首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that learning visuomotor rotations with multiple target directions, compared with a single target direction, leads to greater generalization to untrained targets within the same limb. This implies that multiple direction learning results in a more complete internal model of the visuomotor transform. It has also been documented that the extent of transfer of movement information regarding visuomotor adaptations between the limbs is limited, relative to that between different configurations of the same limb. The present study thus investigated the origin of this restriction in interlimb transfer, by comparing the effects of eight-direction and one-direction training conditions with one arm on the subsequent performance with the other arm. It was hypothesized that if multiple direction learning leads to a more complete model of the novel visuomotor transform, interlimb transfer should be enhanced relative to that following single direction training. However, if no differences are observed between single and multiple direction training conditions, this would suggest that such learning is effector dependent. We also tested the hypothesis that interlimb transfer of visuomotor adaptation is not obligatory, by examining the effects of visual rotation direction (same or oppositely directed visuomotor rotations for the two arms). All subjects first adapted to a 30° rotation, either clockwise or counterclockwise, in the visual display during reaching movements. Following this, they adapted to a 30° rotation in either the same or opposing direction with the other arm. Results showed that initial training with the non-dominant arm facilitated subsequent performance with the dominant arm in terms of initial direction control, but only under the same rotation condition. Both single and eight direction training conditions led to substantial transfer in subsequent performance with the other arm, but multiple direction training was no more beneficial than single direction training. This finding suggests that the previously reported intralimb advantages of multiple direction learning are effector specific. Our findings are discussed in the context of hierarchical models of motor control to explain the intralimb advantages of multiple direction training.  相似文献   

2.
We previously reported that opposite arm training improved the initial direction of dominant arm movements, whereas it only improved the final position accuracy of non-dominant arm movements. We now ask whether each controller accesses common, or separate, short-term memory resources. To address this question, we investigated interlimb transfer of learning for visuomotor rotations that were directed oppositely [clockwise (CW)/counterclockwise (CCW)] for the two arms. We expected that if information obtained by initial training was stored in the same short-term memory space for both arms, opposite arm training of a CW rotation would interfere with subsequent adaptation to a CCW rotation. All subjects first adapted to a 30° rotation (CW) in the visual display during reaching movements. Following this, they adapted to a 30° rotation in the opposite direction (CCW) with the other arm. In contrast to our previous findings for interlimb transfer of same direction rotations (CCW/CCW), no effects of opposite arm adaptation were indicated in the initial trials performed. This indicates that interlimb transfer is not obligatory, and suggests that short-term memory resources for the two limbs are independent. Through single trial analysis, we found that the direction and final position errors of the first trial of movement, following opposite arm training, were always the same as those of naive performance. This was true whether the opposite arm was trained with the same or the opposing rotation. When trained with the same rotation, transfer of learning did not occur until the second trial. These findings suggest that the selective use of opposite arm information is dependent on the first trial to probe current movement conditions. Interestingly, the final extent of adaptation appeared to be reduced by opposite arm training of opposing rotations. Thus, the extent of adaptation, but not initial information transfer, appears obligatorily affected by prior opposite arm adaptation. According to our findings, it is plausible that the initiation and the final extent of adaptation involve two independent neural processes. Theoretical implications of these findings are discussed. Electronic Publication  相似文献   

3.
Previous findings from our laboratory support the idea that the dominant arm is more proficient than the non-dominant arm in coordinating intersegmental dynamics for specifying trajectory direction and shape during multijoint reaching movements. We also showed that adaptation of right and left arms to novel visuomotor rotations was equivalent, suggesting that this process occurs upstream to processes that distinguish dominant and non-dominant arm performance. Because of this, we speculate that such visuomotor adaptations might transfer to subsequent performance during adaptation with the other arm. We now examine whether opposite arm training to novel visuomotor rotations transfers to affect adaptation using the right and left arms. Two subject groups, RL and LR, each comprising seven right-handed subjects, adapted to a 30 degrees counterclockwise rotation in the visual display during a center-out reaching task performed in eight directions. Each group first adapted using either the right (RL) or left (LR) arm, followed by opposite arm adaptation. In order to assess transfer, we compared the same side arm movements (either right or left) following opposite arm adaptation to those performed prior to opposite arm adaptation. Our findings indicate unambiguous transfer of learning across the arms. Different features of movement transferred in different directions: Opposite arm training improved the initial direction of right arm movements under the rotated visual condition, whereas opposite arm training improved the final position accuracy, but not the direction of left arm movements. These findings confirm that transfer of training was not due to a general cognitive strategy, since such an effect should influence either hand equally. These findings support the hypothesis that each arm controller has access to information learned during opposite arm training. We suggest that each controller uses this information differently, depending on its proficiency for specifying particular features of movement. We discuss evidence that these two aspects of control are differentially mediated by the right and left cerebral hemispheres.  相似文献   

