首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How inhibition is altered after status epilepticus and the role of inhibition during epileptogenesis remain unsettled issues. The present study examined acute (4-7 days) and chronic (>3 mo) changes of GABA(A) receptor-mediated inhibitory synaptic input to dentate granule cells after kainate-induced status epilepticus. Whole cell patch-clamp techniques were used to record spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) in the presence of 6,7-dinitroquinoxaline-2,3-dione and dl-2-amino-5-phosphonopentanoic acid to block glutamatergic excitatory synaptic transmission. In both groups, mean sIPSC frequency of dentate granule cells from the saline- and kainate-treated rats was not significantly different. However, mIPSC frequency from the kainate-treated rats of both groups was approximately 30% lower than that of the respective saline controls. The mean amplitude of sIPSCs and mIPSCs from kainate-treated rats was not reduced in either the acute or chronic groups. The mean 10-90% rise time of IPSCs was not altered in kainate-treated rats, but the decay time constant was slightly longer than in controls, and the charge transfer 4-7 days after kainate treatment was significantly larger. The similar reduction of mIPSC frequency (i.e., approximately 30%) in the two groups of kainate-treated rats suggests a decreased inhibitory input to dentate granule cells (presumably due to a partial loss of inhibitory interneurons that innervate them) without recovery during epileptogenesis. The lack of effect on sIPSC frequency and the decreased mIPSC frequency in both groups suggests a possible compensatory increase in firing rate of interneurons, which may involve a hypothetical reduction of inhibitory input to the remaining interneurons.  相似文献   

2.
A common feature of temporal lobe epilepsy and of animal models of epilepsy is the growth of hippocampal mossy fibers into the dentate molecular layer, where at least some of them innervate granule cells. Because the mossy fibers are axons of granule cells, the recurrent mossy fiber pathway provides monosynaptic excitatory feedback to these neurons that could facilitate seizure discharge. We used the pilocarpine model of temporal lobe epilepsy to study the synaptic responses evoked by activating this pathway. Whole cell patch-clamp recording demonstrated that antidromic stimulation of the mossy fibers evoked an excitatory postsynaptic current (EPSC) in approximately 74% of granule cells from rats that had survived >10 wk after pilocarpine-induced status epilepticus. Recurrent mossy fiber growth was demonstrated with the Timm stain in all instances. In contrast, antidromic stimulation of the mossy fibers evoked an EPSC in only 5% of granule cells studied 4-6 days after status epilepticus, before recurrent mossy fiber growth became detectable. Notably, antidromic mossy fiber stimulation also evoked an EPSC in many granule cells from control rats. Clusters of mossy fiber-like Timm staining normally were present in the inner third of the dentate molecular layer at the level of the hippocampal formation from which slices were prepared, and several considerations suggested that the recorded EPSCs depended mainly on activation of recurrent mossy fibers rather than associational fibers. In both status epilepticus and control groups, the antidromically evoked EPSC was glutamatergic and involved the activation of both AMPA/kainate and N-methyl-D-aspartate (NMDA) receptors. EPSCs recorded in granule cells from rats with recurrent mossy fiber growth differed in three respects from those recorded in control granule cells: they were much more frequently evoked, a number of them were unusually large, and the NMDA component of the response was generally much more prominent. In contrast to the antidromically evoked EPSC, the EPSC evoked by stimulation of the perforant path appeared to be unaffected by a prior episode of status epilepticus. These results support the hypothesis that recurrent mossy fiber growth and synapse formation increases the excitatory drive to dentate granule cells and thus facilitates repetitive synchronous discharge. Activation of NMDA receptors in the recurrent pathway may contribute to seizure propagation under depolarizing conditions. Mossy fiber-granule cell synapses also are present in normal rats, where they may contribute to repetitive granule cell discharge in regions of the dentate gyrus where their numbers are significant.  相似文献   

