首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of DARPP-32, a dopamine and cAMP-regulated phosphoprotein, has been studied in monkey brain by immunocytochemistry. This study indicates that DARPP-32 is enriched in neurons in regions receiving a dense dopamine input from the substantia nigra and ventral tegmental area. Thus, the majority of somata in the anterior olfactory area, nucleus accumbens, caudate nucleus, and putamen are immunoreactive for DARPP-32. In the caudate nucleus, immunoreactive spines receive asymmetric contacts from unlabeled axon terminals. Immunoreactive somata have diameters of 10-15 microns. In regions known to receive projections from these nuclei, immunoreactivity is confined to small puncta that represent axons and axon terminals. Regions in which immunoreactivity is present in puncta include the ventral pallidum, globus pallidus, and substantia nigra pars reticulata. Dopaminergic neurons themselves are not immunoreactive. Neurons containing moderate to weak immunoreactivity for DARPP-32 are observed in portions of the cerebral cortex, particularly in the temporal cortex (layer VI). DARPP-32-positive neurons are also present in the cerebellum, in the medial habenula, and in portions of the bed nucleus of the stria terminalis and amygdaloid complex. DARPP-32 immunoreactivity is also present in astrocytes in the subcortical white matter and in tanycytes in the arcuate nucleus and median eminence. DARPP-32 may be an effective marker for dopaminoceptive neurons in which the actions of dopamine on the D-1 dopamine receptor are mediated through cAMP and its associated protein kinase.  相似文献   

2.
Subpallial structures are highly conserved across the different vertebrate species. They are instrumental in the neural processing relevant to adaptive learning, decision making, motivation and behavioural strategies. Of the striatal regions, our attention has been focussed on the medial and ventral striatum (MSt), now parcellated into subregions, and also including the nucleus accumbens (Ac). Similar to mammals, the avian Ac and MSt receive glutamatergic input from the pallium and dopaminergic input from the substantia nigra and ventral tegmental area. Coincidence between glutamatergic and dopaminergic synaptic activities in the ventral/medial striatum, including the Ac, is required for memory to be formed for a given pairing of stimulus and a hedonic quality or behavioural salience. The underlying mechanism involves the activation of NMDA and dopaminergic receptors, as well as the phosphorylation of dopamine-cAMP-regulated phosphoprotein (DARPP-32). Using quantitative electron microscopy of chick specimens double-labelled against glutamate and DARPP-32 we observed direct synaptic connections between glutamate immunoreactive axon terminals and DARPP-32 labelled dendrites in the MSt and also in the posterolateral telencephalon (nidopallium caudolaterale, a prefrontal cortex equivalent region) and the hippocampus. Glutamate immunoreactive axons synapsed with both DARPP-32 immunoreactive (DARPP-32+) and DARPP-32 negative (DARPP-32−) dendrites, forming asymmetrical junctions, in all brain regions observed. The existence of direct synaptic contacts between excitatory amino acid containing axon terminals and DARPP-32 containing dopaminoceptive neurons of the chicken MSt underlines the functional homology with mammalian striatal systems.  相似文献   

