首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In scaffold based bone tissue engineering, both the pore size and the mechanical properties of the scaffold are of great importance. However, an increase in pore size is generally accompanied by a decrease in mechanical properties. In order to achieve both suitable mechanical properties and porosity, a multilayer scaffold is designed to mimic the structure of cancellous bone and cortical bone. A porous nano-hydroxyapatite-chitosan composite scaffold with a multilayer structure is fabricated and encased in a smooth compact chitosan membrane layer to prevent fibrous tissue ingrowth. The exterior tube is shown to have a small pore size (15-40 microm in diameter) for the enhancement of mechanical properties, while the core of the multilayer scaffold has a large pore size (predominantly 70-150 microm in diameter) for nutrition supply and bone formation. Compared with the uniform porous scaffold, the multilayer scaffold with the same size shows an enhanced mechanical strength and larger pore size in the center. More cells are shown to grow into the center of the multilayer scaffold in vitro than into the uniform porous scaffold under the same seeding condition. Finally, the scaffolds are implanted into a rabbit fibula defect to evaluate the osteoconductivity of the scaffold and the efficacy of the scaffold as a barrier to fibrous tissue ingrowth. At 12 weeks post operation, affluent blood vessels and bone formation are found in the center of the scaffold and little fibrous tissue is noted in the defect site.  相似文献   

2.
Optimising bioactive glass scaffolds for bone tissue engineering   总被引:13,自引:0,他引:13  
A 3D scaffold has been developed that has the potential to fulfil the criteria for an ideal scaffold for bone tissue engineering. Sol-gel derived bioactive glasses of the 70S30C (70 mol% SiO2, 30 mol% CaO) composition have been foamed to produce 3D bioactive scaffolds with hierarchical interconnected pore morphologies similar to trabecular bone. The scaffolds consist of a hierarchical pore network with macropores in excess of 500 microm connected by pore windows with diameters in excess of 100 microm, which is thought to be the minimum pore diameter required for tissue ingrowth and vasularisation in the human body. The scaffolds also have textural porosity in the mesopore range (10-20 nm). The scaffolds were sintered at 600, 700, 800 and 1000 degrees C. As sintering temperature was increased to 800 degrees C the compressive strength increased from 0.34 to 2.26 MPa due to a thickening of the pore walls and a reduction in the textural porosity. The compressive strength is in the range of that of trabecular bone (2-12 MPa). Importantly, the modal interconnected pore diameter (98 microm) was still suitable for tissue engineering applications and bioactivity is maintained. Bioactive glass foam scaffolds sintered at 800 degrees C for 2 h fulfill the criteria for an ideal scaffold for tissue engineering applications.  相似文献   

3.
Based on the successful use of silk scaffolds in bone tissue engineering, we examined their utility for mineralized dental tissue engineering. Four types of hexafluoroisopropanol (HFIP) silk scaffolds-(250 and 550 microm diameter pores, with or without arginine-glycine-aspartic acid (RGD) peptide) were seeded with cultured 4-day postnatal rat tooth bud cells and grown in the rat omentum for 20 weeks. Analyses of harvested implants revealed the formation of bioengineered mineralized tissue that was most robust in 550 microm pore RGD-containing scaffolds and least robust in 250 microm pore sized scaffolds without RGD. The size and shape of the silk scaffold pores appeared to guide mineralized tissue formation, as revealed using polarized light imaging of collagen fiber alignment along the scaffold surfaces. This study is the first to characterize bioengineered tissues generated from tooth bud cells seeded onto silk scaffolds and indicates that silk scaffolds may be useful in forming mineralized osteodentin of specified sizes and shapes.  相似文献   

4.
The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies-thermally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 microm.  相似文献   