3.
Y Hori  K Endo 《Neuroscience letters》1992,142(2):191-195
Whole-cell voltage-clamp recordings were made from spinothalamic and spinomesencephalic tract neurons in thin-slice preparations of rat spinal cord. In the presence of tetrodotoxin, spontaneous inward and outward postsynaptic currents were observed near the resting membrane potential. These currents were divided into miniature excitatory postsynaptic currents (mEPSCs) mediated by glutamate, and miniature inhibitory postsynaptic currents (mIPSCs) mediated by glycine or gamma-aminobutyric acid (GABA). Glutamatergic mEPSCs had two components mediated by NMDA and non-NMDA receptors. Analyzing these miniature synaptic currents, valuable information concerning the pre- and postsynaptic mechanisms underlying modulation of synaptic transmission in the spinal dorsal horn could be obtained.  相似文献   

4.
Chen Q  Pan HL 《Neuroscience》2006,142(2):595-606
The hypothalamic paraventricular (PVN) neurons projecting to the spinal cord and brainstem play an important role in the control of homeostasis and the sympathetic nervous system. Although GABA(B) receptors are present in the PVN, their function in the control of synaptic inputs to PVN presympathetic neurons is not clear. Using retrograde tracing and whole-cell patch-clamp recordings in rat brain slices, we determined the role of presynaptic GABA(B) receptors in regulation of glutamatergic and GABAergic inputs to spinally projecting PVN neurons. The GABA(B) receptor agonist baclofen (1-50 microM) dose-dependently decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) and inhibitory postsynaptic currents (sIPSCs). The effect of baclofen on sEPSCs and sIPSCs was completely blocked by 10 microM CGP52432, a selective GABA(B) receptor antagonist. Baclofen also significantly reduced the frequency of both miniature excitatory and miniature inhibitory postsynaptic currents (mEPSCs and mIPSCs). Furthermore, uncoupling pertussis toxin-sensitive G(i/o) proteins with N-ethylmaleimide abolished baclofen-induced inhibition of mEPSCs and mIPSCs. However, the inhibitory effect of baclofen on the frequency of mIPSCs and mEPSCs persisted in the presence of either Cd2+, a voltage-gated Ca2+ channel blocker, or 4-aminopyridine, a blocker of voltage-gated K+ channels. Our results suggest that activation of presynaptic GABA(B) receptors inhibits synaptic GABA and glutamate release to PVN presympathetic neurons. This presynaptic action of GABA(B) receptors is mediated by the N-ethylmaleimide-sensitive G(i/o) proteins, but independent of voltage-gated Ca2+ and K+ channels.  相似文献   

5.
Proper operation of a neural circuit relies on both excitatory and inhibitory synapses. We previously showed that cell adhesion molecules nectin‐1 and nectin‐3 are localized at puncta adherentia junctions of the hippocampal mossy fiber glutamatergic excitatory synapses and that they do not regulate the excitatory synaptic transmission onto the CA3 pyramidal cells. We studied here the roles of these nectins in the GABAergic inhibitory synaptic transmission onto the CA3 pyramidal cells using nectin‐1‐deficient and nectin‐3‐deficient cultured mouse hippocampal slices. In these mutant slices, the amplitudes and frequencies of miniature excitatory postsynaptic currents were indistinguishable from those in the control slices. In the nectin‐1‐deficient slices, but not in the nectin‐3‐deficient slices, however, the amplitude of miniature inhibitory postsynaptic currents (mIPSCs) was larger than that in the control slices, although the frequency of the mIPSCs was not different between these two groups of slices. In the dissociated culture of hippocampal neurons from the nectin‐1‐deficient mice, the amplitude and frequency of mIPSCs were indistinguishable from those in the control neurons. Nectin‐1 was not localized at or near the GABAergic inhibitory synapses. These results indicate that nectin‐1 regulates the neuronal activities in the CA3 region of the hippocampus by suppressing the GABAergic inhibitory synaptic transmission.  相似文献   

