory and gastrointestinal systems. Hypocretin 2-immunoreactive fibers were observed throughout the caudal NTS. In whole-cell recordings from neurons in acute slices, hypocretin 2 depolarized 48% and hyperpolarized 10% of caudal NTS neurons, effects that were not observed when Cs(+) was used as the primary cation carrier. Hypocretin 2 also increased the amplitude of tractus solitarius-evoked excitatory postsynaptic currents (EPSCs) in 36% of neurons and significantly enhanced the frequency of spontaneous EPSCs in most (59%) neurons. Spontaneous inhibitory postsynaptic currents (IPSCs) were relatively unaffected by the peptide. The increase in EPSC frequency persisted in the presence of tetrodotoxin, suggesting a role for the peptide in regulating glutamate release in the NTS by acting at presynaptic terminals.These data suggest that hypocretin 2 modulates excitatory, but not inhibitory, synapses in caudal NTS neurons, including viscerosensory inputs. The selective nature of the effect supports the hypothesis that hypocretin 2 plays a role in modulating autonomic sensory signaling in the NTS.  相似文献   

15.
Using whole cell patch-clamp recording from pyramidal cells and interneurons in the CA1 area of hippocampal slices, the effect of IEM-1460, a selective channel blocker of Ca2+ permeable AMPA receptors (AMPARs), on postsynaptic currents (PSCs) was studied. Excitatory postsynaptic currents (EPSCs) were evoked by stimulation of Schaffer collaterals (SCs) in the presence of APV and bicuculline to pharmacologically isolate the EPSCs mediated by AMPAR activation. IEM-1460 (50 microM) did not affect the amplitude of EPSCs in CA1 pyramidal cells but reversibly decreased their amplitude in interneurons of pyramidal layer (15 cells), radiatum (37 cells) and border radiatum-lacunosum-moleculare (R-LM) (55 cells) layers. The ability of IEM-1460 to decrease EPSC amplitude correlated with EPSC rectification properties in CA1 interneurons, providing evidence for synaptic localization of Ca2+ permeable AMPARs at the SC synaptic input. Independent of their localization, the majority of interneurons studied exhibited only modest sensitivity to IEM-1460 (EPSC amplitude decreased by less than 30%), while in 15% of interneurons IEM-1460 induced more than 50% reduction in EPSC amplitude. To reveal possible afferent-specific localization of Ca2+ permeable AMPARs on R-LM interneurons, the effect of IEM-1460 on EPSCs evoked by stimulation of SC was compared with that of perforant path (PP). Although average sensitivities did not differ significantly, in 61% of R-LM layer interneurons, the SC-evoked EPSCs exhibited higher sensitivity to IEM-1460 than the PP-evoked EPSCs. Moreover, in 54% of R-LM layer interneurons the EPSCs evoked by SC stimulation were complex, having an initial peak followed by one or several late components. Kinetics, latency distribution and reversal potential of late components suggest di- and polysynaptic origin of the late components. Late EPSCs were strongly and reversibly inhibited by IEM-1460 indicating that Ca2+ permeable AMPARs are involved in the indirect excitation of R-LM layer interneurons. Despite the ability to decrease the excitatory synaptic input to interneurons, IEM-1460 did not affect interneuron-mediated inhibitory postsynaptic currents (IPSCs) evoked in pyramidal neurons by SC stimulation. These data suggest that interneurons with a synaptic input highly sensitive to IEM-1460 do not contribute specifically to the feed-forward inhibition of hippocampal pyramidal neurons.  相似文献   

16.
Within the brain stem, the nucleus tractus solitarii (NTS) serves as a principal central site for sensory afferent integration from the cardiovascular and respiratory reflexes. Neuronal activity and synaptic transmission in the NTS are highly pliable and subject to neuromodulation. In the central nervous system, hydrogen sulfide (H?S) is a gasotransmitter generated primarily by the enzyme cystathionine-β-synthase (CBS). We sought to determine the role of H?S, and its generation by CBS, in NTS excitability. Real-time RT-PCR, immunoblot, and immunohistochemistry analysis identified the presence of CBS in the NTS. Patch-clamp electrophysiology in brain stem slices examined excitatory postsynaptic currents (EPSCs) and membrane properties in monosynaptically driven NTS neurons. Confocal imaging of labeled afferent synaptic terminals in NTS slices monitored intracellular calcium. Exogenous H?S significantly increased the amplitude of evoked solitary tract (TS)-EPSCs, frequency of miniature (m)EPSCs, and presynaptic terminal calcium fluorescence in the NTS. H?S did not alter action potential discharge or postsynaptic properties. On the other hand, the CBS inhibitor aminooxyacetate (AOA) significantly reduced the amplitude of TS-EPSCs and presynaptic terminal calcium fluorescence in the NTS without altering postsynaptic properties. Taken together, these data support a presynaptic role for endogenous H?S in modulation of excitatory neurotransmission in the NTS.  相似文献   