5.
Engineering tissues in bioreactors is often hampered by disproportionate tissue formation at the surface of scaffolds. This hinders nutrient flow and retards cell proliferation and tissue formation inside the scaffold. The objective of this study was to optimize scaffold morphology to prevent this from happening and to determine the optimal scaffold geometric values for connective tissue engineering. After comparing lyophilized crosslinked collagen, compression molded/salt leached PEGT/PBT copolymer and collagen-PEGT/PBT hybrid scaffolds, the PEGT/PBT scaffold was selected for optimization. Geometric parameters were determined using SEM, microcomputed tomography, and flow permeability measurements. Fibroblast were seeded and cultured under dynamic flow conditions for 2 weeks. Cell numbers were determined using CyQuant DNA assay, and tissue distribution was visualized in H&E- and Sirius Red-stained sections. Scaffolds 0.5 and 1.5 mm thick showed bridged connected tissue from top-to-bottom, whereas 4-mm-thick scaffolds only revealed tissue ingrowth until a maximum depth of 0.6-0.8 mm. Rapid prototyped scaffold were used to assess the maximal void space (pore size) that still could be filled with tissue. Tissue bridging between fibers was only found at fiber distances < or =401 +/- 60 microm, whereas filling of void spaces in 3D-deposited scaffolds only occurred at distances < or =273 +/- 55 microm. PEGT/PBT scaffolds having similar optimal porosities, but different average interconnected pore sizes of 142 +/- 50, 160 +/- 56 to 191 +/- 69 microm showed comparable seeding efficiencies at day 1, but after 2 weeks the total cell numbers were significantly higher in the scaffolds with intermediate and high interconnectivity. However, only scaffolds with an intermediate interconnectivity revealed homogenous tissue formation throughout the scaffold with complete filling of all pores. In conclusion, significant amount of connective tissue was formed within 14 days using a dynamic culture process that filled all void spaces of a PEGT/PBT scaffolds with the following geometric parameters: thickness 1.5-1.6 mm, pore size range 90-360 microm, and average interconnecting pore size of 160 +/- 56 microm.  相似文献   

6.
In tissue engineering, rapid ingrowth of blood vessels into scaffolds is a major prerequisite for the survival of three-dimensional tissue constructs. In the present study, we investigated whether the vascularization of implanted poly-D,L-lactic-co-glycolic acid (PLGA) scaffolds may be accelerated by incorporation of Matrigel. For this purpose, we investigated in the aortic ring assay the proangiogenic properties of growth factor reduced Matrigel (GFRM) and growth factor containing Matrigel (GFCM), which were then incorporated into the pores of PLGA scaffolds. Subsequently, we analyzed vascularization, biocompatibility, and incorporation of these scaffolds during 14 days after implantation into dorsal skinfold chambers of balb/c mice by means of intravital microscopy, histology, and immunohistochemistry. Matrigel-free scaffolds served as controls. In the aortic ring assay, GFCM stimulated the development of a network of tubular vessel structures with a significantly increased sprout area and density when compared with GFRM. Accordingly, GFCM accelerated and improved in vivo the ingrowth of new blood vessels into scaffolds, resulting in the formation of a pericyte-coated vascular network with an increased functional capillary density in comparison to the GFRM and control group. Besides, analysis of leukocyte-endothelial cell interaction in host tissue venules located in close vicinity to the scaffolds showed no marked differences in numbers of rolling and adherent leukocytes between the observation groups, indicating that incorporation of Matrigel did not affect biocompatibility of PLGA scaffolds. These findings demonstrate that the combination of proangiogenic extracellular matrices with solid scaffold biomaterials may represent a novel approach to accelerate adequate vascularization of tissue engineering constructs.  相似文献   

7.
Tissue formation on scaffold outer edges after implantation may restrict cell infiltration and mass transfer to/from the scaffold center due to insufficient interconnectivity, leading to incidence of a necrotic core. Herein, a nano-hydroxyapatite/polyamide66 (n-HA/PA66) anisotropic scaffold with axially aligned channels was prepared with the aim to enhance pore interconnectivity. Bone tissue regeneration and infiltration inside of scaffold were assessed by rabbit cranial defect repair experiments. The amount of newly formed bone inside of anisotropic scaffold was much higher than isotropic scaffold, e.g., after 12 weeks, the new bone volume in the inner pores was greater in the anisotropic scaffolds (>50%) than the isotropic scaffolds (<30%). The results suggested that anisotropic scaffolds could accelerate the inducement of bone ingrowth into the inner pores in the non-load-bearing bone defects compared to isotropic scaffolds. Thus, anisotropic scaffolds hold promise for the application in bone tissue engineering.  相似文献   

