首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A prominent feature of Lyme disease is the perivascular accumulation of mononuclear leukocytes. Incubation of human umbilical vein endothelial cells (HUVEC) cultured on amniotic tissue with either interleukin-1 (IL-1) or Borrelia burgdorferi, the spirochetal agent of Lyme disease, increased the rate at which human monocytes migrated across the endothelial monolayers. Very late antigen 4 (VLA-4) and CD11/CD18 integrins mediated migration of monocytes across HUVEC exposed to either B. burgdorferi or IL-1 in similar manners. Neutralizing antibodies to the chemokine monocyte chemoattractant protein 1 (MCP-1) inhibited the migration of monocytes across unstimulated, IL-1-treated, or B. burgdorferi-stimulated HUVEC by 91% ± 3%, 65% ± 2%, or 25% ± 22%, respectively. Stimulation of HUVEC with B. burgdorferi also promoted a 6-fold ± 2-fold increase in the migration of human CD4+ T lymphocytes. Although MCP-1 played only a limited role in the migration of monocytes across B. burgdorferi-treated HUVEC, migration of CD4+ T lymphocytes across HUVEC exposed to spirochetes was highly dependent on this chemokine. The anti-inflammatory cytokine IL-10 reduced both migration of monocytes and endothelial production of MCP-1 in response to B. burgdorferi by approximately 50%, yet IL-10 inhibited neither migration nor secretion of MCP-1 when HUVEC were stimulated with IL-1. Our results suggest that activation of endothelium by B. burgdorferi may contribute to formation of the chronic inflammatory infiltrates associated with Lyme disease. The transendothelial migration of monocytes that is induced by B. burgdorferi is significantly less dependent on MCP-1 than is migration induced by IL-1. Selective inhibition by IL-10 further indicates that B. burgdorferi and IL-1 employ distinct mechanisms to activate endothelial cells.  相似文献   

2.
Humans and other animals with Lyme borreliosis produce antibodies to a number of components of the agent Borrelia burgdorferi, but a full accounting of the immunogens during natural infections has not been achieved. Employing a protein array produced in vitro from 1,292 DNA fragments representing ~80% of the genome, we compared the antibody reactivities of sera from patients with early or later Lyme borreliosis to the antibody reactivities of sera from controls. Overall, ~15% of the open reading frame (ORF) products (Orfs) of B. burgdorferi in the array detectably elicited an antibody response in humans with natural infections. Among the immunogens, 103 stood out on the basis of statistical criteria. The majority of these Orfs were also immunogenic with sera obtained from naturally infected Peromyscus leucopus mice, a major reservoir. The high-ranking set included several B. burgdorferi proteins hitherto unrecognized as immunogens, as well as several proteins that have been established as antigens. The high-ranking immunogens were more likely than nonreactive Orfs to have the following characteristics: (i) plasmid-encoded rather than chromosome-encoded proteins, (ii) a predicted lipoprotein, and (iii) a member of a paralogous family of proteins, notably the Bdr and Erp proteins. The newly discovered antigens included Orfs encoded by several ORFs of the lp36 linear plasmid, such as BBK07 and BBK19, and proteins of the flagellar apparatus, such as FliL. These results indicate that the majority of deduced proteins of B. burgdorferi do not elicit antibody responses during infection and that the limited sets of immunogens are similar for two different host species.  相似文献   

3.
Borrelia burgdorferi sensu lato (s.l.), the etiological agent of Lyme disease, is transmitted by the bite of Ixodes ricinus. Four hundred eighty-nine ticks, collected in four locations of a region of southern Belgium where Lyme disease is endemic, were examined for the presence of the spirochete. In a PCR test with primers that recognize a chromosomal gene of all strains, 23% of the ticks were found to be infected. The species B. burgdorferi s.l. comprises at least three pathogenic genomospecies, B. burgdorferi sensu stricto (s.s.), Borrelia garinii, and Borrelia afzelii, which could be distinguished in PCR tests with species-specific primers that correspond to distinct plasmid sequences. B. garinii was most prevalent (53% of infected ticks), followed by B. burgdorferi s.s. (38%) and B. afzelii (9%). Of the infected ticks, 40% were infected with a single species, 40% were infected with two species, and 5% were infected with all three species. For 15% of the ticks, the infecting species could not be identified. No difference in rates of prevalence was observed among the four locations, which had similar ground covers, even though they belonged to distinct biogeographic regions. A greater heterogeneity of spirochetal DNA in ticks than in cultured reference DNA was suggested by a comparison of the results of PCRs with two different sets of species-specific primer sequences.  相似文献   

