首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) is characterized by neurofibrillary tangles and neuritic plaques and by the degeneration of central cholinergic neurons. Recent studies indicated the presence of antibodies in the sera and cerebrospinal fluid of AD patients which react with neuronal tissue and which recognize cholinergic neurons. In order to identify the cholinergic antigens against which the AD antibodies are directed, we have recently used the purely cholinergic electromotor neurons of the electric fish Torpedo which are chemically homogenous and cross-react antigenically with mammalian cholinergic neurons. This study revealed that immunoglobulins (IgG) from sera of AD patients bind specifically to an antigen in Torpedo electromotor neurons with an apparent molecular weight of 200 kDa. In the present report we attempt to characterize this antigen. The similarity in size of this protein to that of the heavy neurofilament subunit (NF-H) and the association of neurofilaments with plaques and tangles prompted us to examine the possibility that it is a neurofilament protein. Our findings show that IgG from sera of AD patients bind to the NF-H protein of Torpedo cholinergic neurons. Comparison of the binding of AD and control IgG to Torpedo cholinergic NF-H revealed that AD IgG bind to this neurofilament protein more readily than do control IgG. In contrast, AD and control IgG bind similarly to NF-H obtained from the chemically heterogenous Torpedo spinal cord and rat brain. These findings suggest that AD sera contain a repertoire of anti-NF-H IgG and that a subpopulation of these antibodies whose levels are significantly elevated in AD binds to epitopes highly enriched in Torpedo cholinergic NF-H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Three proteins with nominal molecular weights of 73 kDa (XNF-L), 175 kDa (XNF-M), and 205 kDa (XNF-H) were identified as putative neurofilament proteins in the nervous system of the frog, Xenopus laevis. These conclusions were based on four criteria: (1) these proteins were enriched in cytoskeletal preparations; (2) they reacted with a monoclonal antibody (anti-IFA) that cross-reacts with an epitope found in all intermediate filament proteins; (3) they cross-reacted with monoclonal antibodies directed against specific mammalian neurofilaments; and (4) antibodies that reacted with these proteins on Western blots specifically stained neurons in immunohistochemical analyses. The neurofilament proteins in Xenopus were antigenically similar, but not identical to mammalian neurofilament proteins. The principal difference was that four antibodies that reacted on Western blots with rat NF-H reacted with XNF-M in Xenopus. However, similarly to mammals, antibodies against phosphorylated XNF-M specifically labeled axons, whereas an antibody that reacted only with dephosphorylated epitopes on XNF-M specifically labeled neuronal cell bodies in immunohistochemistry. Three other antibodies that reacted equally well with untreated or alkaline-phosphatase-treated XNF-M or XNF-H proteins also showed axonally restricted staining in the adult Xenopus nervous system. An XNF-L (XC5D10) antibody was produced which stained axons and cell bodies equivalently throughout the adult Xenopus nervous system. By 3 days of development (stage 42; Xenopus tadpoles), antibodies to all three molecular weight forms of the frog neurofilament proteins detected specific neurons in the brainstem and spinal cord; and antibodies to phosphorylated and dephosphorylated epitopes on XNF-M could discriminate between axons and cell bodies in the rhombencephalon. The immunoreactivities of four antibodies directed at XNF-L, -M, or -H, which were unaffected by alkaline phosphatase treatment, differed significantly in their immunohistochemical staining patterns in adult vs. premetamorphic frogs.  相似文献   