8.
Poly(propylene fumarate) (PPF) is an injectable, biodegradable polymer that has been used for fabricating preformed scaffolds in tissue engineering applications because of in situ crosslinking characteristics. Aiming for understanding the effects of pore structure parameters on bone tissue ingrowth, 3-dimensional (3D) PPF scaffolds with controlled pore architecture have been produced in this study from computer-aided design (CAD) models. We have created original scaffold models with 3 pore sizes (300, 600, and 900 microm) and randomly closed 0%, 10%, 20%, or 30% of total pores from the original models in 3 planes. PPF scaffolds were fabricated by a series steps involving 3D printing of support/build constructs, dissolving build materials, injecting PPF, and dissolving support materials. To investigate the effects of controlled pore size and interconnectivity on scaffolds, we compared the porosities between the models and PPF scaffolds fabricated thereby, examined pore morphologies in surface and cross-section using scanning electron microscopy, and measured permeability using the falling head conductivity test. The thermal properties of the resulting scaffolds as well as uncrosslinked PPF were determined by differential scanning calorimetry and thermogravimetric analysis. Average pore sizes and pore shapes of PPF scaffolds with 600- and 900-microm pores were similar to those of CAD models, but they depended on directions in those with 300-microm pores. Porosity and permeability of PPF scaffolds decreased as the number of closed pores in original models increased, particularly when the pore size was 300 microm as the result of low porosity and pore occlusion. These results show that 3D printing and injection molding technique can be applied to crosslinkable polymers to fabricate 3D porous scaffolds with controlled pore structures, porosity, and permeability using their CAD models.  相似文献   

9.
Tissue engineering has emerged as a viable alternative to the problem of organ and tissue shortage. Our laboratory has developed matrices for bone tissue engineering based on sintered spherical particles and, using bioreactor technology, has demonstrated the ability to produce highly mineralized matrices in vitro. In this study, porous microcapsule scaffolds were developed for bone tissue engineering in the high aspect ratio vessel rotating bioreactor. The motion of individual microcapsules as well as scaffolds in the bioreactor were studied by numerical simulation and in situ imaging analysis. Results show that spherical microcapsules with density less than the surrounding fluid exhibited two motions: (1) a periodic circular orbit with tangential speed equal to the free fall speed of the particle, and (2) an inward radial migration of the circular orbit toward the center of the bioreactor vessel. Lighter-than-water scaffolds were fabricated by sintering poly(lactic-co-glycolic acid) hollow microcarriers with diameter from 500 to 860 microm into a fixed three-dimensional geometry with approximately 30% pore volume and 180 to 190 microm median pore size. Scaffolds were fabricated with aggregate densities ranging from 0.65 g/mL and 0.99 g/mL by appropriate combinations of hollow and solid microcarriers within the scaffold. Scaffold velocity in the bioreactor for the above range of densities was accurately predicted by numerical simulation and ranged from 100 mm/s to 3 mm/s. Maximum shear stress estimation due to media flow over the exterior of the scaffold ranged from 0.3 N/m(2) to 0.006 N/m(2). Internal perfusion velocity through scaffolds also was calculated and ranged from 13 mm/s to 0.2 mm/s. Estimates of maximum interior shear stress ranged from 0.03 to 0.0007 N/m(2). These analytical methods provide an excellent vehicle for the study of bone tissue synthesis in three-dimensional culture with fluid flow.  相似文献   

10.
Purpose: Revascularization of natural and synthetic scaffolds is a critical part of the scaffold’s incorporation and tissue ingrowth. Our goals were to create a biocompatible polymer scaffold with 3D-printing technology, capable of sustaining vascularization and tissue ingrowth. Methods: We synthesized biodegradable polycaprolactone fumarate (PCLF) scaffolds to allow tissue ingrowth via large interconnected pores. The scaffolds were prepared with Poly(lactic-co-glycolic acid)(PLGA) microspheres seeded with or without different growth factors including VEGF,FGF-2, and/or BMP-2. Scaffolds were implanted into the subcutaneous tissues of rats before undergoing histologic and microCT angiographic analysis.

Results: At harvest after 12 weeks, scaffolds had tissue infiltrating into their pores without signs of scar tissue formation, fibrous capsule formation, or immune responses against PCLF. Histology for M1/M2 macrophage phenotypes confirmed that there were no overt signs of immune responses. Both microCT angiography and histologic analysis demonstrated marked tissue and vessel ingrowth throughout the pores traversing the body of the scaffolds. Scaffolds seeded with microspheres containing VEGF or VEGF with either BMP-2 or FGF-2 had significantly higher vascular ingrowth and vessel penetration than controls. All VEGF-augmented scaffolds were positive for Factor-VIII and exhibited collagen tissue infiltration throughout the pores. Furthermore, scaffolds with VEGF and BMP-2 had high levels of mineral deposition throughout the scaffold that are attributable to BMP-2.