4.
The abundance of host-seeking Ixodes scapularis nymphs, the principal vector for the Lyme disease agent, Borrelia burgdorferi, in Old Lyme, Lyme, and East Haddam, Connecticut, was compared with the incidence of reported human Lyme disease in the 12-town area around the Connecticut River and the State of Connecticut for the period 1989 to 1996. Ticks were sampled from lawns and woodlands by dragging flannel over the vegetation and examined for the presence of B. burgdorferi by indirect fluorescent antibody staining. The infection rate of the nymphal ticks by B. burgdorferi during the 9-year period was 14.3% (of 3,866), ranging from 8.6% (1993) to 24.4% (1996). The incidence of Lyme disease was positively correlated with tick abundance in the 12 town area (r = 0.828) and the State of Connecticut (r = 0.741). An entomological risk index based upon the number of I. scapularis ticks infected by B. burgdorferi was highest in 1992, 1994, and 1996 and was highly correlated with the incidence of Lyme disease in Connecticut (r = 0.944). The number of Lyme disease cases has been influenced, in part, by annual changes in population densities of I. scapularis and, presumably, a corresponding change in the risk of contact with infected ticks. Based upon tick activity and spirochetal infection rates, epidemiologically based Lyme disease case reports on a regional scale appear to reflect real trends in disease.  相似文献   

5.
Both decorin-binding proteins (DbpA and DbpB) of the Lyme disease spirochete Borrelia burgdorferi bind decorin and glycosaminoglycans, two important building blocks of proteoglycans that are abundantly found in the extracellular matrix (ECM) and connective tissues as well as on cell surfaces of mammals. As an extracellular pathogen, B. burgdorferi resides primarily in the ECM and connective tissues and between host cells during mammalian infection. The interactions of B. burgdorferi with these host ligands mediated by DbpA and DbpB potentially influence various aspects of infection. Here, we show that both DbpA and DbpB are critical for the overall virulence of B. burgdorferi in the murine host. Disruption of the dbpBA locus led to nearly a 104-fold increase in the 50% infectious dose (ID50). Complementation of the mutant with either dbpA or dbpB reduced the ID50 from over 104 to roughly 103 organisms. Deletion of the dbpBA locus affected colonization in all tissues of infected mice. The lack of dbpA alone precluded the pathogen from colonizing the heart tissue, and B. burgdorferi deficient for DbpB was recovered only from 42% of the heart specimens of infected mice. Although B. burgdorferi lacking either dbpA or dbpB was consistently grown from joint specimens of almost all infected mice, it generated bacterial loads significantly lower than the control. The deficiency in either DbpA or DbpB did not reduce the bacterial load in skin, but lack of both significantly did. Taken together, the study results indicate that neither DbpA nor DbpB is essential for mammalian infection but that both are critical for the overall virulence of B. burgdorferi.  相似文献   

6.
The Borrelia burgdorferi-specific immune complex (IC) test, which uses polyethylene glycol (PEG) precipitation to isolate ICs from serum, has been used as a research test in the laboratory diagnosis of early Lyme disease (LD) and has been proposed as a marker of active infection. We examined whether B. burgdorferi-specific antibodies were present within PEG-precipitated ICs (PEG-ICs) in patients with LD, posttreatment Lyme disease syndrome, and controls, including individuals who received the outer surface protein A (OspA) vaccine. Using a B. burgdorferi whole-cell enzyme-linked immunosorbent assay (ELISA), we obtained positive PEG-IC results not only in patients with a history of LD, but also in individuals vaccinated with OspA vaccine. The frequency of positive PEG-IC ELISAs in OspA vaccinees was significantly higher with ELISA-reactive than with ELISA-negative unprocessed serum samples (P = 0.001), demonstrating dependency between the tests. Similar results were found using samples from rhesus macaques infected with B. burgdorferi, uninfected macaques vaccinated with OspA, and controls. Therefore, testing for the presence of antibodies against B. burgdorferi in PEG-IC preparations is not more likely to reflect active infection than testing in unprocessed serum and should not be used in individuals who received the OspA vaccine.  相似文献   