3.
A fully encoding cDNA for the high-molecular-weight rat neurofilament protein (NF-H) has been isolated from a lambda gt11 library, sequenced and subcloned into eukaryotic expression vectors. Sequence analysis shows that rat NF-H has an overall homology of 72 and 88% with human and mouse NF-H, respectively. The head and rod domains are almost entirely identical, and the divergences are due to differences in the long C-terminal extensions of the molecule. The consensus phosphorylation sequence for neurofilaments Lys-Ser-Pro (KSP) is present 52 times. The predicted molecular mass of the protein is 115 kDa, 42% lower than that observed by SDS-PAGE. Upon transfection into vimentin-containing fibroblasts, such as L tk-, L929, and 3T6 cells, NF-H is seen distributed with vimentin by light and electron microscopic examinations indicating that copolymers of NF-H and vimentin are formed in these cells. Only a negligible proportion of the cells is positive when stained with a number of antibodies directed against phosphorylated NF-H epitopes. This is in contrast with the middle molecular weight NF protein (NF-M) transfected into L tk- and L929 cells, which can readily be detected by antibodies against phosphorylated neurofilament epitopes. The mobilities of the transfected protein on 1- and 2-dimensional gels confirm that NF-H is predominantly in a nonphosphorylated form. These results indicate that phosphorylation of NF-H, but not NF-M, on the KSP sequence is due to protein kinases, which are not present in fibroblasts and are presumably NF-H specific. The stable NF-H-expressing cell lines can therefore be used to study these putative neurofilament kinases in vitro and in vivo.  相似文献   

4.
The highest molecular weight neurofilament protein (NF-H) is multiply phosphorylated at epitopes which can be distinguished by specific monoclonal antibodies on Western blots. Eight characterized antibodies were used in immunocytochemistry to examine the tissue distributions of phosphorylated variants of NF-H in axons of the adult rat spinal cord. The most striking difference in staining was found between axons in the cuneate tract and those in the neighboring dorsal corticospinal tract. Axons in the cuneate tract reacted intensely with antibodies to phosphorylated epitopes of NF-H and poorly with antibodies to dephosphorylated epitopes of NF-H, whereas the reverse was the case for the axons of the dorsal corticospinal tract. These differences showed that systematic variations in the phosphorylation of NF-H in long-tract axons in the central nervous system occur as a function of cell type. When the cytoskeletons of these axons were compared by electron microscopy, the neurofilaments of the cuneate fibers were seen to be more abundant and formed a latticework, more compactly organized than the neurofilaments of the dorsal corticospinal axons. By comparison, the dorsal corticospinal axons were relatively richer in microtubules than the cuneate axons. Although the cuneate fiber tract contained many more large (greater than 2.0 microns 2 in cross section) axons than did the dorsal corticospinal tract, these differences in cytoskeletal organization were apparent even when myelinated axons of similar sizes (0.4 micron 2 to 2.0 microns 2) were compared. In addition, the number of neurofilaments in cuneate axons in the 0.4 to 2.0 microns 2 size range was significantly better correlated with axon size than was the case for this size range of dorsal corticospinal axons. Thus, the differences seen in the organization of the neurofilament latticework and the phosphorylation of NF-H between axons found in these two tracts both appeared to be correlated with cell type, and were independent of length or caliber of the axons.  相似文献   

5.
We have initiated a multidisciplinary project that aims to dissect and ultimately define the functions of the long and unusual C-terminal "tail" sequences of the two high molecular weight neurofilament subunits, NF-M and NF-H. A series of recombinant fusion proteins containing selected NF-M and NF-H tail sequences were constructed using appropriate cDNAs. These fusion proteins were used to further define the epitopes for a variety of widely used neurofilament antibodies, including NN18 and N52, which are now available commercially from several companies. We also measured the SDS-PAGE mobility of the fusion proteins and found that, like the native neurofilament tails, the fusion proteins ran considerably slower than predicted from their molecular weight. Since all fusion proteins produced so far exhibit this characteristic we conclude that all segments of the NF-M and NF-H tail share this unusual property. Finally we were able to produce novel and potentially useful polyclonal and monoclonal antibodies to selected segments of NF-M and NF-H sequence. These antibody studies showed that the extreme C-termini of NF-M and NF-H are immunologically absolutely distinct from one another and also indicate that the extreme C-terminus of NF-M is immunologically much more conserved than the analogous region of NF-H. These findings are in complete agreement with our conclusions derived from amino acid sequence analysis, and further underline the possible functional importance of the extreme C-terminus of NF-M. We also show that the unusual immunological properties of the bovine NF-M tail we have previously observed do not extend to the extreme C-terminal region, which appears immunologically no different from the analogous region of other NF-M molecules. The peculiarities of bovine NF-M could be explained by the presence of a KSP motif that resembles the NF-H KSP prototype.  相似文献   