Conclusions: PCLF polymer scaffold can be utilized as a framework for vascular ingrowth and regeneration of multiple types of tissues. This novel scaffold material has promise in tissue regeneration across all types of tissues from soft tissue to bone.  相似文献   


11.
Natural bone consists of cortical and trabecular morphologies, the latter having variable pore sizes. This study aims at engineering different bone-like structures using scaffolds with small pores (112-224 microm) in diameter on one side and large pores (400-500 microm) on the other, while keeping scaffold porosities constant among groups. We hypothesized that tissue engineered bone-like structure resulting from silk fibroin (SF) implants is pre-determined by the scaffolds' geometry. To test this hypothesis, SF scaffolds with different pore diameters were prepared and seeded with human mesenchymal stem cells (hMSC). As compared to static seeding, dynamic cell seeding in spinner flasks resulted in equal cell viability and proliferation, and better cell distribution throughout the scaffold as visualized by histology and confocal microscopy, and was, therefore, selected for subsequent differentiation studies. Differentiation of hMSC in osteogenic cell culture medium in spinner flasks for 3 and 5 weeks resulted in increased alkaline phosphatase activity and calcium deposition when compared to control medium. Micro-computed tomography (microCT) detailed the pore structures of the newly formed tissue and suggested that the structure of tissue-engineered bone was controlled by the underlying scaffold geometry.  相似文献   

12.
The cellular structure of collagen-glycosaminoglycan (CG) scaffolds used in tissue engineering must be designed to meet a number of constraints with respect to biocompatibility, degradability, pore size, pore structure, and specific surface area. The conventional freeze-drying process for fabricating CG scaffolds creates variable cooling rates throughout the scaffold during freezing, producing a heterogeneous matrix pore structure with a large variation in average pore diameter at different locations throughout the scaffold. In this study, the scaffold synthesis process was modified to produce more homogeneous freezing by controlling of the rate of freezing during fabrication and obtaining more uniform contact between the pan containing the CG suspension and the freezing shelf through the use of smaller, less warped pans. The modified fabrication technique has allowed production of CG scaffolds with a more homogeneous structure characterized by less variation in mean pore size throughout the scaffold (mean: 95.9 microm, CV: 0.128) compared to the original scaffold (mean: 132.4 microm, CV: 0.185). The pores produced using the new technique appear to be more equiaxed, compared with those in scaffolds produced using the original technique.  相似文献   

13.
Despite the attractive features of nanofibrous scaffolds for cell attachment in tissue-engineering (TE) applications, impeded cell ingrowth has been reported in electrospun scaffolds. Previous findings have shown that the scaffold can function as a sieve, keeping cells on the scaffold surface, and that cell migration into the scaffold does not occur in time. Because fiber diameter is directly related to the pore size of an electrospun scaffold, the objective of this study was to systematically evaluate how cell delivery can be optimized by tailoring the fiber diameter of electrospun poly(epsilon-caprolactone) (PCL) scaffolds. Five groups of electrospun PCL scaffolds with increasing average fiber diameters (3.4-12.1 microm) were seeded with human venous myofibroblasts. Cell distribution was analyzed after 3 days of culture. Cell penetration increased proportionally with increasing fiber diameter. Unobstructed delivery of cells was observed exclusively in the scaffold with the largest fiber diameter (12.1 microm). This scaffold was subsequently evaluated in a 4-week TE experiment and compared with a poly(glycolic acid)-poly(4-hydroxybutyrate) scaffold, a standard scaffold used successfully in cardiovascular tissue engineering applications. The PCL constructs showed homogeneous tissue formation and sufficient matrix deposition. In conclusion, fiber diameter is a crucial parameter to allow for homogeneous cell delivery in electrospun scaffolds. The optimal electrospun scaffold geometry, however, is not generic and should be adjusted to cell size.  相似文献   