4.
Previous studies have reported that unilateral proximal arm movements are initiated more quickly in response to visual stimuli directed to the ispilateral hemifield than to the contralateral hemifield. This is thought to reflect differences in intrahemispheric and interhemispheric visuomotor integration. When bilateral movements are performed, this difference in reaction time (RT) is abolished owing to the involvement of bilaterally distributed motor pathways. However, these experiments typically use simple motor tasks that do not emphasise spatial precision. We investigated the hemispheric control of precise unilateral and bilateral arm movements in 12 subjects using a lateralized visual stimulus paradigm and found an ipsilateral RT advantage for both unilateral and bilateral movements. We conclude that the requirement to execute spatially precise movements restricts control to the contralateral hemisphere regardless of whether unilateral or bilateral movements are performed.  相似文献   

5.
When submitted to a visuomotor rotation, subjects show rapid adaptation of visually guided arm reaching movements, indicated by a progressive reduction in reaching errors. In this study, we wanted to make a step forward by investigating to what extent this adaptation also implies changes into the motor plan. Up to now, classical visuomotor rotation paradigms have been performed on the horizontal plane, where the reaching motor plan in general requires the same kinematics (i.e., straight path and symmetric velocity profile). To overcome this limitation, we considered vertical and horizontal movement directions requiring specific velocity profiles. This way, a change in the motor plan due to the visuomotor conflict would be measurable in terms of a modification in the velocity profile of the reaching movement. Ten subjects performed horizontal and vertical reaching movements while observing a rotated visual feedback of their motion. We found that adaptation to a visuomotor rotation produces a significant change in the motor plan, i.e., changes to the symmetry of velocity profiles. This suggests that the central nervous system takes into account the visual information to plan a future motion, even if this causes the adoption of nonoptimal motor plans in terms of energy consumption. However, the influence of vision on arm movement planning is not fixed, but rather changes as a function of the visual orientation of the movement. Indeed, a clear influence on motion planning can be observed only when the movement is visually presented as oriented along the vertical direction. Thus vision contributes differently to the planning of arm pointing movements depending on motion orientation in space.  相似文献   

6.
Here we investigated the influence of angular separation between visual and motor targets on concurrent adaptation to two opposing visuomotor rotations. We inferred the extent of generalisation between opposing visuomotor rotations at individual target locations based on whether interference (negative transfer) was present. Our main finding was that dual adaptation occurred to opposing visuomotor rotations when each was associated with different visual targets but shared a common motor target. Dual adaptation could have been achieved either within a single sensorimotor map (i.e. with different mappings associated with different ranges of visual input), or by forming two different internal models (the selection of which would be based on contextual information provided by target location). In the present case, the pattern of generalisation was dependent on the relative position of the visual targets associated with each rotation. Visual targets nearest the workspace of the opposing visuomotor rotation exhibited the most interference (i.e. generalisation). When the minimum angular separation between visual targets was increased, the extent of interference was reduced. These results suggest that the separation in the range of sensory inputs is the critical requirement to support dual adaptation within a single sensorimotor mapping.  相似文献   