6.
A new panel of greater than 300 monoclonal antibodies (mAbs) was prepared to the high, middle, and low Mr rat neurofilament (NF) subunits (NF-H, NF-M and NF-L, respectively). NF proteins were purified both from native, i.e., phosphorylated rat NFs and from enzymatically dephosphorylated rat NFs. The resulting mAbs were used to biochemically and immunochemically distinguish and characterize distinct and differentially phosphorylated isoforms of NF subunits. By immunoblot, all mAbs specific for NF-L and some mAbs specific for NF-M detected their specific NF subunit regardless of whether or not the NFs had been treated with alkaline phosphatase, and such antibodies were termed "phosphate-independent" or P[ind] mAbs. The other mAbs were specific for NF-M, NF-H, or for both NF-M and NF-H, and they recognized epitopes in the COOH termini of these subunits. Significantly, the latter mAbs could discriminate different isoforms of NF-M and NF-H, depending on the phosphorylation state of each variant. Such mAbs were assigned to one of 4 distinct categories on the basis of their performance in immunoblots of progressively dephosphorylated rat NF samples and by immunohistochemistry of various adult rat nervous tissues: (1) P[-] mAbs preferentially stained neuronal perikarya and dendrites, and they recognized only extensively dephosphorylated (and nonphosphorylated) NF-H; (2) P[+] mAbs stained axons more strongly than perikarya, and primarily blotted phosphorylated, but not nonphosphorylated, forms of NF-H and NF-M; (3) P[++] mAbs stained axons almost to the exclusion of perikarya, and in blots recognized only the extensively phosphorylated forms of NF-H and NF-M (i.e., subunits subjected to limited enzymatic dephosphorylation); (4) P[ ] mAbs also predominantly stained axons, but the briefest alkaline phosphatase treatment abolished the NF-M and NF-H immunobands produced by these mAbs. Two-dimensional gel analysis and immunoblotting of total proteins from adult rat dorsal root ganglion verified mAb specificity in situ, and showed that differentially phosphorylated isoforms of NF-M and NF-H occur in vivo. This provided additional evidence that mAbs can detect all 4 phosphorylation-dependent endogenous isoelectric variants of NF-H and NF-M.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Immunocytochemical studies of developing Xenopus laevis embryos and tadpoles (stages 12 1/2 to 46) were performed using a panel of 11 monoclonal antibodies to phosphorylated and non-phosphorylated forms of the neurofilament proteins. These included nine antibodies to the middle molecular weight neurofilament protein (XNF-M, 175 kDa), and two additional antibodies to non-phosphorylated forms of the other two neurofilament proteins (XNF-L, 73 kDa; XNF-H, 205 kDa). The developmental expression of XNF-M, XNF-L and XNF-H, and the progressive phosphorylation of XNF-M in the rhombencephalon, spinal cord, and optic nerve were studied using these antibodies. In the spinal cord and rhombencephalon, non-phosphorylated forms of XNF-M were initially detected during neural tube stages (stages 22-26), one day before XNF-L and XNF-H at early tadpole stages (stage 35/36). In the eye, XNF-M was observed initially during tailbud stages (stage 29/30), but neither XNF-L nor XNF-H was seen even by stage 46 (swimming tadpole). The phosphorylation of XNF-M occurred over a protracted period of several days, both in the neural tube and visual system, and could be divided into four phases. (1) When initially expressed, XNF-M was hypophosphorylated. This was indicated by the early immunostaining of axons and cell bodies with antibodies to dephosphorylated epitopes on XNF-M and by the absence of staining with antibodies to phosphorylated epitopes. (2) After a short timelag (3-9 h) axons were stained by some, but not all antibodies to phosphorylated epitopes. (3) Approximately one day later, all antibodies to phosphorylated epitopes stained the relevant axons. However, XNF-M was not yet fully phosphorylated, as indicated by the continued staining of these axons with antibodies to dephosphorylated epitopes of XNF-M. (4) Two to 3 days after the initial expression of XNF-M, dephosphorylated epitopes disappeared from the axons, establishing the adult pattern. During development, the most heavily phosphorylated neurofilament proteins present at a given stage were found first in distal regions of the axons and progressed gradually toward the neuronal perikarya as development proceeded. This gradient of phosphorylation, established early within the axon, suggests that neurofilaments in the axons mature from their distal ends toward the cell body, a process which may be regulated by local factors within the axons themselves. The similarity of the basic features of NF-M phosphorylation in mammalian, avian, and amphibian axons underscores the importance of this phenomenon for the development of a mature axon.  相似文献   