3.
The ontogeny of a dopamine and cyclic adenosine-3':5'-monophosphate-regulated phosphoprotein with an apparent molecular weight of 32 kilodaltons (DARPP-32) has been studied in the central nervous system of the prenatal, newborn and adult mouse. DARPP-32-immunoreactive somata were first identified at day 12 of gestation, in the primary olfactory cortex and in the ventrolateral medulla oblongata. On day 14 of gestation, neurons containing DARPP-32-like immunoreactivity became apparent in the caudate nucleus, olfactory tubercle, nucleus accumbens, frontoparietal cortex and the ventral medulla oblongata. During the period up to and including birth, the number of cell bodies and fibres in all these areas increased markedly. In addition, DARPP-32-positive neurons became visible in the olfactory nucleus, the arcuate nucleus, and DARPP-32-positive cells appeared in the choroid plexus of the lateral, third and fourth ventricles. DARPP-32-containing fibres could be seen in the median eminence, the ventrolateral thalamus, and in the striatonigral projection, descending in the internal capsule to ramify extensively in the substantia nigra. Only in the cerebellum and suprachiasmatic nucleus did the development of DARPP-32-like immunoreactivity occur postnatally. The development of tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis, was simultaneously examined. The arrival of the tyrosine hydroxylase-containing projection to the caudate nucleus, the olfactory tubercle and the nucleus accumbens apparently occurred 1-2 days after the appearance of DARPP-32-immunoreactive cells within these regions. In the ventral and ventrolateral medulla oblongata, and the primary olfactory cortex, no tyrosine hydroxylase innervation was seen near the DARPP-32-positive neurons at days 12-14. The organization of the DARPP-32-containing somata of the caudate nucleus into aggregates of 5-15 neurons was partly paralleled spatially by an increased density of tyrosine hydroxylase-positive fibres. Many DARPP-32-immunoreactive cells in the immature mouse brain are present by the day of birth, particularly in the areas known to receive a dopaminergic innervation. The development of these presumptive dopaminoceptive DARPP-32-containing neurons does not seem to be dependent on the presence, however, of a dopaminergic input, since in all regions examined DARPP-32-LI preceded the appearance of tyrosine hydroxylase-like immunoreactivity by at least 1-2 days. Indeed, the results suggest that the existence of DARPP-32-like immunoreactivity in cell bodies and dendrites may be a pre-requisite for the formation or subsequent stabilization of dopaminergic synapses.  相似文献   

4.
To assess the relationship between dopaminergic neuronal structures and dopaminoceptive structures in a reptile, single and double immunohistochemical procedures with antibodies directed against DARPP-32 (dopamine- and cAMP-regulated phosphoprotein with an apparent molecular mass of 32,000 daltons),a phosphoprotein related to the dopamine D(1)-receptor, and tyrosine hydroxylase (TH) were applied to the brain of the lizard, Gekko gecko. The DARPP-32 antibody yielded a well-differentiated pattern of staining in the brain of Gekko. In general, areas that are densely innervated by TH-immunoreactive, putative dopaminergic fibers, such as the nucleus accumbens, striatum, dorsal ventricular ridge, and amygdaloid complex, display strong immunoreactivity for DARPP-32 in somata and neuropil. Distinct cellular DARPP-32 immunoreactivity was also found in the lateral cortex, ventral hypothalamus, habenula, central nucleus of the torus semicircularis, midbrain tectum, parvicellular isthmic nucleus, raphe nuclei, caudal rhombencephalic tegmentum, and spinal cord. Striatal projections to the midbrain and their target, i.e., the substantia nigra pars reticulata, were found to be strongly immunoreactive. Double immunofluorescence staining revealed that dopaminergic cells generally do not stain for DARPP-32, except for cells in the ventral hypothalamus and at caudal rhombencephalic levels. In conclusion, the distribution of DARPP-32 in the brain of the lizard Gekko gecko largely resembles the pattern observed in birds and mammals, at least as far as basal ganglia structures are concerned. On the other hand, there are several specific features of DARPP-32 distribution in the gekkonid brain that deserve further attention, such as cellular colocalization of DARPP-32 and TH immunoreactivity in hypothalamic and caudal rhombencephalic areas, and cellular DARPP-32 immunoreactivity in the tectum and central nucleus of the torus semicircularis of the midbrain, the superior and inferior raphe nuclei, and the spinal cord.  相似文献   

5.
An antibody to tyrosine hydroxylase has been used in a correlated light and electron microscopic study to characterize dopaminergic neurons and synaptic junctions in three-dimensional reaggregate cell culture. Dissociated fetal mesencephalic cells containing dopamine neurons were coaggregated with dissociated fetal striatal cells in rotatory culture for 21 days. Sections of the coaggregates were stained by the peroxidase anti-peroxidase technique to reveal tyrosine hydroxylase-immunoreactive structures. Clusters of immunoreactive perikarya as well as dendrites and axons were observed. Immunolabeled perikarya were round or oval and approximately 20 microns in diameter. Boutons immunoreactive for tyrosine hydroxylase formed symmetric synapses, primarily with unlabeled dendritic shafts. Symmetric membrane specializations were also observed between tyrosine hydroxylase-positive boutons and unlabeled dendritic spines as well as with the perikaryon of an unlabeled medium-size neuron possessing a slightly indented nucleus. To characterize the neurochemical nature of the neurons postsynaptic to tyrosine hydroxylase-positive boutons in the reaggregates, an antibody against DARPP-32 (a dopamine and adenosine 3':5'-monophosphate-regulated phosphoprotein) and an antibody against tyrosine hydroxylase were employed to visualize striatal dopaminoceptive neurons and dopaminergic structures, respectively, in the same section. Examination of reaggregate sections at the light microscopic level demonstrated that DARPP-32-immunoreactive cells were distributed into discrete clusters that were associated with patches of tyrosine hydroxylase-positive axonal varicosities. Ultrastructural analysis of tyrosine hydroxylase-positive boutons in such clusters revealed that dopaminergic axons synaptically contacted DARPP-32-immunoreactive neurons as well as unlabeled neuronal structures.  相似文献   