14.
Tight control of pore architecture in porous scaffolds for bone repair is critical for a fully elucidated tissue response. Solid freeform fabrication (SFF) enables construction of scaffolds with tightly controlled pore architecture. Four types of porous scaffolds were constructed using SFF and evaluated in an 8-mm rabbit trephine defect at 8 and 16 weeks (n = 6): a lactide/glycolide (50:50) copolymer scaffold with 20% w/w tri-calcium phosphate and random porous architecture (Group 1); another identical design made from poly(desaminotyrosyl-tyrosine ethyl ester carbonate) [poly(DTE carbonate)], a tyrosine-derived pseudo-polyamino acid (Group 2); and two poly(DTE carbonate) scaffolds containing 500 microm pores separated by 500-microm thick walls, one type with solid walls (Group 3), and one type with microporous walls (Group 4). A commercially available coralline scaffold (Interpore) with a 486-microm average pore size and empty defects were used as controls. There was no significant difference in the overall amount of bone ingrowth in any of the devices, as found by radiographic analysis, but patterns of bone formation matched the morphology of the scaffold. These results suggest that controlled scaffold architecture can be superimposed on biomaterial composition to design and construct scaffolds with improved fill time.  相似文献   

15.
There is a clinical need for synthetic scaffolds that promote bone regeneration. A common problem encountered when using scaffolds in tissue engineering is the rapid formation of tissue on the outer edge of the scaffold whilst the tissue in the centre becomes necrotic. To address this, the scaffold design should improve nutrient and cell transfer to the scaffold centre. In this study, hydroxyapatite scaffolds with random, open porosity (average pore size of 282+/-11microm, average interconnecting window size of 72+/-4microm) were manufactured using a modified slip-casting methodology with a single aligned channel inserted into the centre. By varying the aligned channel diameter, a series of scaffolds with channel diameters ranging from 170 to 421microm were produced. These scaffolds were seeded with human osteosarcoma (HOS TE85) cells and cultured for 8 days. Analysis of cell penetration into the aligned channels revealed that cell coverage increased with increasing channel diameter; from 22+/-3% in the 170microm diameter channel to 38+/-6% coverage in the 421microm channel. Cell penetration into the middle section of the 421microm diameter channel (average cell area coverage 121x10(3)+/-32x10(3)microm(2)) was significantly greater than that observed within the 170microm channel (average cell area coverage 26x10(3)+/-6x10(3)microm(2)). In addition, the data presented demonstrates that the minimum channel (or pore) diameter required for cell penetration into such scaffolds is approximately 80microm. These results will direct the development of scaffolds with aligned macroarchitecture for tissue engineering bone.  相似文献   

16.
The osteoconductive capacity of TiO(2) scaffolds was investigated by analysing the bone ingrowth into the scaffold structure following their placement into surgically modified extraction sockets in Gottingen minipigs. Non-critical size defects were used in order to ensure sufficient bone regeneration for the evaluation of bone ingrowth to the porous scaffold structure, and sham sites were used as positive control. Microcomputed tomographic analysis revealed 73.6±11.1% of the available scaffold pore space to be occupied by newly formed bone tissue, and the volumetric bone mineral density of the regenerated bone was comparable to that of the native cortical bone. Furthermore, histological evidence of vascularization and the presence of bone lamellae surrounding some of the blood vessels were also observed within the inner regions of the scaffold, indicating that the highly interconnected pore structure of the TiO(2) scaffolds supports unobstructed formation of viable bone tissue within the entire scaffold structure. In addition, bone tissue was found to be in direct contact with 50.0±21.5% of the TiO(2) struts, demonstrating the good biocompatibility and osteoconductivity of the scaffold material.  相似文献   

17.
Scaffolds for tissue engineering should be biocompatible and stimulate rapid blood vessel ingrowth. Herein, we analyzed in vivo the biocompatibility and vascularization of three novel types of biodegradable porous polyurethane scaffolds. The polyurethane scaffolds, i.e., PU-S, PU-M and PU-F, were implanted into dorsal skinfold chambers of BALB/c mice. Using intravital fluorescence microscopy we analyzed vascularization of the implants and venular leukocyte–endothelial cell interaction in the surrounding host tissue over a 14 day period. Incorporation of the scaffolds was analyzed by histology, and a WST-1 assay was performed to evaluate their cell biocompatibility in vitro. Our results indicate that none of the polyurethane scaffolds was cytotoxic. Accordingly, rolling and adherent leukocytes in venules of the dorsal skinfold chamber were found in a physiological range after scaffold implantation and did not significantly differ between the groups, indicating a good in vivo biocompatibility. However, the three scaffolds induced a weak angiogenic response with a microvessel density of only ~47–60 and ~3–10 cm/cm2 in the border and centre zones of the scaffolds at day 14 after implantation. Histology demonstrated that the scaffolds were incorporated in a granulation tissue, which exhibited only a few blood vessels and inflammatory cells. In conclusion, PU-S, PU-M and PU-F scaffolds may be used to generate tissue constructs which do not induce a strong inflammatory reaction after implantation into patients. However, the scaffolds should be further modified or conditioned in order to accelerate and improve the process of vascularization.  相似文献   