8.
Previous studies from our laboratory suggest that Alzheimer's disease sera contain a repertoire of antibodies to the heavy neurofilament subunit (NF-H) and that a subpopulation of these antibodies bind specifically to epitopes highly enriched in NF-H isolated from the purely cholinergic electromotor neurons of Torpedo. In the present study, we prepared and characterized monoclonal antibodies (MAbs) that bind to epitopes specifically enriched in Torpedo cholinergic neurons. This was performed by a differential enzyme-linked immunosorbent assay (ELISA) in which MAbs were selected that bind to epitopes much more abundant in the NF-H protein of Torpedo cholinergic neurons than in NF-H from the chemically heterogeneous Torpedo spinal cord. This yielded four MAbs, three of which (TC4, TC8, and TC21) were found to be specific to NF-H and one (TC15) that reacts with both NF-H and the medium-size neurofilament subunit NF-M. Dephosphorylation abolishes the binding of MAbs TC4 and TC15 to Torpedo cholinergic NF-H, partially reduces that of MAb TC21 and has no effect on the binding of MAb TC8. This suggests that the antigenic sites specific to Torpedo cholinergic NF-H contain phosphorylated as well as non phosphorylated epitopes. All the MAbs cross-react with rat brain NF-H.  相似文献   

9.
Peptides corresponding to sequences from the amino-terminal "head" regions of the low, middle, and high molecular weight neurofilament proteins (NF-L, NF-M, and NF-H) were synthesized by a modification of the Merrifield solid-phase method, and a panel of polyclonal antibodies to these epitopes were prepared in rabbits by the injection of synthetic peptides conjugated to the carrier protein keyhole limpet hemocyanin (KLH). An additional, monoclonal antibody recognizing both glial fibrillary acidic protein (GFAP) and vimentin was also produced, by fusion of cells of the mouse myeloma line NS-1 with spleen cells from a mouse immunized with cytoskeletal extracts. Antibody specificities were confirmed by a combination of Western blotting against cytoskeletal extracts and immunofluorescence using both rat brain sections and fibroblasts transfected with fully encoding cDNAs for each neurofilament protein, driven by viral promoters.  相似文献   

10.
A 75-year-old woman had breast carcinoma, an IgA paraprotein and autopsy-proven amyotrophic lateral sclerosis. Autopsy tissues showed immune-reactive IgA within surviving motor neurons and deposits of IgA and C3 within renal glomeruli. By indirect immunofluorescence, the patient's serum contained high-titer IgA that bound to axons and to the perikarya of nerve cells in central and peripheral nervous system. The IgA paraprotein reacted with the 200 kDa, high molecular weight subunit of neurofilament protein (NFH) in Western blots of purified neurofilaments. It also reacted with dephosphorylated NFH and with NFH expressed as a fusion protein in E. coli, suggesting that the autoantibody recognized a peptide epitope. The IgA crossreacted with a surface antigen of cultured human neuroblastoma cells but mouse monoclonal antibodies to NFH did not. Absorption of the patient's serum with neurofilaments eliminated IgA binding to neuroblastoma cells, indicating that the same antibodies bound to both determinants. The IgA paraprotein seems to be an autoantibody with specificity for neurofilament protein and a cell surface component of neuronal cells; the antibody may have been important in the pathogenesis of neuronal degeneration.  相似文献   