6.
Kozicz T 《Brain research》2003,975(1-2):237-243
The bed nuclei of the stria terminalis (BST) and the central nucleus of the amygdala (CeA) are highly heterogeneous structures, which play a central role in the modulation and/or regulation of stress responses. The oval nucleus of the anterior division of BST (BSTov) and the CeA exhibit several dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32) immunoreactive (ir) neurons. It has been demonstrated that DARPP-32, if phosphorylated, can inhibit protein-phophatase-1, thereby controlling other neuropeptide/neurotransmitter actions. In addition, a dense network of vasoactive polypeptide (VIP) immunoreactive axon terminals was also observed here. VIP, via its receptors, increases intracellular cAMP levels, therefore it can play an important role in regulating the phosphorylation of DARPP-32. Since the localization of DARPP-32- and VIP-ir neuronal structures overlaps in the BSTov and CeA, the aim of this study was to investigate the possible synaptic innervation of DARPP-32-ir neurons by fiber terminals immunopositive for VIP, to provide anatomical evidence for the interaction between a neuropeptide and a phosphoprotein. In summary, this study for the first time demonstrated that VIP-ir axon terminals innervate DARPP-32 perikarya and dendrites in the BSTov and CeA, which play an important role in the central autonomic regulation of stress responses. In addition, morphological evidence for possible interaction between neuropeptides and phosphoproteins was also provided at the electron microscopic level.  相似文献   

7.
Wang WW  Cao R  Rao ZR  Chen LW 《Brain research》2004,998(2):174-183
Dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein, 32 kDa (DARPP-32) is a key element of dopamine/D1/DARPP-32/protein phosphatase-1 (PP-1) signaling cascades of mammalian brain. We are interested in the expression patterns of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in DARPP-32-containing neurons, which may constitute morphological basis for interaction between dopamine and ionotropic glutamate receptors in dopaminoceptive cells. Double immunofluorescence was performed to visualize neurons showing coexpression of DARPP-32 with NMDA or AMPA receptor subunits (i.e., NR1, NR2a/b, glutamate receptor subunit 1 [GluR1], GluR2/3, and GluR4) in the forebrains of rats. Distribution of DARPP-32-positive neurons completely or partially overlapped with that of NMDA receptor- or AMPA receptor-immunoreactive ones in the frontal and parietal cortex, hippocampus and neostriatum, and neurons double-labeled with DARPP-32/NR1, DARPP-32/NR2a/b, DARPP-32/GluR1, DARPP-32/GluR2/3, or DARPP-32/GluR4 immunoreactivity were numerously observed. Semiquantification analysis indicated that most of DARPP-32-containing neurons (86-98%) expressed NR1, NR2a/b and GluR2/3, while less of them (14-90%) expressed GluR1 and GluR4. Although high rates (90-98%) of DARPP-32-positive cells expressed NMDA receptors in all regions above, variant percentages of them expressing AMPA receptor subunits were observed among the cortex (54-90%), hippocampus (59-97%) and neostriatum (14-97%). The study presents differential expression patterns of NMDA and AMPA receptors in DARPP-32-postive neurons in these forebrain regions. Taken together with previous reports, the present data suggest that interaction between dopamine and glutamate receptors may occur in the dopaminoceptive neurons with distinct receptor compositions and may be involved in modulating neuronal properties and excitotoxicity in mammalian forebrain.  相似文献   