7.
We have previously shown that the pattern of interlimb transfer following visuomotor adaptation depends on whether the two arms share task-space at a given workspace location: when the two arms adapted to a novel visuomotor rotation in unshared, lateral workspaces, transfer of movement direction information occurred symmetrically (i.e., from dominant to nondominant arm, and vice versa). When the two arms shared the same task-space, however, transfer of the same information became asymmetric (i.e., only from dominant to nondominant arm). In the present study, I investigated the effect of a conflict between visual and proprioceptive information of task-space on the pattern of interlimb transfer, by dissociating visual and motor workspaces. I hypothesized that the pattern of interlimb transfer would be determined by the way the motor control system uses available sensory information, and predicted that depending on whether the system relied more on vision or proprioception, transfer would occur either symmetrically or asymmetrically. Surprisingly, the results indicated that despite substantial adaptation to a novel visuomotor rotation, no transfer occurred across the arms when the visual and motor workspaces were dissociated in space. Based on this finding, I suggest that when a conflict exists between visual and proprioceptive information with respect to the sharing of the given task-space by the two arms, it interferes with executive decisions made by the motor control system in determining hand dominance at a given workspace, which results in a lack of transfer across the arms.  相似文献   

8.
There is a controversy in the literature as to whether transfer of motor learning across the arms occurs because of an individual's cognitive awareness of the learned condition. The purpose of this study was to test whether the extent of interlimb transfer following adaptation to a novel visuomotor rotation with one arm, as well as the rate of learning acquired by the other arm, would vary depending on the subjects' awareness of the rotation condition. Awareness of the condition was varied by employing three experimental conditions. In one condition, visual rotation of the display up to 32° was gradually introduced to minimize the subjects' awareness of the rotation during targeted reaching movement. In another condition, the 32° rotation was abruptly introduced from the beginning of the adaptation session. Finally, the subjects were informed regarding the rotation prior to the adaptation session. After adaptation with the left arm under the three conditions, subjects performed reaching movement with the right arm under the same 32° rotation condition. Our results showed that the amount of initial transfer, and also the changes in performance with the right arm, did not vary significantly across the three conditions. This finding suggests that interlimb transfer of visuomotor adaptation does not occur based on an individual's awareness of the manipulation, but rather as a result of implicit generalization of the obtained visuomotor transformation across the arms.  相似文献   

9.
Directional preferences have previously been demonstrated during horizontal arm movements. These preferences were characterized by a tendency to exploit interaction torques for movement production at the shoulder or elbow, indicating that the preferred directions depend on biomechanical, and not on visual perception-based factors. We directly tested this hypothesis by systematically dissociating visual information from arm biomechanics. Sixteen subjects performed a free-stroke drawing task that required performance of fast strokes from the circle center toward the perimeter, while selecting stroke directions in a random order. Hand position was represented by a cursor displayed in the movement plane. The free-stroke drawing was performed twice, before and after visuomotor adaptation to a 30° clockwise rotation of the perceived hand path. The adaptation was achieved during practicing pointing movements to eight center-out targets. Directional preferences during performance of the free-stroke drawing task were revealed in ten out of the sixteen subjects. The orientation and strength of these preferences were largely the same in both conditions, showing no significant effect of the visuomotor adaptation. In both conditions, the major preferred directions were characterized by higher contribution of interaction torque to net torque at the shoulder as well as by relatively low inertial resistance and the sum of squared shoulder and elbow muscle torques. These results support the hypothesis that directional preferences are largely determined by biomechanical factors. However, this biomechanical effect can decrease or even disappear in some subjects when movements are performed in special conditions, such as the virtual environment used here.  相似文献   

10.
We previously reported that opposite arm adaptation to visuomotor rotations improved the initial direction of right arm movements in right-handers, whereas it only improved the final position accuracy of their left arm movements. We now investigate the pattern of interlimb transfer following adaptation to 30° visuomotor rotations in left-handers to determine whether the direction of transfer depends on handedness. Our results indicate unambiguous transfer across the arms. In terms of final position accuracy, the direction of transfer is opposite to that observed in right-handers, such that transfer only occurred from the left to the right arm movements. Directional accuracy also showed the opposite pattern of transfer to that of right-handers: initial movement direction, calculated at peak tangential acceleration, transferred only from right to left arms. When movement direction was measured later in the movement, at peak tangential velocity, asymmetrical transfer also occurred, such that greater transfer occurred from right to left arms. However, a small, but significant influence of opposite arm adaptation also occurred for the left arm, which might reflect differences in the use of the nondominant arm between left- and right-handers. Overall, our results indicate that left-handers show a mirror-imaged pattern of interlimb transfer in visuomotor adaptation to that previously reported for right-handers. This pattern of transfer is consistent with the hypothesis that asymmetry in interlimb transfer is dependent on differential specialization of the dominant and nondominant hemisphere/limb systems for trajectory and positional control, respectively.  相似文献   