11.
We have obtained five monoclonal antibodies to the Mr 200,000 neurofilament component (NF200) after immunization with polypeptides purified from enzymatically dephosphorylated bovine neurofilaments. In immunoblots of untreated neurofilament protein and protein from filaments exposed to phosphatase, these antibodies recognize nonphosphorylated or dephosphorylated, but not phosphorylated, forms of NF200. The epitopes recognized by these new monoclonal antibodies reside in the carboxyterminal domain of the NF200 polypeptide as defined by immunoreaction with limited chymotryptic fragments. Immunohistochemical studies of bovine cerebellum, spinal cord, trigeminal ganglion, and trigeminal nerve with these new monoclonal antibodies demonstrate immunoreactivity primarily in neuronal perikarya; axons and dendrites are weakly or infrequently immunostained. After enzymatic dephosphorylation of these tissues, a more extensive distribution of immunoreactivity is seen, especially in axons and dendrites. Immunostaining of cultured rat sympathetic neurons is restricted to cell bodies. These data provide evidence for the in situ existence of NF200 epitopes that are not phosphorylated in some classes of neurons or regions of a neuron, but are modified by phosphorylation in other neurons or neuronal domains. These new monoclonal antibodies are distinctly different from those in a large library (over 100) raised to, and specific for, phosphorylated neurofilament proteins. They are novel tools for probing neurofilament distribution, metabolism, structure, and possibly function.  相似文献   

12.
Neurofilament proteins of mammalian axotomized peripheral axons, which regenerate effectively, resemble those of embryonic axons. However, injured centrally projecting mammalian axons, which fail to regenerate, have very different neurofilament compositions than during development. If changes in neurofilament composition after injury reflect the ability of axotomized neurons to regenerate effectively, then the neurofilaments of centrally projecting axons that can regenerate should more closely resemble those of developing axons. In this study, the neurofilament compositions of injured optic axons of the frog, Xenopus laevis, were examined, since these axons can regenerate a fully functional projection. Antibodies to phosphorylated and nonphosphorylated forms of neurofilament proteins that had been used previously to study the neurofilament composition of newly developing X. laevisoptic axons were used in immunocytochemical studies to examine the return of neurofilaments to the optic nerve after an intraorbital nerve crush. Intraocularly injected wheat germ agglutinin conjugated to horseradish peroxidase was used to label the regenerating axons independently of their neurofilaments. Neurofilament immunoreactivities disappeared rapidly from crushed axons during the first week after surgery. By nine days after surgery, antibodies to nonphosphorylated form of middle (NF-M) and low molecular weight (NF-) neurofilament proteins and the Xenopusneuronal intermediate filament protein (XNIF) began to stain the nerve just beyond the lesion. By this time, however, growing axonal terminals had reached the optic chiasm. Antibodies to phosphorylated epitopes of NF-M began to stain axons at 15 days, just as growing axons began to arrive at the optic tectum. Nonphosphorylated high molecular weight neurofilament protein (NF-H) began to appear in axons between 18 and 21 days after surgery. Thus, the reappearance of neurofilaments during optic axon regeneration resembled the general pattern seen during development. The chief difference between development and regeneration was that neurofilament epitopes took longer to emerge during regeneration. One possibility is that cues encountered along the optic pathway influence the neurofilament composition of retinal ganglion cell axons. Then, the greater distance travelled by regenerating axons could account for the longer time taken for their neurofilament compositions to mature. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Rat dorsal root ganglia and spinal cord were stained with 12 monoclonal antibodies reacting with phosphorylated epitopes of two neurofilament proteins (NF 150K and NF 200K). Three monoclonal antibodies were axon-specific in both locations; neuronal perikarya were not stained. Nine monoclonal antibodies stained a subpopulation of neurofilament-positive sensory neurons, as indicated by double labeling experiments with polyclonal antibodies reacting with phosphorylated and dephosphorylated forms of the neurofilament protein triplet. Of these nine antibodies, two stained motor neuron perikarya in the spinal cord, while the remaining seven antibodies were axon-specific in this location. Subpopulations of stained and unstained motor neurons were not observed. With all 12 antibodies, the staining pattern in the lumbar dorsal root ganglia and spinal cord remained unchanged following sciatic nerve crush and ligature. The findings suggest that, in the neurofilament, some phosphorylated epitopes are axon specific, while other phosphorylated epitopes are present in both axons and perikarya. Furthermore, they suggest that differences exist between neuronal populations as to the presence of phosphorylated epitopes in perikaryal neurofilaments. It remains to be seen whether phosphorylation events in perikarya and axons have similar or different effects on neurofilament structure and function.  相似文献   