8.
Distribution and cellular localization of DARPP-32 mRNA in rat brain   总被引:3,自引:0,他引:3  
In situ hybridization histochemistry has been used to determine the regional distribution and cellular localization of DARPP-32 mRNA in the rat brain. Results support the concept that DARPP-32 is present primarily in cells expressing the dopamine D1 subtype receptor, and that DARPP-32 is not synthesized in dopamine-containing cells. Strongly labelled neuronal cell bodies were found in the caudate nucleus, nucleus accumbens, olfactory tubercle, parts of the bed nucleus of the stria terminalis, and the amygdaloid complex. In addition large amounts of DARPP-32 mRNA were visualized in the medial habenula and around the third ventricle, in ependymal cells and tanycytes, and in the cerebellar Purkinje cells. A less pronounced activity was seen in layers II-III and VI throughout the cerebral cortex. The present studies together with previous biochemical and immunocytochemical studies demonstrate that DARPP-32 gene expression is greatest primarily in D1 dopaminoceptive cells, although there are exceptions. In situ hybridization may thus be used to quantitate regulation of DARPP-32 mRNA in discrete brain regions.  相似文献   

9.
Somatostatin neuronal perikarya and their processes, presumably dendrites, in the periventricular nucleus of the rat hypothalamus and terminals in the median eminence were observed by electron microscopic immunohistochemistry. Neuronal perikarya and processes contained immunoreactive dense granules (100-120 nm in diameter) and other cellular components such as polysomes, rER membranes occasionally showed high electron density. Few axo-somatic terminals were found on the somatostatin neurons, but we could detect a number of preterminal axons on immunoreactive processes, presumably dendrites. Therefore, we considered that somatostatin neurons receive mainly neuronal input through axo-dendritic synapses rather than through axo-somatic ones. In the somatostatin terminals in the external layer of the median eminence immunoreactivity was completely restricted on the granules.  相似文献   

10.
Physiological and pharmacological studies indicate that descending projections from the prefrontal cortex modulate dopaminergic transmission in the nucleus accumbens septi and ventral tegmental area. We investigated the ultrastructural bases for these interactions in rat by examining the synaptic associations between prefrontal cortical terminals labeled with anterograde markers (lesion-induced degeneration or transport of Phaseolus vulgaris leucoagglutinin; PHA-L) and neuronal processes containing immunoreactivity for the catecholamine synthesizing enzyme, tyrosine hydroxylase. Prefrontal cortical terminals in the nucleus accumbens and ventral tegmental area contained clear, round vesicles and formed primarily asymmetric synapses on spines or small dendrites. In the ventral tegmental area, these terminals also formed asymmetric synapses on large dendrites and a few symmetric axodendritic synapses. In the nucleus accumbens septi, degenerating prefrontal cortical terminals synapsed on spiny dendrites which received convergent input from terminals containing peroxidase immunoreactivity for tyrosine hydroxylase, or from unlabeled terminals. In single sections, some tyrosine hydroxylase-labeled terminals formed thin and punctate symmetric synapses with dendritic shafts, or the heads and necks of spines. Close appositions, but not axo-axonic synapses, were frequently observed between degenerating prefrontal cortical afferents and tyrosine hydroxylase-labeled or unlabeled terminals. In the ventral tegmental area, prefrontal cortical terminals labeled with immunoperoxidase for PHA-L were in synaptic contact with dendrites containing immunogold reaction product for tyrosine hydroxylase, or with unlabeled dendrites. These results suggest that: (1) catecholaminergic (mainly dopaminergic) and prefrontal cortical terminals in the nucleus accumbens septi dually synapse on common spiny neurons; and (2) dopaminergic neurons in the ventral tegmental area receive monosynaptic input from prefrontal cortical afferents. This study provides the first ultrastructural basis for multiple sites of cellular interaction between prefrontal cortical efferents and mesolimbic dopaminergic neurons.  相似文献   