7.
The 37-kDa protein (P37) of Borrelia burgdorferi is an antigen that elicits an early immunoglobulin M (IgM) antibody response in Lyme disease patients. The P37 gene was cloned from a B. burgdorferi genomic library by screening with antibody from a Lyme disease patient who had developed a prominent humoral response to the P37 antigen. DNA sequence analysis of this clone revealed the identity of P37 to be FlaA, an outer sheath protein of the periplasmic flagella. Recombinant P37 expression was accomplished in Escherichia coli by using a gene construct with the leader peptide deleted and fused to a 38-kDa E. coli protein. The recombinant antigen was reactive in IgM immunoblots using serum samples from patients clinically diagnosed with early Lyme disease that had been scored positive for B. burgdorferi anti-P37 reactivity. Lyme disease patient samples serologically negative for the B. burgdorferi P37 protein did not react with the recombinant. Recombinant P37 may be a useful component of a set of defined antigens for the serodiagnosis of early Lyme disease. This protein can be utilized as a marker in diagnostic immunoblots, aiding in the standardization of the present generation of IgM serologic tests.  相似文献   

8.
Two hundred seventeen isolates of Borrelia burgdorferi originally cultured from skin biopsy samples or blood of early Lyme disease patients were genetically characterized by PCR-restriction fragment length polymorphism (RFLP) typing of the 16S-23S ribosomal DNA intergenic spacer. Three major RFLP types were observed. Of the cultured isolates, 63 of 217 (29.0%) were type 1, 85 of 217 (39.2%) were type 2, and 58 of 217 (26.7%) were type 3; mixtures of two RFLP types were obtained in 6.0% (13 of 217) of the cultures. Comparison of typing of B. burgdorferi performed directly on 51 patient skin specimens with typing of cultures originally isolated from the same tissue revealed that a much larger proportion of direct tissue samples had mixtures of RFLP types (43.1% by direct typing versus 5.9% by culture [P < 0.001). In addition, identical RFLP types were observed in only 35.5% (11 of 31) of the paired samples. RFLP type 3 organisms were recovered from blood at a significantly lower rate than were either type 1 or type 2 strains. These studies demonstrate that the genetic diversity of B. burgdorferi patient isolates as determined by cultivation differs from that assessed by PCR performed directly on patient tissue.  相似文献   

9.
Borrelia burgdorferi, the agent of Lyme borreliosis, is genetically more heterogeneous than previously thought. In Europe five genospecies have been described from the original B. burgdorferi sensu lato (sl): B. burgdorferi sensu stricto (ss), B. garinii, B. afzelii, B. lusitaniae, and B. valaisiana. In the United States, B. burgdorferi ss as well as B. bissettii in California and B. andersonii on the East Coast were differentiated. In Asia, B. japonica has been identified along, with B. garinii, B. afzelii, and B. valaisiana. In order to evaluate sensitivity and specificity of four species-specific monoclonal antibodies, we analyzed 210 B. burgdorferi sl isolates belonging to eight genospecies by immunoblot and confirmed genospecies by restriction fragment length polymorphism (RFLP) of rrf (5S)-rrl (23S) intergenic spacer amplicon. Monoclonal antibody H3TS had 100% sensitivity for 55 B. burgdorferi ss isolates but showed reactivity with all four isolates belonging to B. bissetii. Monoclonal antibody I 17.3 showed 100% specificity and sensitivity for 45 B. afzelii isolates. Monoclonal antibody D6 was 100% specific for B. garinii but missed 1 of 64 isolates (98.5% sensitivity). Monoclonal antibody A116k was 100% specific for B. valaisiana but was unreactive with 4 of 24 isolates (83.5% sensitivity). Genetic analysis correlated well with results of reactivity and confirmed efficacy of the phenotypic typing of these antibodies. Some isolates showed atypical RFLP. Therefore, both phenotypic and genotypic analyses are needed to characterize new Borrelia isolates.  相似文献   