6.
Recent experimental and modeling results demonstrated that surviving mossy cells in the dentate gyrus play key roles in the generation of network hyperexcitability. Here we examined if mossy cells exhibit long-term plasticity in the posttraumatic, hyperexcitable dentate gyrus. Mossy cells 1 wk after fluid percussion head injury did not show alterations in their current-firing frequency (I-F) and current-membrane voltage (I-V) relationships. In spite of the unchanged I-F and I-V curves, mossy cells showed extensive modifications in Na(+), K(+) and h-currents, indicating the coordinated nature of these opposing modifications. Computational experiments in a realistic large-scale model of the dentate gyrus demonstrated that individually, these perturbations could significantly affect network activity. Synaptic inputs also displayed systematic, opposing modifications. Miniature excitatory postsynaptic current (EPSC) amplitudes were decreased, whereas miniature inhibitory postsynaptic current (IPSC) amplitudes were increased as expected from a homeostatic response to network hyperexcitability. In addition, opposing alterations in miniature and spontaneous synaptic event frequencies and amplitudes were observed for both EPSCs and IPSCs. Despite extensive changes in synaptic inputs, cannabinoid-mediated depolarization-induced suppression of inhibition was not altered in posttraumatic mossy cells. These data demonstrate that many intrinsic and synaptic properties of mossy cells undergo highly specific, long-term alterations after traumatic brain injury. The systematic nature of such extensive and opposing alterations suggests that single-cell properties are significantly influenced by homeostatic mechanisms in hyperexcitable circuits.  相似文献   

7.
cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) are two major modulators of synaptic transmission in the CNS but little is known about how they affect synaptic transmission in the human CNS. In this study, we used forskolin, a PKA activator, and phorbol ester, a PKC activator, to examine the effects of these kinases on synaptic transmission in granule cells of the dentate gyrus in human hippocampal slices using whole-cell recording methods. We found that both forskolin and phorbol ester increased the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) but left the amplitude unaffected. Inactive forskolin and phorbol ester had no effect on sEPSCs in human dentate granule cells. Prior application of forskolin occluded the effects of phorbol ester on mEPSC frequency. Tetanic stimulation applied to the perforant path induced short-term depression in dentate gyrus granule cells. Both forskolin and phorbol ester significantly enhanced this short-term depression. Taken together, these results demonstrate that PKA and PKC are involved in up-regulation of excitatory synaptic transmission in human dentate granule cells, primarily by presynaptic mechanisms. In addition, the occlusion experiments suggest that the two kinases may share a common signal pathway.  相似文献   

8.
We recorded spontaneous and evoked synaptic currents in pyramidal neurons of layer V in chronically injured, epileptogenic neocortex to assess changes in the efficacy of excitatory and inhibitory neurotransmission that might promote cortical hyperexcitability. Partial sensory-motor neocortical isolations with intact blood supply ("undercuts") were made in 20 rats on postnatal day 21-25 and examined 2-6 wk later in standard brain slice preparations using whole cell patch-clamp techniques. Age-matched, uninjured naive rats (n = 20) were used as controls. Spontaneous and miniature excitatory and inhibitory postsynaptic currents (s- and mEPSCs; s- and mIPSCs) were recorded using patch-clamp techniques. The average frequency of s- and mEPSCs was significantly higher, while that of s- and mIPSCs was significantly lower in neurons of undercuts versus controls. The increased frequency of excitatory events was due to an increase in both s- and mEPSC frequency, suggesting an increased number of excitatory contacts and/or increased release probability at excitatory terminals. No significant difference was observed in 10-90% rise time of these events. The input-output slopes of fast, short-latency, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate (AMPA/KA) receptor-mediated components of evoked EPSCs were steeper in undercuts than in controls. The peak amplitude of the AMPA/KA component of EPSCs evoked by supra-threshold stimuli was significantly greater in the partially isolated neocortex. In contrast, the N-methyl-D-aspartate receptor-mediated component of evoked EPSCs was not significantly different in neurons of injured versus control cortex, suggesting that the increased AMPA/KA component was due to postsynaptic alterations. Results support the conclusion that layer V pyramidal neurons receive increased AMPA/KA receptor-mediated excitatory synaptic drive and decreased GABA(A) receptor-mediated inhibition in this chronically injured, epileptogenic cortex. This shift in the balance of excitatory and inhibitory synaptic activation of layer V pyramidal cells toward excitation might be maladaptive and play a critical role in epileptogenesis.  相似文献   

