首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection and inflammation have been associated with the development of delirium for many centuries and there is a rapidly growing evidence base supporting the role of inflammation in exacerbating the neurological manifestations of both acute and chronic liver failure. Inflammation in the context of hepatic encephalopathy (HE) can arise directly within the brain itself resulting in astrocytic, microglial and neuronal dysfunction, impacting on the development of ‘brain failure’. Inflammation may also develop systemically and indirectly influence brain function. Systemic inflammation develops following liver injury, resulting in hyperammonemia and a ‘cytotoxic soup’ of pro-inflammatory mediators which are released into the circulation and modulate the impact of ammonia on the brain. The aim of this review is to summarise the current evidence base supporting the synergistic role of systemic inflammation and hyperammonemia in the pathogenesis of hepatic encephalopathy. Systemic inflammation and ammonia induce neutrophil degranulation and release reactive oxygen species into the peripheral circulation that may ultimately cross the blood brain barrier. Circulating endotoxin arising from the gut (bacterial translocation), superimposed sepsis, and hyperammonemia upregulate the expression of microbial pattern recognition receptors such as Toll-like receptors. The early recognition and management of systemic inflammation may not only facilitate improved outcomes in HE but supports the development of novel therapeutic strategies that reduce circulating endotoxemia and immune cell dysfunction.  相似文献   

2.
Abstract Both acute and chronic liver failure result in impaired cerebral function known as hepatic encephalopathy (HE). Evidence suggests that HE is the consequence of the accumulation in brain of neurotoxic and/or neuroactive substance including ammonia, manganese, aromatic amino acids, mercaptans, phenols, short‐chain fatty acids, bilirubin and a variety of neuroactive medications prescribed as sedatives to patients with liver failure. Brain ammonia concentrations may attain levels in excess of 2 mm , concentrations which are known to adversely affect both excitatory and inhibitory neurotransmission as well as brain energy metabolism. Manganese exerts toxic effects on dopaminergic neurones. Prevention and treatment of HE continues to rely heavily on the reduction of circulating ammonia either by reduction of gut production using lactulose or antibiotics or by increasing its metabolism using l ‐ornithine‐l ‐aspartate. No specific therapies have so far been designed to reduce circulating concentrations of other toxins. Liver assist devices offer a potential new approach to the reduction of circulating neurotoxins generated in liver failure. In this regard, the Molecular Absorbents Recirculating System (MARS) appears to offer distinct advantages over hepatocyte‐based systems.  相似文献   

3.
Hepatic encephalopathy(HE)is a neuropsychiatric complex syndrome,ranging from subtle behavioral abnormalities to deep coma and death.Hepatic encephalopathy emerges as the major complication of acute or chronic liver failure.Multiplicity of factors are involved in its pathophysiology,such as central and neuromuscular neurotransmission disorder,alterations in sleep patterns and cognition,changes in energy metabolism leading to cell injury,an oxidative/nitrosative state and a neuroinflammatory condition.Moreover,in acute HE,a condition of imminent threat of death is present due to a deleterious astrocyte swelling.In chronic HE,changes in calcium signaling,mitochondrial membrane potential and long term potential expression,N-methyl-D-aspartate-cGMP and peripheral benzodiazepine receptors alterations,and changes in the mRNA and protein expression and redistribution in the cerebral blood flow can be observed.The main molecule indicated as responsible for all these changes in HE is ammonia.There is no doubt that ammonia,a neurotoxic molecule,triggers or at least facilitates most of these changes.Ammonia plasma levels are increased two-to three-fold in patients with mild to moderate cirrhotic HE and up to ten-fold in patients with acute liver failure. Hepatic and inter-organ trafficking of ammonia and its metabolite,glutamine(GLN),lead to hyperammonemic conditions.Removal of hepatic ammonia is a differentiated work that includes the hepatocyte,through the urea cycle,converting ammonia into GLN via glutamine synthetase.Under pathological conditions,such as liver damage or liver blood bypass,the ammonia plasma level starts to rise and the risk of HE developing is high. Knowledge of the pathophysiology of HE is rapidly expanding and identification of focally localized triggers has led the development of new possibilities for HE to be considered.This editorial will focus on issues where, to the best of our knowledge,more research is needed in order to clarify,at least partially,controversial topics.  相似文献   