10.
The primary objective of this study was to determine whether patients with putative late-onset Lyme arthritis based upon synovial fluid Borrelia burgdorferi IgM and IgG immunoblot testing offered by commercial laboratories satisfied conventional criteria for the diagnosis of Lyme arthritis. Secondary objectives included assessing the prior duration and responsiveness of associated antibiotic therapy. We conducted a retrospective analysis of 11 patients referred to an academic medical center infectious disease clinic during the years 2007 to 2009 with a diagnosis of Lyme disease based upon previously obtained synovial fluid B. burgdorferi immunoblot testing. Ten of the 11 (91%) patients with a diagnosis of late-onset Lyme arthritis based upon interpretation of synovial fluid B. burgdorferi immunoblot testing were seronegative and did not satisfy published criteria for the diagnosis of late-onset Lyme arthritis. None of the 10 patients had a clinical response to previously received antibiotics despite an average course of 72 days. Diagnosis of Lyme arthritis should not be based on synovial fluid B. burgdorferi immunoblot testing. This unvalidated test does not appear useful for the diagnosis of Lyme disease, and this study reinforces the longstanding recommendation to use B. burgdorferi immunoblot testing only on serum samples and not other body fluids. Erroneous interpretations of “positive” synovial fluid immunoblots may lead to inappropriate antibiotic courses and delays in diagnosis of other joint diseases.  相似文献   

11.
This study was designed to improve the recovery of Borrelia burgdorferi from blood. With the techniques used, B. burgdorferi could be recovered from the blood of approximately 25% of patients with early Lyme disease associated with erythema migrans. Serum was a better source of culture material than whole blood. The volume of blood cultured correlated directly with yield, particularly for patients with a single erythema migrans lesion.  相似文献   

12.
Skin biopsies of 36 patients with erythema migrans and acrodermatitis chronica atrophicans (ACA) before therapy and those of 8 patients after therapy were examined for Borrelia burgdorferi DNA by PCR. Skin biopsies of 27 patients with dermatological diseases other than Lyme borreliosis and those of 10 healthy persons were examined as controls. Two different primer sets targeting 23S rRNA (PCR I) and 66-kDa protein (PCR II) genes were used. PCR was performed with freshly frozen tissue (FFT) and paraffin-embedded tissue (PET). For FFT specimens of erythema migrans, 73% were positive by PCR I, 79% were positive by PCR II, and 88% were positive by combining PCR I and II. For PET specimens, PCR was less sensitive (PCR I, 44%; PCR II, 52%). For FFT specimens of ACA, PCR I was positive for two of five patients and PCR II was positive for four of five patients. B. burgdorferi was cultured from 79% of the erythema migrans specimens but not from any of the ACA lesions. Elevated B. burgdorferi antibodies were detected in sera of 74% of erythema migrans patients and 100% of ACA patients. All urine samples were negative by PCR II, whereas PCR I was positive for 27%. However, hybridization of these amplicons was negative. Sequencing of three amplicons identified nonborrelial DNA. In conclusion, urine PCR is not suitable for the diagnosis of skin borreliosis. A combination of two different primer sets achieves high sensitivity with skin biopsies. In early erythema migrans infection, culture and PCR are more sensitive than serology.  相似文献   

13.
A Borrelia burgdorferi chromosomal gene encodes a 30-kDa antigen (P30) that has considerable homology with periplasmic substrate-binding proteins of Gram-negative bacteria, and is recognized by antibodies in sera from a subset of patients with Lyme disease and from B. burgdorferi-infected mice. The p30 gene is 801 nucleotides in length and P30 contains 267 amino acids, with predicted molecular mass of 30 kDa. The P30 amino acid region 36–258 has homology to conserved domains of the oligopeptide permease A of Gram-negative bacteria. Immunofluorescence studies using murine anti-P30 serum suggest that P30 is on the outer surface of B. burgdorferi. P30 expression could be detected in representatives of all 3 subspecies of B. burgdorferi sensu lato, but not in all of the tested strains. Antibodies to P30 were detected in sera of 18 out of 82 patients (22%) with Lyme disease, including individuals with early- or late-stage infection. Although antibodies to P30 are present in the sera of C3H/HeN mice infected with B. burgdorferi for at least 90 days, immunization with recombinant P30 does not protect mice from infection. We conclude that P30 is a putative substrate-binding protein of B. burgdorferi and is immunologically recognized in human and murine Lyme borreliosis.  相似文献   