11.
Studies examining dual adaptation to opposing novel environments have yielded contradictory results, with previous evidence supporting both successful dual adaptation and interference leading to poorer adaptive performance. Whether or not interference is observed during dual adaptation appears to be dependent on the method used to allow the performer of the task to distinguish between two novel environments. This experiment tested if colour cues, a separation in workspace, and presentation schedule, could be used to distinguish between two opposing visuomotor rotations and enable dual adaptation. Through the use of a purpose designed manipulandum, each visuomotor rotation was either presented in the same region of workspace and associated with colour cues (Group 1), different regions of workspace in addition to colour cues (Groups 2 and 3) or different regions of workspace only (Groups 4 and 5). We also assessed the effectiveness of the workspace separation with both randomised and alternating presentation schedules (Groups 4 and 5). The results indicated that colour cues were not effective at enabling dual adaptation when each of the visuomotor rotations was associated with the same region of workspace. When associated with different regions of workspace, however, dual adaptation to the opposing rotations was successful regardless of whether colour cues were present or the type of presentation schedule.  相似文献   

12.
Many studies have shown that reaching movements to visual targets can rapidly adapt to altered visual feedback of hand motion (i.e., visuomotor rotation) and generalize to new target directions. This generalization is thought to reflect the acquisition of a neural representation of the novel visuomotor environment that is localized to the particular trained direction. In these studies, participants perform movements to a small number of target locations repeatedly. However, it is unclear whether adaptation and generalization are comparable when target locations are constantly varied and participants reach to visual targets one time only. Here, we compared performance for reaches to a 30° counter-clockwise visuomotor rotation to four targets, spaced 90° apart across four areas of workspace 18 times each (repeated practice (RP)) with one time only reaching movements to 72 targets, spaced 5° apart (varied practice (VP)). For both training groups, participants performed 18 reaches to radial targets (either at the repeated or varied location) in a specific area of the workspace (i.e., one of four quadrants) before reaching in the adjacent workspace. We found that the RP group adapted more completely compared to the VP group. Conversely, the VP group generalized to new target directions more completely when reaching without cursor feedback compared to the RP group. This suggests that RP and VP follow a mainly common pattern of adaptation and generalization represented in the brain, with benefits of faster adaptation with RP and more complete generalization with VP.  相似文献   

13.
Maximal voluntary strength of simultaneous bilateral exertion is known to be small compared to the sum of the unilateral exertions. This phenomenon is called bilateral deficit and the purpose of this study was to investigate whether it operates in both upper and lower limbs. A group of 7 female and 32 male students were divided into 4 training groups and a control group. The unilateral arm or leg training group performed maximal isokinetic arm or leg extensions using each arm or leg unilaterally. The bilateral arm or leg training group trained using bilateral extensions of both arms or legs. The groups in training continued these two types of resistance exercise 3 days a week, for 6 weeks. The control subjects did not train. The improvement in power brought about by training was compared from the viewpoint of whether the limbs (arms or legs) were trained or not and whether the mode of test power exertion (bilateral or unilateral) was the same as performed during training or not. The power in the trained limbs using the same regime as that during training (3.0% after 3 weeks, 7.7% after 6 weeks) showed the largest improvement ratio. This agrees with the specificity theory in resistance training. The increase in power in untrained limbs using the same regime as during training (2.1% after 3 weeks, 3.5% after 6 weeks; P?P?相似文献   