4.
Hepatic encephalopathy (HE) is a serious complication of liver failure. HE manifests as a series of neuropsychiatric and neuromuscular symptoms including personality changes, sleep abnormalities, asterixis and muscle rigidity progressing through stupor to coma. The pathophysiologic basis of HE remains unclear. There is general agreement that ammonia plays a key role. In recent years, it has been suggested that oxidative/nitrosative stress constitutes part of the pathophysiologic cascade in HE. Direct evidence for oxidative/nitrosative stress in the pathogenesis of HE has been demonstrated in experimental animal models of acute or chronic liver failure. However, evidence from studies in HE patients is limited. This review summarizes this evidence for a role of oxidative/nitrosative stress in relation to ammonia toxicity and to the pathogenesis of HE.  相似文献   

5.
Hepatic encephalopathy (HE) represents a continuum of transient and reversible neurologic and psychiatric dysfunction. It is a reversible state of impaired cognitive function or altered consciousness in patients with liver disease or portosystemic shunting. Over the last several years, high-quality studies have been conducted on various pharmacologic therapies for HE; as more data emerge, it is hoped that HE will become a more easily treated complication of decompensated liver disease. In the interim, it is important that physicians continue to screen for minimal HE and treat patients early in addition to continuing to provide current treatments of overt HE.  相似文献   

6.
Hepatic Encephalopathy (HE) is a serious neuropsychiatric condition of both acute and chronic liver failure. Acute liver failure is characterized by rapid evolution of HE and by brain edema. Portal-Systemic encephalopathy (PSE) is particularly prevalent following treatment of portal hypertension or ascites by the TIPS procedure. Available evidence currently suggests that neurotransmission changes rather than brain energy failure are the primary cause of HE. Recent studies both in autopsied brain tissue from HE patients as well as in experimental animal models of HE reveal that liver failure results in altered expression of several genes coding for proteins having key roles in the control of neuronal excitability. Such alterations include decreased expression of the glutamate transporter GLT-1, and increased expression of monoamine oxidase (MAO-A isoform), the peripheral-type benzodiazepine receptor (PTBR) as well as constitutive neuronal nitric oxide synthase (nNOS). Such changes result in altered protein expression and in increased extracellular brain glutamate, increased degradation of monoamine neurotransmitters, increased synthesis of neurosteroids with inhibitory properties, and increased production of nitric oxide (respectively) in brain in chronic liver failure. In the case of GLT-1, PTBR, and nNOS, alterations in expression result from exposure to ammonia and/or manganese, two neurotoxic agents shown previously to be increased in brain in liver failure.  相似文献   

7.
Objectives of the International Society for Hepatic Encephalopathy and Nitrogen Metabolism Commission were to identify well‐characterized animal models of hepatic encephalopathy (HE) and to highlight areas of animal modelling of the disorder that are in need of development. Features essential to HE modelling were identified. The best‐characterized animal models of HE in acute liver failure, the so‐called Type A HE, were found to be the hepatic devascularized rat and the rat with thioacetamide‐induced toxic liver injury. In case of chronic liver failure, surgical models in the rat involving end‐to‐side portacaval anastomosis or bile duct ligation were considered to best model minimal/mild (Type B) HE. Unfortunately, at this time, there are no satisfactory animal models of Type C HE resulting from end‐stage alcoholic liver disease or viral hepatitis, the most common aetiologies encountered in patients. The commission highlighted the urgent need for such models and of improved models of HE in chronic liver failure in general as well as a need for models of post‐transplant neuropsychiatric disorders. Studies of HE pathophysiology at the cellular and molecular level continue to benefit from in vitro and or ex vivo models involving brain slices or exposure of cultured cells (principally cultured astrocytes) to toxins such as ammonia, manganese and pro‐inflammatory cytokines. More attention could be paid in the future to in vitro models involving the neurovascular unit, microglia and neuronal co‐cultures in relation to HE pathogenesis.  相似文献   