14.
Neurofilament protein expression was examined immunochemically in a neuronal cell line derived from postnatal day 21 septal tissue. The SN48.1p cell line was found to constitutively synthesize an array of neurofilament proteins typical of a mature neuron. All three neurofilament subunits (NF-L, NF-M, and NF-H) as well as differentially phosphorylated isoforms (P-, P+, P++, and P ) of NF-M and NF-H were identified by immunoblot analysis. Immunofluorescence studies revealed that the neurofilament proteins were components of discrete, filamentous structures. Abnormal intracellular aggregations of neurofilament proteins were never observed. Some SN48.1p cells apportioned specific isoforms into selected intracellular regions based on the molecular weight and phosphorylation level of the protein. NF-L was preferentially localized to perikarya and proximal neurites; NF-M[P++] and NF-H[P ] were distributed to distal aspects of neurites. The expression of these differentiated features of neurofilament proteins and, presumably, the synthesis of the kinases and phosphatases required for normal neurofilament metabolism occurred in the absence of growth factors, differentiating agents, and specialized culture substrates. In addition, the non-neuronal intermediate filaments glial fibrillary acidic protein and epithelial cytokeratin proteins were absent. These data demonstrate that SN48.1p cells exhibit a neurofilament phenotype characteristic of mature neurons and provide a unique model to examine the expression and function of neurofilaments in differentiated neuronal cells.  相似文献   

15.
We have characterized stages in the posttranslational processing of the three neurofilament subunits, High (NF-H), Middle (NF-M), and Low (NF-L), in retinal ganglion cells in vivo during the interval between synthesis in cell bodies within the retina and appearance of these polypeptides in axons at the level of the optic nerve (optic axons). Neurofilament proteins pulse-labeled by injecting mice intravitreally with [35S]methionine or [32P]orthophosphate, were isolated from Triton-soluble and Triton-insoluble fractions of the retina or optic axons by immunoprecipitation or immunoaffinity chromatography. Within 2 h after [35S]methionine injection, the retina contained neurofilament-immunoreactive radiolabeled proteins with apparent molecular weights of 160, 139, and 70 kDa, which co-migrated with subunits of axonal neurofilaments that were dephosphorylated in vitro with alkaline phosphatase. The two larger polypeptides were not labeled with [32P]orthophosphate, indicating that they were relatively unmodified forms of NF-H and NF-M. About 75% of the subunits were Triton-insoluble by 2 h after isotope injection, and this percentage increased to 98% by 6 h. Labeled neurofilament polypeptides appeared in optic axons as early as 2 h after injection. These subunits exhibited apparent molecular weights of 160, 139, and 70 kDa and were Triton-insoluble. The time of appearance of fully modified polypeptide forms differed for each subunit (2 h for NF-L, 6-18 h for NF-M, 18-24 h for NF-H) and was preceded by the transient appearance of intermediate forms. The modified radiolabeled subunits in optic axons 3 days after synthesis were heavily labeled with [32P]orthophosphate and exhibited the same apparent molecular weights as subunits of axonal neurofilaments (70 kDa, 145 and 140 kDa, and 195-210 kDa, respectively). Whole mounts of retina immunostained with monoclonal antibodies against NF-H in different states of phosphorylation demonstrated a transition from non-phosphorylated neurofilaments to predominantly phosphorylated ones within a region of the axon between 200 and 1000 microns downstream from the cell body. These experiments demonstrate that the addition of most phosphate groups to NF-M and NF-H takes place within a proximal region of the axon. The rapid appearance of modified forms of NF-L after synthesis may imply that processing of this subunit occurs at least partly in the cell body. The presence of a substantial pool of Triton-insoluble, unmodified subunits early after synthesis indicates that the heaviest incorporation of phosphate occurs after neurofilament proteins are polymerized.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Silber E  Semra YK  Gregson NA  Sharief MK 《Neurology》2002,58(9):1372-1381
OBJECTIVE: The cause of axonal loss, an important contributor to disability in MS, is poorly understood. This study investigated whether progression in MS is associated with CSF antibodies to the 68-kd light neurofilament subunit (NF-L), an axonal cytoskeletal protein, and compared this with antibodies against tubulin and the heavy neurofilament subunit (NF-H). METHODS: IgG to NF-L, tubulin, and NF-H was measured by immunoassay in matched CSF and serum samples from patients with relapsing-remitting MS (RRMS; n = 39), primary progressive MS (PPMS; n = 10), and secondary progressive MS (SPMS; n = 18); patients with other inflammatory (n = 21) and noninflammatory (n = 40) neurologic diseases; and healthy controls (n = 12). Immunocytochemistry was performed to assess antibody binding to human brain sections, and isoelectric focusing with immunoblotting was performed to assess oligoclonal anti-NF-L production. RESULTS: Intrathecal production of anti-NF-L antibodies was significantly elevated in PPMS and SPMS. In contrast, there were no significant differences in CSF levels of antibodies to tubulin or NF-H between the groups. Anti-NF-L, antitubulin, and anti-NF-H levels correlated with the duration of disease before lumbar puncture and Expanded Disability Status Scale levels. Immunocytochemistry demonstrated binding of CSF or serum antibodies to axonal or neuronal components in six of seven RRMS patients, seven of seven PPMS patients, and eight of 10 SPMS patients tested. Isoelectric focusing demonstrated independent CSF oligoclonal bands reactive with NF-L in six of 13 specimens tested. CONCLUSIONS: Anti-NF-L antibodies seem to be raised in progressive MS and may serve as a marker for axonal loss and disease progression. They may contribute to axonal loss and the accumulation of disability.  相似文献   