9.
本实验采用全细胞电压钳记录方法,研究了内吗啡肽1(EM1)和内吗啡肽2(EM2)对脊髓背角胶状质神经元突触传递的抑制性作用。EM1(1μmol/L)和EM2(1μmol/L)都能够显著抑制微小兴奋性突触后电流(mEPSCs)和微小抑制性突触后电流(mIPSCs)的频率而不改变其幅值。这种抑制作用能被μ受体选择性拮抗剂βfunaltrexamine(βFNA,10μmol/L)阻断。值得注意的是,EM1对mEPSCs和mIPSCs的频率的抑制作用强于EM2。上述结果提示在脊髓胶状质,内吗啡肽通过激活突触前膜上的μ受体,抑制兴奋性和抑制性的突触传递;与EM2相比,EM1可能是脊髓水平的更强效的内源性镇痛剂。  相似文献   

10.
Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatory postsynaptic currents (sEPSCs) >600 pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.  相似文献   

11.
Dentate granule cells become synaptically interconnected in the hippocampus of persons with temporal lobe epilepsy, forming a recurrent mossy fiber pathway. This pathway may contribute to the development and propagation of seizures. The physiology of mossy fiber-granule cell synapses is difficult to characterize unambiguously, because electrical stimulation may activate other pathways and because there is a low probability of granule cell interconnection. These problems were addressed by the use of scanning laser photostimulation in slices of the caudal hippocampal formation. Glutamate was released from a caged precursor with highly focused ultraviolet light to evoke action potentials in a small population of granule cells. Excitatory synaptic currents were recorded in the presence of bicuculline. Minimal laser photostimulation evoked an apparently unitary excitatory postsynaptic current (EPSC) in 61% of granule cells from rats that had experienced pilocarpine-induced status epilepticus followed by recurrent mossy fiber growth. An EPSC was also evoked in 13-16% of granule cells from the control groups. EPSCs from status epilepticus and control groups had similar peak amplitudes ( approximately 30 pA), 20-80% rise times (approximately 1.2 ms), decay time constants ( approximately 10 ms), and half-widths (approximately 8 ms). The mean failure rate was high (approximately 70%) in both groups, and in both groups activation of N-methyl-D-aspartate receptors contributed a small component to the EPSC. The strong similarity between responses from the status epilepticus and control groups suggests that they resulted from activation of a similar synaptic population. No EPSC was recorded when the laser beam was focused in the dentate hilus, suggesting that indirect activation of hilar mossy cells contributed little, if at all, to these results. Recurrent mossy fiber growth increases the density of mossy fiber-granule cell synapses in the caudal dentate gyrus by perhaps sixfold, but the new synapses appear to operate very similarly to preexisting mossy fiber-granule cell synapses.  相似文献   

12.
Stimulation of presynaptic nicotinic acetylcholine receptors (nAChRs) increases the frequency of miniature excitatory synaptic activity (mEPSCs) to a point where they can promote cell firing in hippocampal CA3 neurons. We have evaluated whether nicotine regulation of miniature synaptic activity can be extended to inhibitory transmission onto striatal medium spiny projection neurons (MSNs) in acute brain slices. Bath application of micromolar nicotine typically induced 12-fold increases in the frequency of miniature inhibitory synaptic currents (mIPSCs). Little effect was observed on the amplitude of mIPSCs or mEPSCs under these conditions. Nicotine stimulation of mIPSCs was dependent on entry of extracellular calcium because removal of calcium from perfusate was able to block its action. To assess the potential physiological significance of the nicotine-stimulated increase in mIPSC frequency, we also examined the nicotine effect on evoked IPSCs (eIPSCs). eIPSCs were markedly attenuated by nicotine. This effect could be attributed to two potential mechanisms: transmitter depletion due to extremely high mIPSC rates and/or a reduction in presynaptic excitability associated with nicotinic depolarization. Treatment with low concentrations of K(+) was able to in part mimic nicotine's stimulatory effect on mIPSCs and inhibitory effect on eIPSCs. Current-clamp recordings confirmed a direct depolarizing action of nicotine that could dampen eIPSC activity leading to a switch to striatal inhibitory synaptic transmission mediated by tonic mIPSCs.  相似文献   