11.
Mesocorticolimbic projections originating from dopaminergic and GABAergic neurons in the ventral tegmental area (VTA) play a critical role in opiate addiction. Activation of mu-opioid receptors (MOR), which are located mainly within inhibitory neurons in the VTA, results in enhanced dopaminergic transmission in target regions, including the medial prefrontal cortex (mPFC). We combined retrograde tract-tracing and electron microscopic immunocytochemistry to determine if neurons in the VTA that project to the mPFC contain MOR or receive input from MOR-containing terminals. Rats received unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the mPFC. Tissue sections throughout the VTA were then processed for electron microscopic examination of FG and MOR. Immunoperoxidase labeling for FG was present in VTA cell bodies that contained immunogold-silver particles for MOR that often were contacted by profiles exclusively immunoreactive for MOR, including somata and axon terminals. The majority of dually labeled profiles were dendrites that received convergent input from unlabeled axon terminals forming either symmetric or asymmetric type synapses. Within retrogradely labeled cell bodies and proximal dendrites, MOR immunoreactivity was mainly sequestered within the cytoplasm. In contrast, distal retrogradely labeled dendrites contained MOR gold particles located along the plasma membranes. These data suggest that opiates active at MOR in the VTA modulate cortical activity through 1) presynaptic actions on MOR in terminals contacting mesocortical cell bodies, and 2) direct activation of MOR in distal dendrites of projection neurons.  相似文献   

12.
DARPP-32, a dopamine (DA) and cAMP-regulated phosphoprotein, is associated with dopaminoceptive neurons bearing D-1 receptors in the basal ganglia. The present study addressed the distribution of DARPP-32 in the primate cerebral cortex and its putative association with D-1 receptor laden cells in this structure. DARPP-32-like immunoreactive (LIR) neurons were examined in the cerebral cortex of 3-day-old (P3), 6-week-old (P42), and adult rhesus monkeys. In the younger cases, a large number of DARPP-32 positive neurons, with the morphological characteristics of pyramidal cells, were observed throughout the cortex, in layers V-VI, and to a lesser extent in layer II and uppermost layer III. In the parietal, insular, temporal, and occipital cortices, DARPP-32 positive neurons were arranged in a monolayer in layer Va. They were often clustered in small groups with a bundling of their dendrites. In the primary motor cortex, Betz cells were among the labeled population. In the association and somatosensory areas, the basal dendrites of DARPP-32 positive neurons and the prominent tufting of their apical dendrites in layer I contributed to an essential bilaminar pattern resembling the distribution reported for DA afferents and D-1 receptors in these areas. The prominence and widespread distribution of DARPP-32 positive neurons in layer V may be a specialization of primate cortex since such cells are found only in restricted locations in rodents. The literature on the connections of the cerebral cortex suggests that a large number of the DARPP-32 positive neurons in layer VI and perhaps even in layer Va may be corticothalamic neurons. An important developmental observation was the presence of DARPP-32-LIR neurons in the white matter. They were prominent in the neonates but could not be seen in the adult. Their location as well as their type and shape were reminiscent of interstitial neurons. In the adult monkeys, the distribution of DARPP-32-LIR neurons was more circumscribed: they were numerous in the ventral temporal gyrus and in areas related to the limbic system: caudal orbitofrontal cortex, insula, temporal pole, entorhinal, and anterior cingulate cortex. Weak labeling was detected in layer Va of the superior temporal and parietal cortex, in some prefrontal areas (10, 13, and medial 9), and in the premotor and supplementary motor cortex; in adults, unlike neonates, few DARPP-32-LIR neurons were present in the dorsolateral prefrontal cortex, the primary motor or the primary visual or prestriate cortices.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Nerve growth factor receptor immunoreactivity in the septohippocampal pathway of adult Fischer 344 rats was assessed at the light and electron microscope level. The medial septum possesses immunoreactive somata, dendrites, axons, and terminals. Immunostained somata are either bipolar or multipolar in appearance. Dendritic processes of immunoreactive septal neurons are categorized into two groups: proximal dendrites with smooth plasma membranes and distal dendrites with numerous swellings. Immunoreactive axons within the septum are long and slender and do not possess varicosities. At the electron microscope level, immunoreactivity is confined predominantly to the plasma membrane of cell bodies and dendrites of septal neurons, as well as to the plasma membrane of axons and terminals. Both immunoreactive and nonimmunoreactive terminals that contain clear, spherical vesicles are observed contacting immunoreactive dendrites and somata. Although accumulations of vesicles are evident within these terminals at sites of contact, distinct synaptic specializations are difficult to distinguish due to the localization of reaction product on the apposing plasma membranes. Axons possessing immunoreactivity are also observed in the fimbria-fornix pathway, a major source of afferent inputs to the hippocampus. Immunoreactive axons and terminals are topographically organized in the hippocampal dentate gyrus. The density of immunostained axons and terminals is highest immediately adjacent to the granular layer. In comparison, a moderate density of immunoreactive axons is found in the outer molecular layer and a weak density in the inner molecular, granular, and polymorphic layers. Immunoreactivity is found on the plasma membrane of small unmyelinated axons and terminals aggregated into clusters throughout the dentate gyrus. Definitive examples of axosomatic and axodendritic synapses possessing immunoreactivity presynaptically are not observed. Immunoreactive profiles within the medial septum and hippocampus also circumfuse a small number of intracerebral vessels. Ultrastructural examination reveals that immunoreactivity is present within a narrowed extension of the subarachnoid space and appears to be closely associated with the plasma membrane of leptomeningeal cell processes. The present study provides direct evidence for the cellular distribution of nerve growth factor receptor immunoreactivity in the medial septum and dentate gyrus in the adult rat and offers new insight into the ultrastructural localization of nerve growth factor receptor among septal cholinergic neurons and their efferent projections to the hippocampus.  相似文献   