8.
Hepatic encephalopathy(HE) is a severe neuropsychiatric syndrome that most commonly occurs in decompensated liver cirrhosis and incorporates a spectrumof manifestations that ranges from mild cognitive impairment to coma. Although the etiology of HE is not completely understood, it is believed that multiple underlying mechanisms are involved in the pathogenesis of HE, and one of the main factors is thought to be ammonia; however, the ammonia hypothesis in the pathogenesis of HE is incomplete. Recently, it has been increasingly demonstrated that inflammation, including systemic inflammation, neuroinflammation and endotoxemia, acts in concert with ammonia in the pathogenesis of HE in cirrhotic patients. Meanwhile, a good number of studies have found that current therapies for HE, such as lactulose, rifaximin, probiotics and the molecular adsorbent recirculating system, could inhibit different types of inflammation, thereby improving the neuropsychiatric manifestations and preventing the progression of HE in cirrhotic patients. The antiinflammatory effects of these current therapies provide a novel therapeutic approach for cirrhotic patients with HE. The purpose of this review is to describe the inflammatory mechanisms behind the etiology of HE in cirrhosis and discuss the current therapies that target the inflammatory pathogenesis of HE.  相似文献   

9.
Hepatic encephalopathy (HE) refers to the reversible neuropsychiatric disorders observed in acute liver failure and as a complication of cirrhosis and/or portal hypertension. This review aims to describe the pathophysiology of HE, the rationale for the use of artificial liver support in the treatment of HE, the different concepts of artificial liver support and the results obtained. Ammonia has been considered central to its pathogenesis but recently an important role for its interaction with inflammatory responses and auto-regulation of cerebral hemodynamics has been suggested. Artificial liver support might be able to decrease ammonia and modulate inflammatory mediators and cerebral hemodynamics. Bioartificial liver support systems use hepatocytes in an extracorporeal device connected to the patient’s circulation. Artificial liver support is intended to remove protein-bound toxins and water-soluble toxins without providing synthetic function. Both systems improve clinical and biochemical parameters and can be applied safely to patients. Clinical studies have shown that artificial liver support, especially albumin dialysis, is able to improve HE in acute and acute-on-chronic liver failure. Further studies are required to better understand the mechanism, however, artificial liver support can be added to the therapeutic bundle in treating HE.  相似文献   

10.
Although ammonia is considered the main factor involved in the pathogenesis of hepatic encephalopathy (HE), it correlates well with the severity of HE in acute liver failure, but not in chronic liver disease. Oxidative stress is another factor believed to play a role in the pathogenesis of this syndrome; it represents an imbalance between the production and neutralization of reactive oxygen species, which leads to cellular dysfunction. In the setting of liver disease, oxidative stress represents a systemic phenomenon induced by several mechanisms: decreased antioxidant synthesis, increased systemic release of oxidant enzymes, generation of reactive oxygen species, and impaired neutrophil function. High ammonia concentrations induce cerebral oxidative stress, thus contributing to severe hepatic encephalopathy, as observed in acute liver failure. In chronic liver disease, significantly lower degrees of hyperammonemia (<500 μM) do not induce cerebral nor systemic oxidative stress. Data from both animal and human studies sustain that there is a synergistic effect between systemic oxidative stress, and ammonia that is implicated in the pathogenesis of hepatic encephalopathy.  相似文献   

11.
In patients with liver failure hyperammonemia is associated with the development of hepatic encephalopathy (HE) and immune impairment. Treatment of hyperammonemia is an unmet clinical need. Ornithine phenylacetate (OP) is a novel drug that is targeted at reducing ammonia concentration in patients with liver disease and therefore a potential treatment for HE. This review describes the mechanism of action of OP and its effect on plasma ammonia levels, brain function and inflammation of OP in both acute and chronic liver failure. Ammonia levels could shown to be reduced for up to 24 h in animal models until 120 h in patients with repeated dosing of the drug. Reduction of plasma ammonia levels is due to the stimulation of ammonia removal in the form of glutamine (through glutamine synthetase), the direct excretion of ammonia in the form phenylacetylglutamine and to a normalisation of glutaminase activity in the gut. Administration of OP is associated with a reduction of brain oedema in rats with chronic bile duct ligation and diminution of intracranial hypertension in a pig model of ALF. Studies to date have indicated that it is safe in humans and trials in overt HE are underway to establish OP as a treatment for this major complication of liver disease.  相似文献   