13.
Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling and kainic acid. The experiments were designed to functionally assess seizure-induced development of recurrent circuitry by exploiting information available about the time course of seizure-induced synaptic reorganization in the kindling model and detailed anatomic characterization of sprouted fibers in the kainic acid model. When recurrent inhibitory circuits were blocked by the GABA(A) receptor antagonist bicuculline, focal application of glutamate microdrops at locations in the granule cell layer remote from the recorded granule cell evoked trains of excitatory postsynaptic potentials (EPSPs) and population burst discharges in epileptic rats, which were never observed in slices from normal rats. The EPSPs and burst discharges were blocked by bath application of 1 microM tetrodotoxin and were therefore dependent on network-driven synaptic events. Excitatory connections were detected between blades of the dentate gyrus in hippocampal slices from rats that experienced kainic acid-induced status epilepticus. Trains of EPSPs and burst discharges were also evoked in granule cells from kindled rats obtained after > or = 1 wk of kindled seizures, but were not evoked in slices examined 24 h after a single afterdischarge, before the development of sprouting. Excitatory connectivity between blades of the dentate gyrus was also assessed in slices deafferented by transection of the perforant path, and bathed in artificial cerebrospinal fluid (ACSF) containing bicuculline to block GABA(A) receptor-dependent recurrent inhibitory circuits and 10 mM [Ca(2+)](o) to suppress polysynaptic activity. Low-intensity electrical stimulation of the infrapyramidal blade under these conditions failed to evoke a response in suprapyramidal granule cells from normal rats (n = 15), but in slices from epileptic rats evoked an EPSP at a short latency (2.59 +/- 0.36 ms) in 5 of 18 suprapyramidal granule cells. The results are consistent with formation of monosynaptic excitatory connections between blades of the dentate gyrus. Recurrent excitatory circuits developed in the dentate gyrus of epileptic rats in a time course that corresponded to the development of mossy fiber sprouting and demonstrated patterns of functional connectivity corresponding to anatomic features of the sprouted mossy fiber pathway.  相似文献   

14.
After unilateral peripheral vestibular lesions, the brain plasticity underlying early recovery from the static symptoms is not fully understood. Principal cells of the chick tangential nucleus offer a subset of morphologically defined vestibular nuclei neurons to study functional changes after vestibular lesions. Chickens show posture and balance deficits immediately after unilateral vestibular ganglionectomy (UVG), but by 3 days most subjects begin to recover, although some remain uncompensated. With the use of whole cell voltage-clamp, spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) and miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from principal cells in brain slices 1 and 3 days after UVG. One day after UVG, sEPSC frequency increased on the lesion side and remained elevated at 3 days in uncompensated chickens only. Also by 3 days, sIPSC frequency increased on the lesion side in all operated chickens due to major increases in GABAergic events. Significant change also occurred in decay time of the events. To determine whether fluctuations in frequency and kinetics influenced overall excitatory or inhibitory synaptic drive, synaptic charge transfer was calculated. Principal cells showed significant increase in excitatory synaptic charge transfer only on the lesion side of uncompensated chickens. Thus compensation continues when synaptic charge transfer is in balance bilaterally. Furthermore, excessive excitatory drive in principal cells on the lesion side may prevent vestibular compensation. Altogether, this work is important for it defines the time course and excitatory and inhibitory nature of changing spontaneous synaptic inputs to a morphologically defined subset of vestibular nuclei neurons during critical early stages of recovery after UVG.  相似文献   