14.
Numerous studies of motor learning have focused on how people adapt their reaching movements to novel dynamic and visuomotor perturbations that alter the actual or visually perceived motion of the hand. An important finding from this work is that learning of novel dynamics generalizes across different movement tasks. Thus adaptation to an unusual force field generalizes from center-out reaching movements to circular movements (Conditt et al. 1997). This suggests that subjects acquired an internal model of the dynamic environment that could be used to determine the motor commands needed for untrained movements. Using a task interference paradigm, we investigated whether transfer across tasks is also observed when learning visuomotor transformations. On day 1, all subjects adapted to a +30 degrees rotation while making center-out-and-back reaching movements. After a delay of 5 min, different groups of subjects then adapted to a -30 degrees rotation while performing either a continuous tracking task, a figure-eight drawing task, or the center-out-and-back reaching task. All subjects were then retested the next day on the +30 degrees rotation in the reaching task. As expected, subjects who experienced the opposing rotations while performing the same reaching tasks showed no retention of learning for the first rotation when tested on day 2 (Krakauer et al. 1999). In contrast, such retrograde interference was not observed in the two groups of subjects who experienced the opposing rotations while performing different tasks. In fact, their performance on day 2 was similar to that of control subjects who never experienced the opposite rotation. This lack of interference suggests that memory resources for visuomotor rotations are task specific.  相似文献   

15.
Recent research has demonstrated that adaptation to a visuomotor distortion systematically influenced movements to auditory targets in adults and typically developing (TD) children, suggesting that the adaptation of spatial-to-motor transformations for reaching movements is multisensory (i.e., generalizable across sensory modalities). The multisensory characteristics of these transformations in children with developmental coordination disorder (DCD) have not been examined. Given that previous research has demonstrated that children with DCD have deficits in sensorimotor integration, these children may also have impairments in the formation of multisensory spatial-to-motor transformations for target-directed arm movements. To investigate this hypothesis, children with and without DCD executed discrete arm movements to visual and acoustic targets prior to and following exposure to an abrupt visual feedback rotation. Results demonstrated that the magnitudes of the visual aftereffects were equivalent in the TD children and the children with DCD, indicating that both groups of children adapted similarly to the visuomotor perturbation. Moreover, the influence of visuomotor adaptation on auditory-motor performance was similar in the two groups of children. This suggests that the multisensory processes underlying adaptation of spatial-to-motor transformations are similar in children with DCD and TD children.  相似文献   

16.
Differentiating between two models of motor lateralization   总被引:1,自引:0,他引:1  
This study was designed to differentiate between two models of motor lateralization: "feedback corrections" and dynamic dominance. Whereas the feedback correction hypothesis suggests that handedness reflects a dominant hemisphere advantage for visual-mediated correction processes, dynamic dominance proposes that each hemisphere has become specialized for distinct aspects of control. This model suggests that the dominant hemisphere is specialized for controlling task dynamics, as required for coordinating efficient trajectories, and the nondominant hemisphere is specialized for controlling limb impedance, as required for maintaining stable postures. To differentiate between these two models, we examined whether visuomotor corrections are mediated differently for the nondominant and dominant arms. Participants performed targeted reaches in a virtual reality environment in which visuomotor rotations occurred in two directions that elicited corrections with different coordination requirements. The feedback correction model predicts a dominant arm advantage for the timing and accuracy of corrections in both directions. Dynamic dominance predicts that correction timing and accuracy will be similar for both arms, but that interlimb differences in the quality of corrections will depend on the coordination requirements, and thus, direction of corrections. Our results indicated that correction time and accuracy did not depend on arm. However, correction quality, as reflected by trajectory curvature, depended on both arm and rotation direction. Nondominant trajectories were systematically more curvilinear than dominant trajectories for corrections with the highest coordination requirement. These results support the dynamic dominance hypothesis.  相似文献   