12.
The development of overt hepatic encephalopathy (HE) in a patient with cirrhosis confers a damning prognosis with a 1-year mortality approaching 64%. This complex neuropsychiatric syndrome arises as a consequence of a dysfunctional gut–liver–brain axis. HE has been largely neglected over the past 30 years, with the reliance on therapies aimed at lowering ammonia production or increasing metabolism following the seminal observation that the hepatic urea cycle is the major mammalian ammonia detoxification pathway and is key in the pathogenesis of HE. The relationship with ammonia is more clear-cut in acute liver failure; but in cirrhosis, it has become apparent that inflammation is a key driver and that a disrupted microbiome resulting in gut dysbiosis, bacterial overgrowth and translocation, systemic endotoxemia and immune dysfunction may be more important drivers. Therefore, it is important to re-focus our efforts into developing therapies that modulate the disrupted microbiome or alleviating its downstream consequences.  相似文献   

13.
Hepatic encephalopathy(HE) is a common and serious neuropsychiatric complication of cirrhosis, acute liver failure, and porto-systemic shunting. HE largely contributes to the morbidity of patients with liver disease, severely affecting the quality of life of both patients and their relatives and being associated with poor prognosis. Its presentation is largely variable, manifesting with a broad spectrum of cognitive abnormalities ranging from subtle cognitive impairment to coma. The pathogenesis of HE is complex and has historically been linked with hyperammonemia. However, in the last years, it has become evident that the interplay of multiple actors, such as intestinal dysbiosis, gut hyperpermeability, and neuroinflammation, is of crucial importance in its genesis. Therefore, HE can be considered a result of a dysregulated gut-liverbrain axis function, where cognitive impairment can be reversed or prevented by the beneficial effects induced by "gut-centric" therapies, such as non-absorbable disaccharides, non-absorbable antibiotics, probiotics, prebiotics, and fecal microbiota transplantation. In this context dietary modifications, by modulating the intestinal milieu, can also provide significant benefit to cirrhotic patients with HE. This review will provide a comprehensive insight into the mechanisms responsible for gut-liver-brain axis dysregulation leading to HE in cirrhosis.Furthermore, it will explore the currently available therapies and the most promising future treatments for the management of patients with HE, with a special focus on the dietary approach.  相似文献   

14.
《Annals of hepatology》2018,17(6):1026-1034
Introduction and aim. Hepatic encephalopathy (HE), caused by hyperammonemia resulting from liver disease, is a spectrum of neuropsychiatric and motor disorders that can lead to death. Existing therapies are deficient and alternative treatments are needed. We have shown that gene therapy with a baculovirus vector containing the glutamine synthetase (Bac-GS) gene is efficient for reducing ammonia levels in an acute hyperammonemia rat model. However, the most common condition resulting from liver disease is chronic hyperammonemia. In this work, Bac-GS was evaluated in bile-duct ligated rats, a chronic liver disease model with hyperammonemia and some characteristics of Type C HE.Material and methods. Bac-GS was tested for mediating GS over-expression in HeLa cells and H9C2 myotubes. For determining the utility of Bac-GS for the reduction of ammonia levels in a chronic hyperammonemia animal model, four groups of rats were treated: control, sham, ligated with Bac-GS and ligated with Bac-GFP. Baculoviruses were injected i.m. 18 days post-surgery. Blood was drawn 2, 3 and 4 weeks post-surgery and plasma ammonia concentrations were quantified.Results. In protein lysates of cells and myotubes transduced with Bac-GS, a 44 kDa band corresponding to GS was detected. Significant results were obtained in the hyperammonemic bile-duct ligated rat model, as plasma ammonia was reduced to normal levels 3 days after treatment with Bac-GS. Furthermore, a transitory effect of Bac-GS was observed.Conclusion. Our results show that gene therapy by delivering GS is a promising alternative for treatment of hyperammonemia in acute-on-chronic liver failure patients with HE.  相似文献   