17.
Purified bovine neurofilament (NF) subunit proteins were reassembled in vitro to form either homopolymeric or heteropolymeric intermediate-sized filaments using single or paired combinations of NF triplet proteins. Using conditions established for the reassembly of bovine NF triplet proteins, we demonstrated that the low Mr NF subunit (NF-L) alone and in combination with the middle Mr NF subunit (NF-M) reassembled very efficiently, i.e. greater than 95% of these proteins formed filaments within 90 min from the start of reassembly. In contra-distinction, the high Mr NF subunit (NF-H) alone and in combination with NF-M or NF-L underwent reassembly to a lesser extent, i.e. 62-88% of these proteins reassembled within 90 min. Immunolabeling of the reassembled NF polymers revealed striking differences in the organization of rod domain determinants. Specifically, antibodies specific for epitopes in the rod domains of NF-H, NF-M and NF-L failed to bind heteropolymeric filaments but recognized rod domains in the homopolymers. In contrast, antibodies specific to head and tail domains of all NF proteins labeled the reassembled hetero- and homopolymeric NFs. Double-labeling of heteropolymers demonstrated that pairs of different NF subunits coassembled into intermediate-sized filaments. Our results also showed that only copolymeric filaments of NF-L and NF-M, but not NF-L/NF-H and NF-M/NF-H were able to form long and stable 10-nm wide filaments. These observations provide new insights into the requirements for stable filament formation from NF subunits. In particular, they support the notion that only NF-L/NF-M, but not NF-L/NF-H or NF-M/NF-H might assemble into a stable filamentous network in vivo.  相似文献   