17.
Upright stance has allowed for substantial flexibility in how the upper limbs interact with each other: the arms can be coordinated in alternating, synchronous, or asymmetric patterns. While synchronization is thought to be the default mode of coordination during bimanual movement, there is little evidence for any bilateral coupling during locomotor-like arm cycling movements. Multi-frequency tasks have been used to reveal bilateral coupling during bimanual movements, thus here we used a multi-frequency task to determine whether the arms are coupled during arm cycling. It was hypothesized that bilateral coupling would be revealed as changes in background EMG and cutaneous reflexes when temporal coordination was altered. Twelve subjects performed arm cycling at 1 and 2 Hz with one arm while the contralateral arm was either at rest, cycling at the same frequency, or cycling at a different frequency (i.e., multi-frequency cycling with one arm at 1 Hz and the other at 2 Hz). To evoke reflexes, the superficial radial nerve was stimulated at the wrist. EMG was collected continuously from muscles of both arms. Results showed that background EMG in the lower frequency arm was amplified while reflex amplitudes were unaltered during multi-frequency cycling. We propose that neural coupling between the arms aids in equalizing muscle activity during asymmetric tasks to permit stable movement. Conversely, such interactions between the arms would likely be unnecessary in determining a reflexive response to a perturbation of one arm. Therefore, bilateral coupling was expressed when it was relevant to symmetry.  相似文献   

18.
We investigated the role of visual feedback of task performance in visuomotor adaptation. Participants produced novel two degrees of freedom movements (elbow flexion–extension, forearm pronation–supination) to move a cursor towards visual targets. Following trials with no rotation, participants were exposed to a 60° visuomotor rotation, before returning to the non-rotated condition. A colour cue on each trial permitted identification of the rotated/non-rotated contexts. Participants could not see their arm but received continuous and concurrent visual feedback (CF) of a cursor representing limb position or post-trial visual feedback (PF) representing the movement trajectory. Separate groups of participants who received CF were instructed that online modifications of their movements either were, or were not, permissible as a means of improving performance. Feedforward-mediated performance improvements occurred for both CF and PF groups in the rotated environment. Furthermore, for CF participants this adaptation occurred regardless of whether feedback modifications of motor commands were permissible. Upon re-exposure to the non-rotated environment participants in the CF, but not PF, groups exhibited post-training aftereffects, manifested as greater angular deviations from a straight initial trajectory, with respect to the pre-rotation trials. Accordingly, the nature of the performance improvements that occurred was dependent upon the timing of the visual feedback of task performance. Continuous visual feedback of task performance during task execution appears critical in realising automatic visuomotor adaptation through a recalibration of the visuomotor mapping that transforms visual inputs into appropriate motor commands.  相似文献   

19.
Previous research has shown that subjects can adapt with either arm to an opposite visual distortion, and the two adaptive states can then be used in sequence to control the respective arm. To extend this finding, we exposed the left and right arms of our subjects to opposite-directed rotations of the visual field alternately for 20 s each, and determined the time-course of adaptation, as well as aftereffects without visual feedback under uni- and bimanual conditions. Our data confirm that two adaptive states can co-exist in the sensorimotor system, one for each arm. We further found that the time-course of adaptive improvement was similar for both arms, that the improvement was present as early as the first movement after a change of arm and discordance, and that the magnitude of adaptation was similar to control data yielded by a single arm and discordance. Taken together, these findings suggest that the two adaptive states were formed concurrently, and without mutual interference. We also observed significant aftereffects. They were smaller but still appreciable under bimanual conditions; the two arms moved at the same time in different directions even though they were aimed at a common visual target. This outcome indicates that the two adaptive states were not merely of a strategic nature, but rather changed the rules by which sensory information was transformed into motor outputs; it also suggests that the two states not only co-exist, but can also be engaged concurrently in movement control. The reduced aftereffects observed under bimanual conditions can be attributed to the well-known phenomenon of bimanual coupling, which is unrelated to adaptation.  相似文献   

20.
In humans, learning to produce correct visually guided movements to adapt to new sensorimotor conditions requires the formation of an internal model that represents the new transformation between visual input and the required motor command. When the new environment requires adaptation to directional errors, learning generalizes poorly to untrained locations and directions, indicating that such learning is local. Here we replicated these behavioral findings in rhesus monkeys using a visuomotor rotation task and simultaneously recorded neuronal activity. Specific changes in activity were observed only in a subpopulation of cells in the motor cortex with directional properties corresponding to the locally learned rotation. These changes adhered to the dynamics of behavior during learning and persisted between learning and relearning of the same rotation. These findings suggest a neural mechanism for the locality of newly acquired sensorimotor tasks and provide electrophysiological evidence for their retention in working memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号