14.
Cholinergic activation of dopaminergic neurons in the ventral tegmental area (VTA) is thought to play a major role in cognitive functions and reward. These dopaminergic neurons differentially project to cortical and limbic forebrain regions, where their terminals differ in levels of expression of the plasmalemmal dopamine transporter (DAT). This transporter selectively identifies dopaminergic neurons, whereas the vesicular acetylcholine transporter (VAchT) is present only in the neurons that store and release acetylcholine. We examined immunogold labeling for DAT and immunoperoxidase localization of VAchT antipeptide antisera in single sections of the rat VTA to determine whether dopaminergic somata and dendrites in this region differ in their levels of expression of DAT and/or input from cholinergic terminals. VAchT immunoreactivity was prominently localized to membranes of small synaptic vesicles in unmyelinated axons and axon terminals. VAchT-immunoreactive terminals formed almost exclusively asymmetric synapses with dendrites. Of 159 dendrites that were identified as cholinergic targets, 35% contained plasmalemmal DAT, and 65% were without detectable DAT immunoreactivity. The DAT-immunoreactive dendrites postsynaptic to VAchT-labeled terminals contained less than half the density of gold particles as seen in other dendrites receiving input only from unlabeled terminals. These results suggest selective targeting of cholinergic afferents in the VTA to non-dopaminergic neurons and a subpopulation of dopaminergic neurons that have a limited capacity for plasmalemmal reuptake of dopamine, a characteristic of those that project to the frontal cortex.  相似文献   