15.
Gong KR  Cao FL  He Y  Gao CY  Wang DD  Li H  Zhang FK  An YY  Lin Q  Chen J 《Neuroscience》2010,171(4):1314-1325
The anterior cingulate cortex (ACC) has been demonstrated to play an important role in the affective dimension of pain. Although much evidence has pointed to an increased excitatory synaptic transmission in the ACC in some of the pathological pain state, the inhibitory synaptic transmission in this process has not been well studied. Also, the overall changes of excitatory and inhibitory synaptic transmission have not been comparatively studied in an animal model displaying both long-term persistent nociception and hyperalgesia. Here we used patch clamp recordings in ACC brain slices to observe the changes in synaptic transmission in a pain model induced by peripheral bee venom injection. First, we show that, comparing with those of naive and saline controlled rats, there was a significant increase in spike frequency in ACC neurons harvested from rats after 2 h period of peripheral persistent painful stimuli. Second, it is further shown that the frequency, amplitude and half-width were all increased in spontaneous excitatory post-synaptic currents (sEPSCs), while the amplitude of spontaneous inhibitory post-synaptic currents (sIPSCs) was decreased. The recordings of miniature post-synaptic currents demonstrate an increase in frequency of miniature excitatory post-synaptic currents (mEPSCs) and a decrease in both frequency and amplitude of miniature inhibitory post-synaptic currents (mIPSCs) in rats' ACC slice of bee venom treatment. Taken together, the present results demonstrate an unparalleled change between excitatory and inhibitory synaptic transmission in the ACC under a state of peripheral persistent nociception that might be underlying mechanisms of the excessive excitability of the ACC neurons. We propose that the painful stimuli when lasts or becomes persistent may cause a disruption of the balance between excitatory and inhibitory synaptic transmission that can contribute to the functional change in the ACC.  相似文献   

16.
Recently we have shown that acute ethanol (EtOH) exposure suppresses dorsal root-evoked synaptic potentials in spinal motoneurons. To examine the synaptic mechanisms underlying the reduced excitatory activity, EtOH actions on properties of action potential-independent miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were studied in spinal motoneurons of newborn rats. Properties of mEPSCs generated by activation of N-methyl-D-aspartate receptors (NMDARs) and non-NMDA receptors and of mIPSCs mediated by glycine and gamma-aminobutyric acid-A receptors (GlyR and GABA(A)R) were examined during acute exposure to 70 and 200 mM EtOH. In the presence of 70 mM EtOH, the frequency of NMDAR- and non-NMDAR-mediated mEPSCs decreased to 53 +/- 5 and 45 +/- 7% (means +/- SE) of control values, respectively. In contrast, the frequency of GlyR- and GABA(A)R-mediated mIPSCs increased to 138 +/- 15 and 167 +/- 23% of control, respectively. Based on the quantal theory of transmitter release, changes in the frequency of miniature currents are correlated with changes in transmitter release, suggesting that EtOH decreased presynaptic glutamate release and increased the release of both glycine and GABA. EtOH did not change the amplitude or rise and decay times of either mEPSCs or mIPSCs, indicating that the presynaptic changes were not associated with changes in the properties of postsynaptic receptors/channels. Acute exposure to 200 mM EtOH increased mIPSC frequency two- to threefold, significantly higher than the increase induced by 70 mM EtOH. However, the decrease in mEPSC frequency was similar to that observed in 70 mM EtOH. Those findings implied that the regulatory effect of EtOH on glycine and GABA release was dose-dependent. Exposure to the higher EtOH concentration had opposite actions on mEPSC and mIPSC amplitudes: it attenuated the amplitude of NMDAR- and non-NMDAR-mediated mEPSCs to ~80% of control and increased GlyR- and GABA(A)R-mediated mIPSC amplitude by ~20%. EtOH-induced changes in the amplitude of postsynaptic currents were not associated with changes in their basic kinetic properties. Our data suggested that in spinal networks of newborn rats, EtOH was more effective in modulating the release of excitatory and inhibitory neurotransmitters than changing the properties of their receptors/channels.  相似文献   