18.
Neurofilaments (NFs), the neuron-specific intermediate (i.e. ∼10-nm diameter) filaments are major cytoskeletal components of most neurons. In a mature mammalian neuron, NFs are co-assembled from three subunits, NF-L (low), NF-M (medium), and NF-H (high), with molecular masses of 68, 95, and 115 kDa, respectively. Neurofilament proteins (NF-Ps), particularly, NF-H, are most extensively phosphorylated in large myelinated axons under normal conditions. This phosphorylation occurs on the serine residues of the lysine (Lys)–serine (Ser)–proline (Pro) (KSP) multiple amino acid repeats of the carboxy-terminal tail domain. Phosphorylation of KSP motifs affects physical, biochemical, and immunological properties of NF-H. For example, phosphorylation is thought to play a pivotal role in the maintenance of the neuronal cytoskeletal structure which influences the conduction velocity of the nerve fiber. The key components responsible for phosphorylation are not known. In this study, an identified cyclin-dependent kinase 5 (cdk5), isolated from nervous tissue, has been shown to phosphorylate the human NF-H (hNF-H) and affects its electrophoretic mobility. On the basis of the following observations, it is suggested that neuronal cdk5 (cdk5) phosphorylates KSPXK motifs in the human high molecular weight neurofilament (hNF-H) and affects its electrophoretic mobility. (1) A 14-mer synthetic peptide (KSPEKAKSPVKEEA) derived from hNF-H; (2) a bacterially expressed protein containing 14 KSPXK multiple repeats of hNF-H in C-terminal tail domain; and (3) a dephosphorylated hNF-H in neurofilament preparation are phosphorylated by cdk5. The decrease in molecular mass of hNF-H caused by dephosphorylation was completely recovered upon cdk5 phosphorylation. It is proposed that neuronal cdk5 regulates phosphorylation of the KSPXK motif in hNF-H and other cytoskeletal proteins with similar motifs in the nervous system.  相似文献   

19.
Fixation enhances cellular morphology and reduces loss of molecules during tissue processing. Antibodies against fixation-resistant epitopes are very useful, because they allow an immunocytochemical detection in tissue of better preserved morphology. However, fixatives can alter antigenicity and adversely affect the result of immunohistochemical procedures. To address this problem, this study examined the feasibility of generating antibodies to a paraformaldehyde-fixed antigen for use in immunohistochemical procedures. The large subunit of neurofilament proteins was selected for this study. Crude neurofilament proteins were isolated and separated by SDS-polyacrylamide gel electrophoresis. The large subunit of neurofilaments (NF-H) was electroeluted from the electrophoresis gel and exposed to paraformaldehyde, and used for immunization of a rabbit. The rabbit antiserum was affinity purified on CNBr-sepharose immobilized neurofilament proteins. On Western blots, the antibody reacted with the NF-H protein in a phosphorylation-dependent manner. In aldehydefixed cerebellum, the antibody strongly stained axons. In contrast, in alcohol-fixed cryostat sections the immunocytochemical detection was substantially reduced. The procedure presented in this study, involving a simple pretreatment of the immunogen, allows for the generation of an antibody that may be used in immunohistochemical studies where localization of the immunogen may be reduced or even lost by aldehyde fixation.  相似文献   

20.
The expression of neurofilament (NF) proteins was examined in the surgical specimen from a 42-year-old woman with Lhermitte-Duclos disease. Hypertrophic granule cell neurons of the dysplastic tissues were reactive with monoclonal antibodies, including antibodies to each of the three human NF subunits. Furthermore, antibodies to dephosphorylation-dependent epitopes on NF proteins stained the cell bodies of hypertrophic granule cells, whereas antibodies to phosphorylation-dependent epitopes stained the enlarged and myelinated axons of the hypertrophic granule cells. Enzymatic dephosphorylation of this tissue abolished axonal staining with phosphorylation-dependent antibodies and uncovered determinants recognized by antibodies to the dephosphorylated state of NF proteins. The NF protein immunoreactivity of hypertrophic granule cells was indistinguishable from that of large, NF-rich neurons in control human cerebellum, suggesting that a normal pattern of expression and phosphorylation of NF proteins occurs in hypertrophic granule cells in Lhermitte-Duclos disease. An increased expression of NF proteins by cerebellar granule cells may account for many of the observed alterations of Lhermitte-Duclos disease, including the hypertrophy of the granule cells and enlargement of their axons, leading to the myelination of parallel fibers within the molecular layer of the cerebellum. Attention should now be directed at the underlying mechanisms which lead to the coordinated up-regulation of the three NF genes and whether or not additional gene products or cell types are altered in Lhermitte-Duclos disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号