15.
The supramammillary nucleus projecting to widespread regions contains dopaminergic and non-dopaminergic neurons. The present study provided a comprehensive electron microscopic analysis of these dopaminergic and non-dopaminergic neurons in the supramammillary nucleus of the rat. The normal supramammillary nucleus was composed of round spindle-shaped, small and medium-sized neurons (12.7 × 8.0 μm, 78.0 μm2) containing a light oval nucleus with invaginated envelop, mitochondria, Golgi apparatus, lysosomes, less-developed rough endoplasmic reticulum, and no Nissl bodies, The majority of terminals (more than 70%) in the normal neuropil were small (diameter less than 1.0 μm) and contained round vesicles forming asymmetric synaptic contacts. The terminals often contained dense-cored vesicles. To determine the morphological features of dopaminergic neurons, we examined the ultrastructural localization of tyrosine hydroxylase (TH) immunoreactivity, which is the synthetic enzyme of dopamine, and compared TH-immunoreactive neurons to non-TH-immunoreactive neurons. Their shape and size were similar. The average number of axosomatic terminals in a sectional plane was 5.0 in TH-neurons and 2.4 in non-TH-neurons; the bouton covering ratio was 16.5% in the former and 8.6% in the latter. Both numbers were significantly larger in TH-neurons than in non-TH-neurons. Serial ultrathin sections of these neurons revealed that the average total number of axosomatic terminals was 55.7 in the TH-neuron and 28.4 in the non-TH-neuron. Characteristic lamellar bodies and subsurface cisternae were often present in TH neurons. There were no TH-labeled terminals. These results indicate that dopaminergic neurons receive more inputs than neurons containing other neurotransmitters. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Asphyxia was induced in male rat pups by performing a delayed cesarean section on pregnant Sprague-Dawley rats. Oxygen saturation and heart rate were recorded during induction of asphyxia. Animals were sacrificed at 3 weeks of age. Brain sections were stained for tyrosine-hydroxylase (TH), dopamine-and-cyclic-AMP-regulated-phosphoprotein-32 (DARPP-32) immunoreactivity (IR) and thionein. Increasing time of asphyxia caused a reduction in the number of nerve cell bodies in the CA1 and CA3 regions of the hippocampus reflecting neuronal death. Furthermore, asphyxia resulted in an increased number of TH-IR nerve cell bodies indicative of a proliferation of dopaminergic neurons in the zona compacta of the substantia nigra. Finally, a significant decrease in rearing was observed in asphyctic animals during the habituation phase, as well as following apomorphine-induced (1 mg/kg s.c.) postsynaptic dopamine receptor stimulation. On the other hand, the apomorphine-induced increase in locomotion was enhanced in asphyctic animals. The implications of these findings for hyperkinesia and attention deficits in disorders resulting from asphyxia are discussed.  相似文献   

17.
ARPP-21, a cAMP-regulated phosphoprotein, has been studied by immunocytochemistry to determine its cellular and regional distribution in rat brain. This study demonstrates that ARPP-21 immunoreactivity is present throughout the cytoplasm of immunoreactive neurons and that most of the immunoreactivity is associated with the basal ganglia. Within the caudatoputamen (CP), nucleus accumbens, olfactory tubercle, bed nucleus of the stria terminalis, and portions of the amygdaloid complex, ARPP-21 is present in neuronal somata and dendrites. In brain regions known to receive projections from these nuclei, immunoreactivity is present in puncta (presumed axons and axon terminals). These regions include the globus pallidus, ventral pallidum, entopeduncular nucleus, lateral preoptic area, and substantia nigra. Within the basal ganglia, ARPP-21 immunoreactivity is most intense in the olfactory tubercle, nucleus accumbens, medial portion of the CP, and the ventral retrochiasmatic pocket of the CP. These same areas comprise the limbic striatum, and ARPP-21 is the first substance found to be specifically enriched therein. The possibility is discussed that ARPP-21 mediates effects of multiple first messengers, including dopamine and vasoactive intestinal polypeptide, that act through cAMP.  相似文献   

18.
Previous studies demonstrated that chronic systemic exposure to the pesticide and mitochondrial toxin rotenone through jugular vein cannulation reproduced many features of Parkinson's disease (PD) in rats, including nigrostriatal dopaminergic degeneration and formation of alpha-synuclein-positive cytoplasmic inclusions in nigral neurons (R. Betarbet et al., 2000, Nat. Neurosci. 3, 1301-1306). Although novel and conceptually important, the rotenone model of PD suffered from being extremely labor-intensive. The current paper demonstrates that these same features of PD can be reproduced by chronic, systemic exposure to rotenone following implantation of subcutaneous osmotic pumps. Chronic subcutaneous exposure to low doses of rotenone (2.0-3.0 mg/kg/day) caused highly selective nigrostriatal dopaminergic lesions. Striatal neurons containing DARPP-32 (dopamine and cAMP-regulated phosphoprotein) remained intact with normal morphology, and NeuN staining revealed normal neuronal nuclear morphology. Neurons of the globus pallidus and subthalamic nucleus were spared. Subcutaneous rotenone exposure caused alpha-synuclein-positive cytoplasmic aggregates in nigral neurons. This new protocol for chronic rotenone administration is a substantial improvement in terms of simplicity and throughput.  相似文献   