18.
Precise control over scaffold material, porosity, and internal pore architecture is essential for tissue engineering. By coupling solid free form (SFF) manufacturing with conventional sponge scaffold fabrication procedures, we have developed methods for casting scaffolds that contain designed and controlled locally porous and globally porous internal architectures. These methods are compatible with numerous bioresorbable and non-resorbable polymers, ceramics, and biologic materials. Phase separation, emulsion-solvent diffusion, and porogen leaching were used to create poly(L)lactide (PLA) scaffolds containing both computationally designed global pores (500, 600, or 800 microm wide channels) and solvent fashioned local pores (50-100 microm wide voids or 5-10 microm length plates). Globally porous PLA and polyglycolide/PLA discrete composites were made using melt processing. Biphasic scaffolds with mechanically interdigitated PLA and sintered hydroxyapatite regions were fabricated with 500 and 600 microm wide global pores. PLA scaffolds with complex internal architectures that mimicked human trabecular bone were produced. Our indirect fabrication using casting in SFF molds provided enhanced control over scaffold shape, material, porosity and pore architecture, including size, geometry, orientation, branching, and interconnectivity. These scaffolds that contain concurrent local and global pores, discrete material regions, and biomimetic internal architectures may prove valuable for multi-tissue and structural tissue interface engineering.  相似文献   

19.
Photo-patterning of porous hydrogels for tissue engineering   总被引:4,自引:0,他引:4  
Bryant SJ  Cuy JL  Hauch KD  Ratner BD 《Biomaterials》2007,28(19):2978-2986
Since pore size and geometry strongly impact cell behavior and in vivo reaction, the ability to create scaffolds with a wide range of pore geometries that can be tailored to suit a particular cell type addresses a key need in tissue engineering. In this contribution, we describe a novel and simple technique to design porous, degradable poly(2-hydroxyethyl methacrylate) hydrogel scaffolds with well-defined architectures using a unique photolithography process and optimized polymer chemistry. A sphere-template was used to produce a highly uniform, monodisperse porous structure. To create a patterned and porous hydrogel scaffold, a photomask and initiating light were employed. Open, vertical channels ranging in size from 360+/-25 to 730+/-70 microm were patterned into approximately 700 microm thick hydrogels with pore diameters of 62+/-8 or 147+/-15 microm. Collagen type I was immobilized onto the scaffolds to facilitate cell adhesion. To assess the potential of these novel scaffolds for tissue engineering, a skeletal myoblast cell line (C2C12) was seeded onto scaffolds with 147 microm pores and 730 microm diameter channels, and analyzed by histology and digital volumetric imaging. Cell elongation, cell spreading and fibrillar formation were observed on these novel scaffolds. In summary, 3D architectures can be patterned into porous hydrogels in one step to create a wide range of tissue engineering scaffolds that may be tailored for specific applications.  相似文献   

20.
Recent studies have shown that it is now possible to construct tissue-engineered bone repair scaffolds with tight pore size distributions and controlled geometries using 3-D Printing techniques (3DP). This study evaluated two hydroxyapatite (HA) 8-mm diameter discs with controlled architectures in a rabbit trephine defect at 8 and 16 weeks using a 2 x 2 factorial design. Input parameters were time and scaffold void volume at two levels. Three output variables were extracted from MicroCT data: bone volume ingrowth with respect to total region of interest, bone volume ingrowth with respect to available ingrowth volume, and soft tissue volume. The experiment measured two groups--Group 1: 500-microm x 500-microm channels parallel to the scaffold's long axis and penetrating up 3-mm from the bottom. Group 2: 800-microm x 800-microm struts spaced 500 microm apart set perpendicularly to each other in each printed layer. Rendered 3-dimensional MicroCT scans and undecalcified histological slides of implants revealed good integration with the surrounding tissue, and a sizeable amount of bone ingrowth into the device. Factorial analysis revealed that the effects of time were the greatest determinant of soft tissue ingrowth, while time and its interaction with void volume were the greatest determinants of bone volume ingrowth with respect to both total and available volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号