15.
The clinical presentation of acute liver failure and hepatic encephalopathy (HE) in patients with cirrhosis differs significantly. The most serious neurological complication of acute liver failure is the development of devastating brain oedema. Therefore, intracranial pressure monitoring is urgently needed in these patients. Brain oedema is amplified by hypoglycemia, hypoxia and seizures, which are also frequent complications of acute liver failure. Therefore, these parameters must also be monitored. In contrast to acute liver failure in which cerebral dysfunction progresses rapidly, cognitive decline may be clinically undetectable for a long time in cirrhotic patients, until clinically overt symptoms such as psychomotor slowing, disorientation, confusion, extrapyramidal and cerebellar symptoms or a decrease in consciousness occur. Clinically, overt HE is preceded by minimal alterations of cerebral function that can only be detected by neuropsychological or neurophysiological measures, but which nevertheless interfere with the patient's daily living. Rapidly progressing spastic paraparesis (hepatic myelopathy) is a rare complication of cirrhosis. In contrast to HE, it does not respond to blood ammonia lowering therapies but must be considered as an indication for urgent liver transplantation. Cognitive dysfunction has recently been detected in hepatitis C virus (HCV)-infected patients with normal liver function. The patients presented with severe fatigue, cognitive dysfunction and mood disorders. Alterations in brain metabolites, as detected by magnetic resonance spectroscopy, indicated central nervous system alteration in these patients. In contrast to patients with HE, HCV-infected patients did not show motor symptoms or deficits in visual perception, but considerable deficits in attention and concentration ability.  相似文献   

16.
There appears to be a consensus that hepatic encephalopathy (HE) is a metabolic encephalopathy with a multifactorial pathogenesis. One of the factors considered to be important in the pathogenesis of HE is ammonia. However, the mechanisms by which ammonia contributes to the manifestations of HE remain poorly defined. Ammonia could be more definitively implicated in the pathogenesis of HE if its effects can be shown to lead to an enhancement of inhibitory neurotransmission. In this context the effects of ammonia on the GABA (-aminobutyric acid) neurotransmitter system may be relevant. Ammonia, at the modestly increased concentrations that commonly occur in precoma HE (0.15 mM–0.75 mM), has been shown to increase GABA-induced chloride current in cultured neurons, probably by modifying the affinity of the GABA(A) receptor for GABA. Comparable ammonia concentrations also enhanced synergistically the binding of a GABA agonist and a benzodiazepine (BZ) agonist to the GABA(A) receptor complex, phenomena which would enhance the neuroinhibitory effects of these ligands. Also, GABA increased the potency of ammonia-induced enhancement of the binding of a BZ agonist to the GABA(A) receptor complex, and brain levels of BZ agonists are elevated in liver failure. In addition, ammonia has been shown to inhibit astrocytic uptake of GABA by 30%–50%, an effect which would increase the synaptic availability of GABA at GABA(A) receptors. Furthermore, increased ammonia concentrations upregulate the peripheral-type benzodiazepine receptor in the outer membrane of astroglial mitochondria, thereby enhancing astrocytic mitochondrial synthesis and release of neurosteroids. Some neurosteroids, for example tetrahydroprogesterone (THP) and tetrahydrodeoxycorticosterone (THDOC), are potent agonists of the GABA(A) receptor complex, on which there are specific binding sites for neurosteroids, that are distinct from those for BZs and barbiturates. Tetrahydroprogesterone and tetrahydrodeoxycorticosterone levels were found to be increased in a mouse model of acute liver failure, and, when THP or THDOC was injected into normal mice, sedation and Alzheimer type II astrocytic changes in the cortex, striatum, and hypothalmus were induced. Each of these direct or indirect effects of ammonia on the GABA neurotransmitter system has the potential of increasing inhibitory neurotransmission, and, hence, contributing to the manifestations of HE.  相似文献   