14.
Lyme disease spirochetes of the genospecies Borrelia burgdorferi sensu lato were identified and characterized for the first time in Taiwan. Seven isolates, designated TWKM1 to TWKM7, were purified from the ear tissues of three species of rodents captured from seven localities of Taiwan. The immunological characteristics of these Taiwan isolates were compared with those of other genospecies of Lyme disease spirochetes by analyzing the protein profiles and reactivities with B. burgdorferi-specific monoclonal antibodies (MAbs). The genospecies of these Taiwan isolates were also identified by the similarities in their plasmid profiles and differential reactivities with genospecies-specific PCR primers. Although two distinct protein profiles were observed among the seven Taiwan isolates, the MAb reactivities against the outer surface proteins of B. burgdorferi of all of these isolates were consistent with those of B. burgdorferi sensu lato. The similarities of the plasmid profiles also confirmed the identities of these Taiwan isolates. PCR analysis indicated that all of these Taiwan isolates were genetically related to the genospecies B. burgdorferi sensu stricto. These results demonstrate the first identification of Lyme disease spirochetes in Taiwan and also highlight the increasing demand for defining the reservoirs and vector ticks of B. burgdorferi. A serosurvey for Lyme disease infection in the human population of Taiwan may also be required.  相似文献   

15.
In an effort to implicate immune responses to specific Borrelia burgdorferi proteins that may have a role in chronic Lyme arthritis, we studied the natural history of the antibody response to B. burgdorferi in serial serum samples from 25 patients monitored throughout the course of Lyme disease. In these patients, the immunoglobulin G (IgM) and IgG antibody responses to 10 recombinant B. burgdorferi proteins, determined during early infection, early arthritis, and maximal arthritis, were correlated with the severity and duration of maximal arthritis. The earliest responses were usually to outer surface protein C (OspC), P35, P37, and P41; reactivity with OspE, OspF, P39, and P93 often developed weeks later; and months to years later, 64% of patients had responses to OspA and OspB. During early infection and early arthritis, the levels of IgG antibody to P35 correlated inversely with the subsequent severity or duration of maximal arthritis. In contrast, during periods of maximal arthritis, the levels of IgG antibody to OspA and OspB, especially to a C-terminal epitope of OspA, correlated directly with the severity and duration of arthritis. Thus, the higher the IgG antibody response to P35 earlier in the infection, the milder and briefer the subsequent arthritis, whereas during maximal arthritis, the higher the IgG response to OspA and OspB, the more severe and prolonged the arthritis.  相似文献   

16.
The outer surface protein C (OspC) and the internal 14-kDa flagellin fragment of strain GeHo of Borrelia burgdorferi sensu stricto were expressed as recombinant proteins in Escherichia coli and were purified for use in an immunoglobulin M (IgM) enzyme-linked immunosorbent assay (OspC–14-kDa antigen ELISA). No hint at disturbing protein-protein interferences, which might influence the availability of immunoreactive epitopes, was found when the recombinant antigens were combined in the ELISA. The recombinant OspC–14-kDa antigen ELISA was compared to a commercial IgM ELISA that used a detergent cell extract from Borrelia afzelii PKo as the antigen. According to the manufacturer’s information, the cell extract contains, in addition to other antigens, the following diagnostically relevant antigens: the 100-kDa (synonyms, 93- and 83-kDa antigens), 41-kDa, OspA, OspC, and 17-kDa antigens. The specificity was adjusted to 95% on the basis of data for 154 healthy controls. On testing of 104 serum samples from patients with erythema migrans (EM), the sensitivity of the recombinant ELISA (46%) for IgM antibodies was similar to that of the commercial ELISA (45%). However, when 42 serum samples from patients with polyclonal B-cell stimulation due to an Epstein-Barr virus infection were tested, false-positive reactions were significantly less frequent in the recombinant ELISA (10%) than in the whole-cell-extract ELISA (23%). OspC displays sequence heterogeneity of up to 40% according to the genomospecies. However, when the reactions of serum specimens from controls and EM patients with OspC from representative strains of B. burgdorferi sensu stricto (strain GeHo) and B. afzelii (strain PKo) were compared in an ELISA, almost no differences in specificity and sensitivity were seen. This demonstrates that the sera predominantly recognize the common epitopes of OspC tested in this study. In conclusion, we suggest that the OspC–14-kDa antigens ELISA is a suitable test for the detection of an IgM response in early Lyme disease.  相似文献   