17.
1. The effect of the lectin wheat germ agglutinin (WGA), an inhibitor of ionotropic quisqualate receptor desensitization, on both evoked and spontaneous fast excitatory postsynaptic events was examined in cultured postnatal rat hippocampal neurons with the use of whole cell recordings. 2. WGA, at 580 nM, potentiated evoked fast excitatory postsynaptic currents (EPSCs) by increasing the amplitudes by 100 +/- 27% (mean +/- SE) and the time constant of decay from 5.8 +/- 0.6 to 7.9 +/- 0.5 ms. The increases in these parameters were not accompanied by changes in the current-voltage (I-V) relationship or pharmacological profile of the fast EPSCs. 3. WGA did not alter the amplitude or time course of decay of inhibitory postsynaptic currents (IPSCs), and it did not alter neuronal input resistance or action potentials. 4. WGA increased the amplitude of spontaneous fast miniature EPSCs (MEPSCs), defined as spontaneous EPSCs recorded in the presence of tetrodotoxin, by 53 +/- 11% and increased the time required to decay to 50% of the peak amplitude by 48 +/- 23%. These changes were not associated with a change in the rate of MEPSC occurrence. 5. These results suggest that WGA augments hippocampal excitatory postsynaptic events via a postsynaptic mechanism. The results further imply that ionotropic quisqualate receptor desensitization can modulate the amplitude and time course of decay of fast excitatory synaptic events. Thus desensitization may be one factor that regulates fast excitatory synaptic transmission.  相似文献   

18.
The globus pallidus (GP) contains abundant GABAergic synapses and GABA(B) receptors. To investigate whether synaptically released GABA can activate pre- and postsynaptic GABA(B) receptors in the GP, physiological recordings were performed using rat brain slice preparations. Cell-attached recordings from GABA(A) antagonist-treated preparations revealed that repetitive local stimulation induced a GABA(B) antagonist-sensitive pause in spontaneous firings of GP neurons. Whole cell recordings revealed that the repetitive stimulation evoked fast excitatory postsynaptic potentials followed by a slow inhibitory postsynaptic potential (IPSP) in GP neurons. The slow IPSP was insensitive to a GABA(A) receptor antagonist, increased in amplitude with the application of ionotropic glutamate receptor antagonists, and was suppressed by the GABA(B) antagonist CGP55845. The reversal potential of the slow IPSP was close to the potassium equilibrium potential. These results suggest that synaptically released GABA activated postsynaptic GABA(B) receptors and induced the pause and the slow IPSP. On the other hand, in the neurons that were treated to block postsynaptic GABA(B) responses, CGP55845 increased the amplitudes of repetitive local stimulation-induced GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) but not the ionotropic glutamate-mediated excitatory postsynaptic currents. Moreover, the GABA(B) receptor specific agonist baclofen reduced the frequency of miniature IPSCs without altering their amplitude distributions. These results suggest that synaptically released GABA also activated presynaptic GABA(B) autoreceptors, resulting in decreased GABA release in the GP. Together, we infer that both pre- and postsynaptic GABA(B) receptors may play crucial roles in the control of GP neuronal activity.  相似文献   

19.
Activity of neurons in the dorsal motor nucleus of the vagus nerve (DMV) is closely regulated by synaptic input, and regulation of that input by glutamate receptors on presynaptic terminals has been proposed. Presynaptic N-methyl-d-aspartic acid (NMDA) receptors have been identified in a number of brain regions and act to modulate neurotransmitter release, but functional presynaptic NMDA receptors have not been adequately studied in the DMV. This study identified the presence and physiological function of presynaptic NMDA receptors on synaptic input to DMV neurons. Whole-cell patch-clamp recordings from DMV neurons in acute slices from mice revealed prevalent miniature excitatory postsynaptic currents, which were significantly increased in frequency, but not amplitude, by application of NMDA. Antagonism of NMDA receptors with dl-2-amino-5-phosphonopentanoic acid (100 μM) resulted in a decrease in miniature excitatory postsynaptic current frequency and an increase in the paired pulse ratio of responses following afferent stimulation. No consistent effects of presynaptic NMDA receptor modulation were observed on GABAergic inputs. These results suggest that presynaptic NMDA receptors are present in the dorsal vagal complex and function to facilitate the release of glutamate, preferentially onto DMV neurons tonically, with little effect on GABA release. This type of presynaptic modulation represents a potentially novel form of glutamate regulation in the DMV, which may function to regulate glutamate-induced activity of central parasympathetic circuits.  相似文献   

20.
Recent work suggests neurons can have different types of gamma-aminobutyric acid type A (GABA(A)) receptors that mediate phasic inhibitory postsynaptic currents (IPSCs) and tonic currents. This study examines the diversity of GABAergic synaptic currents in parasympathetic cardioinhibitory neurons that receive rhythmic bursts of GABAergic neurotransmission. Focal application of gabazine (25 microM) to cardiac vagal neurons in vitro did not change the frequency of firing in spontaneously active neurons or the resting membrane potential; however, picrotoxin (100 microM) significantly depolarized cardiac vagal neurons and increased their firing. Similarly, gabazine (25 microM) selectively blocked GABAergic IPSCs but did not change holding current in cardiac vagal neurons, whereas picrotoxin (100 microM) not only blocked GABAergic IPSCs but also rapidly decreased the tonic current. Because the tonic current could be attributable to activation of GABA receptors by ambient GABA or, alternatively, spontaneous opening of constitutively active GABA channels, an antagonist for the GAT-1 GABA transporter NO-711 (10 microM) was applied to distinguish between these possibilities. NO-711 did not significantly alter the holding current in these neurons. The benzodiazepine flunitrazepam (1 microM) significantly increased the tonic current and GABAergic IPSC decay time; surprisingly, however, in the presence of gabazine flunitrazepam failed to elicit any change. These results suggest cardiac vagal neurons possess gabazine-sensitive GABA(A) receptors that mediate phasic synaptic currents, a gabazine-insensitive but picrotoxin-sensitive extrasynaptic tonic current that when blocked depolarizes and increases the firing rate of cardiac vagal neurons, and benzodiazepines recruit a third type of GABA(A) receptor that is sensitive to gabazine and augments the extrasynaptic tonic current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号