17.
Hepatic encephalopathy(HE) is a neuropsychiatric disorder that commonly complicates the course of patients with liver disease. Despite the fact that the syndrome was probably first recognized hundreds of years ago, the exact pathogenesis still remains unclear. Minimal hepatic encephalopathy(MHE) is the earliest form of HE and is estimated to affect more that 75% of patients with liver cirrhosis. It is characterized by cognitive impairment predominantly attention, reactiveness and integrative function with very subtle clinical manifestations. The development of MHE is associated with worsen in driving skills, daily activities and the increase of overall mortality. Skeletal muscle has the ability to shift from ammonia producer to ammonia detoxifying organ. Due to its large size, becomes the main ammonia detoxifying organ in case of chronic liver failure and muscular glutaminesynthase becomes important due to the failing liver and brain metabolic activity. Gut is the major glutamine consumer and ammonia producer organ in the body. Hepatocellular dysfunction due to liver disease, results in an impaired clearance of ammonium and in its interorgan trafficking. Intestinal bacteria, can also represent an extra source of ammonia production and in cirrhosis, small intestinal bacterial overgrowth and symbiosis can be observed. In the study of HE, to get close to MHE is to get closer to its big bang; and from here, to travel less transited roads such as skeletal muscle and intestine, is to go even closer. The aim of this editorial is to expose this road for further and deeper work.  相似文献   

18.
Branched-chain amino acids (BCAA) are used as a therapeutic nutritional supplement in patients with cirrhosis and hepatic encephalopathy (HE). During liver disease, the decreased capacity for urea synthesis and porto-systemic shunting reduce the hepatic clearance of ammonia and skeletal muscle may become the main alternative organ for ammonia detoxification. We here summarize current knowledge of muscle BCAA and ammonia metabolism with a focus on liver cirrhosis and HE. Plasma levels of BCAA are lower and muscle uptake of BCAA seems to be higher in patients with cirrhosis and hyperammonemia. BCAA metabolism may improve muscle net ammonia removal by supplying carbon skeletons for formation of alfa-ketoglutarate that combines with two ammonia molecules to become glutamine. An oral dose of BCAA enhances muscle ammonia metabolism but also transiently increases the arterial ammonia concentration, likely due to extramuscular metabolism of glutamine. We, therefore, speculate that the beneficial effect of long term intake of BCAA on HE demonstrated in clinical studies may be related to an improved muscle mass and nutritional status rather than to an ammonia lowering effect of BCAA themselves.  相似文献   

19.
乔玲  任锋  张培豪  丁美  赵军  陈煜  武志明  段钟平 《传染病信息》2007,20(3):155-157,167
目的研究N-乙酰半胱氨酸(NAC)对D-氨基半乳糖诱导的急性肝衰竭动物肝脏的保护作用。方法雌性中国实验小型猪14头。随机分为对照组(6头)和治疗组(8头),应用D-氨基半乳糖1.2g/kg,静脉滴注,诱导制备药物性急性肝衰竭动物模型。治疗组给予NAC治疗,对照组同期给予生理盐水。观察比较2组动物一般状况、生存时间、生理指标、生化指标以及肝脏组织病理变化。结果经过治疗后,治疗组在某些时间点与对照组相比部分肝功能指标明显改善:ALT、AST和总胆红素含量明显较低,凝血酶原活动度较高,凝血酶原时间缩短;其他生化指标,如血氨和内毒素水平有一定下降;在组织病理学上,治疗组与对照组相比炎症有所减轻。结论NAC治疗非对乙酰氨基酚引起的肝衰竭仍然可以改善肝功能和炎症反应,内毒素血症得到一定改善。  相似文献   

20.
It is generally accepted that astrocyte swelling forms the major anatomic substrate of the edema associated with acute liver failure (ALF) and that ammonia represents a major etiological factor in its causation. The mechanisms leading to such swelling, however, remain elusive. Recent studies have invoked the role of oxidative stress in the mechanism of hepatic encephalopathy (HE), as well as in the brain edema related to ALF. This article summarizes the evidence for oxidative stress as a major pathogenetic factor in HE/ALF and discusses mechanisms that are triggered by oxidative stress, including the induction of the mitochondrial permeability transition (MPT) and activation of signaling kinases. We propose that a cascade of events initiated by ammonia-induced oxidative stress results in cell volume dysregulation leading to cell swelling/brain edema. Blockade of this cascade may provide novel therapies for the brain edema associated with ALF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号