17.
In the inner retina, ganglion cells (RGCs) integrate and process excitatory signal from bipolar cells (BCs) and inhibitory signal from amacrine cells (ACs). Using multiple labeling immunohistochemistry, we first revealed the expression of the cannabinoid CB1 receptor (CB1R) at the terminals of ACs and BCs in rat retina. By patch-clamp techniques, we then showed how the activation of this receptor dichotomously regulated miniature inhibitory postsynaptic currents (mIPSCs), mediated by GABAA receptors and glycine receptors, and miniature excitatory postsynaptic currents (mEPSCs), mediated by AMPA receptors, of RGCs in rat retinal slices. WIN55212-2 (WIN), a CB1R agonist, reduced the mIPSC frequency due to an inhibition of L-type Ca2+ channels no matter whether AMPA receptors were blocked. In contrast, WIN reduced the mEPSC frequency by suppressing T-type Ca2+ channels only when inhibitory inputs to RGCs were present, which could be in part due to less T-type Ca2+ channels of cone BCs, presynaptic to RGCs, being in an inactivation state under such condition. This unique feature of CB1R-mediated retrograde regulation provides a novel mechanism for modulating excitatory synaptic transmission in the inner retina. Moreover, depolarization of RGCs suppressed mIPSCs of these cells, an effect that was eliminated by the CB1R antagonist SR141716, suggesting that endocannabinoid is indeed released from RGCs.  相似文献   

18.
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.  相似文献   

19.
Metastin is an antimetastatic peptide encoded by the KiSS-1 gene in cancer cells. Recent studies found that metastin is a ligand for the orphan G-protein-coupled receptor GPR54, which is highly expressed in specific brain regions such as the hypothalamus and parts of the hippocampus. This study shows that activation of GPR54 by submicromolar concentrations of metastin reversibly enhances excitatory synaptic transmission in hippocampal dentate granule cells in a mitogen-activated protein (MAP) kinase-dependent manner. Synaptic enhancement by metastin was suppressed by intracellular application of the G-protein inhibitor GDP-beta-S and the calcium chelator BAPTA. Analysis of miniature excitatory postsynaptic currents (mEPSCs) revealed an increase in the mean amplitude but no change in event frequency. This indicates that GPR54 and the mechanism responsible for the increase in EPSCs are postsynaptic. Metastin-induced synaptic potentiation was abolished by 50 microM PD98059 and 20 microM U0126, two inhibitors of the MAP kinases ERK1 and ERK2. The effect was also blocked by inhibitors of calcium/calmodulin-dependent kinases and tyrosine kinases. RT-PCR experiments showed that both KiSS-1 and GPR54 are expressed in the hippocampal dentate gyrus. Metastin is thus a novel endogenous factor that modulates synaptic excitability in the dentate gyrus through mechanisms involving MAP kinases, which in turn may be controlled upstream by calcium-activated kinases and tyrosine kinases.  相似文献   

20.
The purpose of this study was to determine the role of transient receptor potential vanilloid type 1 (TRPV1) receptor in modulating neuronal activity of the dorsolateral periaqueductal gray (dl-PAG) through excitatory and inhibitory synaptic inputs. First, whole cell voltage-clamp recording was performed to obtain the spontaneous miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) of the dl-PAG neurons. As 1 microM of capsaicin was applied into the perfusion chamber, the frequency of mEPSCs was increased from 3.21 +/- 0.49 to 5.64 +/- 0.64 Hz (P < 0.05, n = 12) without altering the amplitude and the decay time constant of mEPSCs. In contrast, capsaicin had no distinct effect on mIPSCs. A specific TRPV1 receptor antagonist, iodo-resiniferatoxin (i-RTX, 300 nM), decreased the frequency of mEPSCs from 3.51 +/- 0.29 to 2.01 +/- 0.2 Hz (P < 0.05, n = 8) but did not alter the amplitude and decay time. In addition, i-RTX applied into the chamber abolished the effect of capsaicin on mEPSC of the dl-PAG. In another experiment, spontaneous action potential of the dl-PAG neurons was recorded using whole cell current-clamp methods. Capsaicin significantly elevated the discharge rate of the dl-PAG neurons from 3.03 +/- 0.38 to 5.96 +/- 0.87 Hz (n = 8). The increased firing activity was abolished in the presence of glutamate N-methy-D-aspartate (NMDA) and non-NMDA antagonists, 2-amino-5-phosphonopentanoic acid, and 6-cyano-7-nitroquinoxaline-2,3-dione. The results from this study provide the first evidence indicating that activation of TRPV1 receptors increases the neuronal activity of the dl-PAG through selective potentiation of glutamatergic synaptic inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号