17.
Murine monoclonal antibodies directed against proteins of Borrelia burgdorferi B31 (low passage) were generated by the administration of antigen via the bite of borrelia-infected ticks. This strategy was employed as a mechanism to create antibodies against antigens presented by the natural route of tick transmission versus those presented by inoculation with cultured borreliae. One of the resultant antibodies reacted with a 17-kDa antigen from cultured B. burgdorferi, as seen by immunoblot analysis. This antibody was used to screen a B. burgdorferi genomic DNA lambda vector expression library, and an immunoreactive clone was isolated. DNA sequence analysis of this clone, containing a 2.7-kb insert, revealed several open reading frames. These open reading frames were found to be homologs of genes discovered as a multicopy gene family in the 297 strain of B. burgdorferi by Porcella et al. (S. F. Porcella, T. G. Popova, D. R. Akins, M. Li, J. D. Radolf, and M. V. Norgard, J. Bacteriol. 178:3293–3307, 1996). By selectively subcloning genes found in this insert into an Escherichia coli plasmid expression vector, the observation was made that the rev gene product was the protein reactive with the 17-kDa-specific monoclonal antibody. The rev gene product was found to be expressed in low-passage, but not in high-passage, B. burgdorferi B31. Correspondingly, the rev gene was not present in strain B31 genomic DNA from cultures that had been passaged >50 times. Serum samples from Lyme disease patients demonstrated an antibody response against the Rev protein. The generation of an anti-Rev response in Lyme disease patients, and in mice by tick bite inoculation, provides evidence that the Rev protein is expressed and immunogenic during the course of natural transmission and infection.  相似文献   

18.
The cellular attachment and entry of pathogenic microorganisms can be facilitated by the expression of microbial adhesins that bind fibronectin. We have previously described a Borrelia burgdorferi gene, bbk32, that encodes a 47-kDa fibronectin-binding protein. In this study, the ligand-binding region of BBK32 from B. burgdorferi isolate B31 was localized to 32 amino acids. The bbk32 gene was cloned and sequenced from three additional B. burgdorferi isolates representing different genospecies of B. burgdorferi sensu lato. All four bbk32 genes encoded proteins having fibronectin-binding activity when expressed in Escherichia coli, and the deduced proteins shared 81 to 91% amino acid sequence identity within the ligand-binding domain. In addition, the ligand-binding region of BBK32 was found to share sequence homology with a fibronectin-binding peptide defined for protein F1 of Streptococcus pyogenes. The structural and functional similarity between the ligand-binding region of BBK32 and the UR region of protein F1 suggests a common mechanism of cellular adhesion and entry for B. burgdorferi and S. pyogenes.  相似文献   