19.
Dopaminergic neurons of the A 10 cell group in the rat ventral tegmental area (VTA) exhibit electrical and dye coupling. Also, the activity of these neurons at least partially reflects their content of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. We examined the ultrastructural localization of TH to determine the morphological features of dopaminergic neurons in the VTA and the relationships between their TH immunoreactivity content and afferent input. Antiserum against the trypsin-treated form of TH was localized using peroxidase-antiperoxidase (PAP) and immunoautoradiographic methods. Immunoreactivity was detected in perikarya, dendrites, and terminals. The perikarya contained the usual organelles, as well as cilia, lamellar bodies, and subsurface cisterns. Qualitative evaluation of peroxidase reaction product and quantitative analysis of the number of silver grains/unit area revealed varying amounts of TH immunoreactivity in nuclei and cytoplasm. Lightly or intensely labeled nuclei were not necessarily associated with corresponding cytoplasmic labeling density. However, cytoplasmic labeling directly corresponded to the relative frequencies of neuronal appositions and synaptic input. Those neurons with less dense cytoplasmic PAP product received fewer synaptic contacts and were less frequently in apposition to other TH-labeled soma and dendrites than neurons displaying relatively more dense cytoplasmic PAP product. Analysis of single sections revealed that 67% (n = 71) of all TH-labeled somata and 15% (n = 2431) of all TH-labeled dendrites were in apposition to other TH-labeled soma or dendrites. TH-labeled terminals were rarely detected and contained relatively low levels of immunoreactivity. The majority of labeled terminals (n = 29/46) formed synapses with labeled soma and dendrites. Unlabeled terminals (n = 2424) in contact with TH-labeled dendrites appeared to form predominantly symmetric synapses. Ten percent (n = 248) of the unlabeled terminals dually synapsed onto adjacent immunoreactive dendrites, perikarya, or dendrite and perikaryon. We conclude that in the rat VTA, (1) detected TH immunoreactivity in cytoplasm, but not nucleus, corresponds to the level of feedback principally from nondopaminergic afferents; (2) dendrodendritic as well as axodendritic synapses between TH-immunoreactive neurons may mediate dopaminergic autoinhibition; and (3) gap junction-like appositions between neurons and convergent inputs from unlabeled terminals onto TH-immunoreactive profiles provide an anatomical substrate whereby cellular activities might be coordinated under certain conditions.  相似文献   

20.
Halothane-anaesthetized cats were implanted with push-pull cannulae to demonstrate the in vivo release of cholecystokinin-like immunoreactivity (CCK-LI) in the substantia nigra and the ipsilateral caudate nucleus. The spontaneous and the calcium-dependent potassium-evoked release of CCK-LI were observed in both structures. In addition, the local application of tetrodotoxin (10-6 M) reduced the spontaneous release of the peptide. 6-OHDA lesions made in the substantia nigra pars compacta led to a complete destruction of nigrostriatal dopaminergic neurons. CCK-LI levels were not affected in the caudate nucleus but were reduced substantially in the substantia nigra. The activation of dopaminergic cells induced by the nigral application of alpha-methyl-para-tyrosine (10-4 M) stimulated the release of CCK-LI and dopamine in the ipsilateral caudate nucleus, whilst opposite effects were seen in the substantia nigra. Similar results were obtained when dopaminergic transmission was blocked in the caudate nucleus suggesting that the evoked release of CCK-LI by the alpha-methyl-para-tyrosine treatment originates from dopaminergic nerve terminals and not from other CCK-LI containing fibres in response to released dopamine. Dopamine (10-7 M) as well as the D1 agonist SKF 38393 (10-5 M) stimulated CCK-LI release when applied into the caudate nucleus while the D2 agonist, LY 171555 (10-6 M) slightly reduced peptide release. The local application of cholecystokinin-8 sulfate (CCK-8S) (10-8 M, for 30 min) into the substantia nigra pars compacta increased the firing rate of dopaminergic cells and stimulated the release of newly synthesized 3H-dopamine from dendrites and nerve terminals. These results suggest, but do not definitively prove, that, in the cat, CCK-LI and dopamine are coreleased from nigrostriatal mixed dopaminergic/CCK-LI neurons and that CCK-LI released from dendrites is, like dopamine, involved in the regulation of the activity of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号