19.
There is currently a need for improved serological tests for the diagnosis and monitoring of Lyme disease, an infection caused by Borrelia burgdorferi. In the present study, we evaluated luciferase immunoprecipitation systems (LIPSs) for use for profiling of the antibody responses to a panel of B. burgdorferi proteins for the diagnosis of Lyme disease. Initially, serum samples from a cohort of patients and controls (n = 46) were used for training and were profiled by the use of 15 different B. burgdorferi antigen constructs. For the patient sera, the antibody responses to several B. burgdorferi antigens, including VlsE, flagellin (FlaB), BmpA, DbpA, and DbpB, indicated that the antigens had high levels of immunoreactivity. However, the best diagnostic performance was achieved with a synthetic protein, designated VOVO, consisting of a repeated antigenic peptide sequence, VlsE-OspC-VlsE-OspC, Analysis of an independent set of serum samples (n = 139) used for validation showed that the VOVO LIPS test had 98% sensitivity (95% confidence interval [CI], 93% to 100%; P < 0.0001) and 100% specificity (95% CI, 94% to 100%; P < 0.0001). Similarly, the C6 peptide enzyme-linked immunosorbent assay (ELISA) also had 98% sensitivity (95% CI, 93% to 100%; P < 0.0001) and 98% specificity (95% CI, 90% to 100%; P < 0.0001). Receiver operating characteristic analysis revealed that the rates of detection of Lyme disease by the LIPS test and the C6 ELISA were not statistically different. However, the VOVO LIPS test displayed a wide dynamic range of antibody detection spanning over 10,000-fold without the need for serum dilution. These results suggest that screening by the LIPS test with VOVO and other B. burgdorferi antigens offers an efficient quantitative approach for evaluation of the antibody responses in patients with Lyme disease.Lyme disease is caused by the spirochete Borrelia burgdorferi, which is transmitted by the bite of a deer tick (Ixodes sp.) (24, 29). One of the first signs of B. burgdorferi infection is erythema migrans (EM), a skin lesion that appears within a few days at the site of the bite. Subsequently, the spirochetes can disseminate into the bloodstream and then to various target tissues and cause neurological, cardiac, and rheumatological complications (24, 29). Some individuals develop post-Lyme disease syndrome (PLDS) and have lingering symptoms, such as fatigue, musculoskeletal pain, and cognitive impairment (22, 24, 29).Currently, the Centers for Diseases Control and Prevention (CDC) recommends the use of a two-tier approach for serological testing for Lyme disease (1). The two-tier approach includes an initial enzyme immunoassay or immunofluorescence assay, followed by Western blotting for positive or borderline samples. The limitations of the two-tier testing approach include a low sensitivity in the very early stages of the B. burgdorferi infection, subjectivity in the interpretation of the Western blot bands, and the significant amount of time and the significant cost for the process. Moreover, current antibody tests do not distinguish between active and prior infection. Therefore, there is a need for sensitive and specific tests for the identification and monitoring of individuals with Lyme disease.Several tests, which employ recombinant spirochetal proteins, have shown promising results (15, 17, 21). A simple enzyme-linked immunosorbent assay (ELISA) with the C6 peptide, a 26-mer synthetic peptide analogue of the invariable region 6 (IR6) of the VlsE variable major protein-like sequence has been shown to be highly sensitive and specific for the detection of B. burgdorferi infection (2, 14, 19, 20). While there are intriguing data on the use of the level of antibody against C6 to monitor the response to antibiotic therapy in patients with Lyme disease (16, 18, 26, 27), those studies are hampered by the limited dynamic range of solid-phase immunoassays and the need to perform time-consuming and cumbersome serum dilutions to obtain values in the linear range. A test capable of monitoring the response to antibiotic therapy and distinguishing between active and prior infection would be a major advance in the field.Luciferase immunoprecipitation systems (LIPSs) provide a powerful new approach to serological testing for antibodies associated with many different human pathogens (4). The LIPS is based on the fusion of protein antigens to a light-emitting enzyme reporter, Renilla luciferase (Ruc), and then the use of these antigen fusions in immunoprecipitation assays with serum samples and protein A/G beads. After the beads are washed, the level of light production is measured, yielding highly quantitative antibody titers. Due to the liquid-phase nature of the LIPS assay and the highly linear light output of the luciferase reporter, some antibodies can be detected without serum dilution over a dynamic range of detection often spanning 7 orders of magnitude. While the LIPS test has already been shown to have a high degree of sensitivity for the detection of fungal (5), helminthic (28), filarial (10, 12), and a variety of viral (3, 5-9, 11) infectious agents, its utility for the accurate evaluation of humoral responses to bacterial pathogen antigens has not been assessed. In this report, we describe the initial development and evaluation of LIPS tests for the serological diagnosis of Lyme disease.  相似文献   

20.
The ability of a Lyme borreliosis vaccine to induce and maintain sustained levels of borreliacidal antibody is necessary for prolonged protection against infection with Borrelia burgdorferi. Vaccination against infection with B. burgdorferi could be improved by determining the mechanism(s) that influences the production of protective borreliacidal antibody. Borreliacidal antibody was inhibited in cultures of lymph node cells obtained from C3H/HeJ mice vaccinated with formalin-inactivated B. burgdorferi and cultured with macrophages and B. burgdorferi and treated with recombinant gamma interferon (rIFN-γ). The suppression of production of outer surface protein A (OspA) borreliacidal antibody by rIFN-γ was not affected by the time of treatment. In addition, treatment with rIFN-γ inhibited the production of other anti-B. burgdorferi antibodies. By contrast, treatment of cultures of immune lymph node cells with anti-IFN-γ marginally increased the production of borreliacidal antibody and enhanced the production of other antibodies directed against B. burgdorferi. These results show that IFN-γ does not play a major role in the production of anti-OspA borreliacidal antibody. Additional studies are needed to determine which cytokine(s) will enhance production of borreliacidal antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号